科学文献
科技文献的定义

科技文献的定义科技文献是指记录科学研究成果、科技发展动态和科技管理经验的文献资料。
它是科学研究、技术创新和科技管理的重要依据和参考,对于推动科技进步和社会发展具有重要的作用。
科技文献的主要特点是准确性、权威性和时效性。
作为科学研究成果的记录,科技文献要求准确地反映研究方法、实验数据和结论,确保信息的真实性和可靠性。
同时,科技文献也需要具备权威性,即来源于有专业知识和经验的科学家、工程师和技术专家,经过同行评议和学术机构认可的论文、报告和专著等。
此外,科技文献还要具备时效性,及时反映科技发展的最新成果和动态,使读者能够及时了解科技前沿和最新趋势。
科技文献主要包括学术论文、科技报告、专利文献、技术标准和科技期刊等。
学术论文是科学研究成果的主要表现形式,它通过系统的实验或理论分析,提出新的理论、方法和结论,通过同行评议后发表在学术期刊上。
科技报告是研究项目的成果报告或研究机构的研究成果总结,它通常包含研究目的、方法、实验结果和结论等内容。
专利文献是专利申请和授权的文件,记录了发明创造的具体技术方案和实施方式。
技术标准是科技发展的规范和指南,通过规定产品的技术要求和测试方法,保障产品的质量和安全。
科技期刊是科学研究成果的重要发布渠道,它定期出版学术论文和研究报告,提供科技信息的交流和共享平台。
科技文献的利用可以促进科学研究的发展和技术创新的进步。
科学家和工程师可以通过查阅和分析科技文献,了解前人的研究成果和经验,避免重复劳动和错误,为自己的研究工作奠定基础。
科技管理人员可以通过研究科技文献,掌握科技发展的动态和趋势,制定科技政策和计划,引导科技创新和产业升级。
工程师和技术人员可以通过科技文献,学习新的技术方法和应用案例,提高自己的专业能力和技术水平。
科技文献是科学研究、技术创新和科技管理的重要资源和工具。
科技工作者应该重视科技文献的收集和利用,不断更新自己的知识和技能,推动科技进步和社会发展。
同时,科技出版机构和科技管理部门也应该加强对科技文献的管理和服务,提高科技文献的质量和影响力,为科技创新提供有力支持。
高中生如何有效阅读科学文献

高中生如何有效阅读科学文献科学文献是高中生学习科学知识的重要资源,它们包含了前沿的研究成果和学术观点。
然而,对于许多高中生来说,阅读科学文献可能是一项具有挑战性的任务。
本文将介绍一些帮助高中生有效阅读科学文献的方法和技巧。
一、选择适合的文献在开始阅读科学文献之前,高中生应该学会选择适合自己的文献。
首先,他们可以通过在学校图书馆或在线数据库中搜索关键词来找到相关的文献。
其次,他们应该根据自己的学习目标和兴趣选择文献。
例如,如果他们对生物学感兴趣,那么可以选择与生物学相关的研究论文。
二、了解文献的结构科学文献通常由摘要、引言、方法、结果和讨论等部分组成。
高中生在阅读文献之前,应该先了解这些部分的作用和内容。
摘要通常是文献的概要,可以帮助读者快速了解研究的目的和主要结果。
引言部分介绍了研究的背景和目的,方法部分描述了研究的实验设计和数据采集方法,结果部分展示了实验结果,讨论部分对结果进行解释和分析。
三、注意关键词和术语科学文献中常常使用一些专业的术语和关键词,高中生应该学会识别和理解这些术语。
他们可以通过查阅词典或在线资源来解释这些术语的含义。
此外,高中生还可以将这些术语和关键词记录下来,以便在阅读过程中进行参考和复习。
四、提问和思考在阅读科学文献时,高中生应该保持积极的思考和提问的态度。
他们可以思考文献中的研究问题、实验设计和结果,并提出自己的疑问和观点。
通过提问和思考,他们可以更好地理解文献的内容,并培养批判性思维能力。
五、扩展阅读阅读科学文献不仅限于一篇文章,高中生可以通过扩展阅读来深入了解某个主题。
例如,他们可以查阅相关的综述文章、书籍或其他研究论文,以获取更全面的知识。
扩展阅读还可以帮助高中生了解当前研究领域的热点问题和最新进展。
六、记录和总结在阅读科学文献时,高中生应该养成记录和总结的习惯。
他们可以使用笔记本或电子工具来记录重要的观点、关键词和疑问。
此外,他们还可以将阅读的内容进行总结和归纳,以便后续的学习和复习。
如何阅读科学文献

如何阅读科学文献阅读科学文献对于科研工作者和学术界的人士非常重要。
通过阅读科学文献,我们可以了解最新的研究进展,与同行进行交流与合作,提高自身的学术能力和水平。
然而,对于一些初学者或者对特定领域不熟悉的人来说,阅读科学文献可能是一项具有挑战性的任务。
在本文中,我将分享一些关于如何阅读科学文献的方法和技巧。
一、了解文献的分类和来源科学文献通常可以分为多种类型,包括期刊论文、会议论文、学位论文、专著和技术报告等。
这些文献来源的权威性和可信度有所不同,应根据需要选择合适的文献进行阅读。
常见的文献数据库包括PubMed、Scopus、Web of Science等,可以通过检索关键词或者作者的姓名来查找相关的文献。
二、阅读文献之前的准备工作在阅读科学文献之前,我们可以进行一些准备工作,以提高阅读效率和理解能力。
首先,要了解相关领域的基本知识和术语,这样在阅读文献时就能更好地理解和理解作者的观点和实验内容。
其次,可以查找文献的综述或者评论性文章,了解该领域的发展和当前的研究进展,从而对文献有一个整体的了解。
最后,可以制定一个阅读计划,设定合理的阅读时间和目标,提高阅读的效率。
三、阅读科学文献的技巧1. 精读和泛读结合对于篇幅较长或者对自己比较重要的文献,可以进行精读。
在精读时,要认真阅读摘要和介绍部分,了解研究的背景和目的,然后逐段、逐句进行仔细阅读,理解作者的实验设计和研究结果。
在阅读过程中,可以做一些标记或者写下关键点,以便于后续的回顾和整理。
对于篇幅较长或者对自己不是很重要的文献,可以进行泛读。
在泛读时,可以关注文献的结构、图表和重点段落,了解作者的主要观点和研究结果。
泛读可以帮助快速获取信息,筛选出对自己研究有用的文献。
2. 多角度阅读在阅读科学文献时,要注意从多个角度进行思考和分析。
可以思考文献的创新点、实验设计、结果解释以及与其他相关文献的联系。
可以尝试用自己的话总结和表达作者的观点和结论,以帮助更好地理解文献内容。
科学探索的科学文献与资源利用

科学探索的科学文献与资源利用科学探索是人类认识和改造世界的重要途径之一,而科学文献和资源则是科学探索不可或缺的重要支持。
科学文献是研究者们对科学问题进行思考、实验、验证和总结后的成果,它们包含了大量的科学知识和数据,为科学探索提供了可靠的依据和参考。
而资源的有效利用则是科学探索取得进展的关键。
科学文献作为科学研究的记录和传播,其作用不可低估。
它们可以帮助研究者了解和分析前人的研究成果,掌握已有的知识体系和理论框架,为自己的研究提供指导和启示。
在科学探索过程中,科学文献还是进行科学讨论和争议的重要依据,通过对文献的分析和解读,不同的科学观点可以得到评价和比较,真理得以更好地审视和验证。
而科学文献的获取和利用,则需要依赖于相关的资源利用机制。
首先,图书馆和研究机构是科学文献获取的重要渠道。
它们收藏了大量的科学期刊、学术论文和研究报告,提供了方便的阅读和借阅服务。
其次,数字化技术的应用使得科学文献的获取更为便捷。
通过互联网和电子数据库,研究者们可以在线查找和下载所需的文献,大大缩短了获取时间和减少了空间限制。
此外,开放获取的科学文献资源也逐渐增多,研究者们可以免费获取到更多的研究成果,推动了科学的共享和发展。
除了文献的利用,资源的有效利用也是科学探索的重要环节。
资源的有效利用涉及到能源、材料、人力等多个方面。
在能源资源的利用上,科学探索提倡清洁能源的开发和利用,以减少对传统化石能源的依赖,降低环境污染和碳排放。
在材料资源的利用上,科学探索致力于研发高效、环保的生产技术和材料替代方案,以减少对有限资源的消耗和浪费。
在人力资源的利用上,科学探索需要建立良好的教育培训机制,吸引和培养更多的科学研究人才,提高整个社会的科学素质和创新能力。
综上所述,科学文献和资源的利用是科学探索必不可少的支持。
科学文献为科学研究提供了可靠的依据和参考,为研究者们提供了前人经验和科学观点的积累。
资源的有效利用则是科学研究取得进展的关键,它涉及到能源、材料和人力等多个方面。
科学文献的名词解释

科学文献的名词解释
文献:
1. Abstract
2. Bibliographic Database
3. Editor
4. Index
一、Abstract:
抽象是科学文献中概述性段落的内容,即文章的摘要,它在文献的开头,能简要介绍文献的内容和目的,是科学文献查找、分析和利用的重要基础。
Abstract由一般性问题、技术方法、重要结果、结论和指出事实的综述性的评论组成,概述文献的内容及方法,是检索文献信息的重要依据。
二、Bibliographic Database:
文献数据库是以文献数据为基础建立起来的文献信息体系,其主要内容是存储文献信息(如书籍、期刊、报纸、图书、报告摘要、摘录、贴文等)的元数据,并提供跨文献的快速检索的功能。
一般而言,文献数据库由代表文献的描述性元数据(如题名、作者、出版社、出版日期等)和用于检索所建立的全文索引组成。
三、Editor:
编辑是指组织、审查和整理文献内容,以便发表的这类编辑服务活动。
编辑可以编排、修改、撰写、组织文献,编辑从文献撰写、组织和修订等方面起着协调作用,以确保出版物的质量。
四、Index:
索引是科学文献检索的一个重要技术工具,它的主要目的是使读者能够轻松找到所需要的信息。
索引包括有关文献的词汇表,能够提供有用的参考资料,而无需检查整个文献的文本内容。
另外,索引还可以帮助读者了解文献的整体框架,有利于从文献中快速获取信息。
十大科技文献源

十大科技文献源科技的发展日新月异,不断推动着人类社会的进步。
以下是十大科技文献源,它们记录了人类在不同领域的探索和创新。
1.《自然》(Nature)作为世界上最古老的科学杂志之一,《自然》杂志为读者提供了丰富的科学研究成果和前沿的科技进展。
它既包括基础科学领域的研究,也关注应用科学的发展。
2.《科学》(Science)《科学》杂志是世界上最有影响力的综合性科学杂志之一,涵盖了各个学科领域的最新研究成果。
它以其高质量的科学报道和严谨的学术评审而闻名,是科学界的权威之一。
3.《人工智能》(Artificial Intelligence)《人工智能》期刊聚焦于人工智能领域的研究和应用,包括机器学习、自然语言处理、计算机视觉等。
它发布的论文对于推动人工智能技术的发展具有重要意义。
4.《物理评论快报》(Physical Review Letters)《物理评论快报》是物理学领域最具影响力的学术期刊之一,发表了许多重要的物理学突破性研究。
它以其简洁、精确和具有启发性的论文而受到广泛关注。
5.《细胞》(Cell)《细胞》杂志是细胞生物学和分子生物学领域的顶级期刊之一,报道了该领域的最新研究成果和突破性发现。
它对于理解生命的基本机制和疾病的发生机理具有重要意义。
6.《计算机视觉国际会议》(Conference on Computer Vision and Pattern Recognition)计算机视觉是人工智能领域的一个重要分支,该会议是该领域最重要的学术会议之一。
它汇集了来自全球的顶尖研究人员,分享了最新的计算机视觉技术和应用。
7.《美国国家科学院院刊》(Proceedings of the National Academy of Sciences)《美国国家科学院院刊》是美国国家科学院的官方期刊,发表了各个学科领域的重要研究成果。
它是一本跨学科的期刊,涵盖了自然科学、社会科学和工程技术等领域。
8.《医学》(The Lancet)《医学》杂志是世界上最具影响力的医学期刊之一,发表了许多重要的医学研究。
科学阅读的方法和技巧

科学阅读的方法和技巧一、选择合适的文献1. 学术期刊:选择相关领域的学术期刊,如《Nature》、《Science》等,这些期刊发布的论文通常是经过同行评议且质量较高的。
2. 学术数据库:如Google学术、PubMed等,可以通过关键词检索相关文献。
3.学术会议:参考学术会议的论文集,了解最新的研究进展。
4.专业书籍:选择有权威性的专业书籍,如教科书、专著等。
二、调整阅读策略科学文献通常包含大量的专业术语和公式,阅读起来较为困难。
为了更好地理解文献内容,可以采用以下阅读策略:1.预览:先浏览全文的标题、摘要和关键词,了解文献的大致内容和观点。
2.筛选:根据自己的兴趣和研究方向,选择有重要参考价值的章节或段落进行重点阅读。
3.聚焦:在阅读过程中,将注意力聚焦在关键词、论证主线和实验结果等重要内容上。
4.意识流:尽量保持集中的阅读时间,避免受到干扰和分散注意力。
5.笔记:在阅读过程中做好笔记,记录关键信息和自己的理解和思考。
三、理解文献内容科学文献通常采用科学语言和专业术语,为了更好地理解文献内容,可以采用以下方法:1.查阅词典和参考书:查阅相关课本、词典、参考书籍等,弄清楚不熟悉的术语和概念。
2.加深背景知识:扩大自己的科学背景知识,了解相关领域的基本原理和理论框架。
3.多角度理解:通过阅读多个文献,了解不同研究观点和方法,从不同角度思考和分析问题。
4.精确解释:将复杂的概念或内容用自己的语言重新解释一遍,以确保自己理解透彻。
四、分析论证逻辑科学文献通常有一定的逻辑结构,分析论证逻辑有助于深入理解文献内容。
可以采用以下方法:1.总结主旨:通过阅读摘要、引言和结论等部分,总结文献的主旨和观点。
4.反思批判:对文献的内容进行批判性思考,发现可能存在的问题和不足之处。
五、扩展思考和应用1.感知科学思维:思考作者是如何发现问题、提出假设、设计实验和得出结论的,借鉴科学思维方法。
2.拓展思考:将文献中的观点与自己的观点进行比较和对比,思考存在的差异和原因,并以此为基础进行拓展思考。
科学文献阅读技巧详解

科学文献阅读技巧详解科学文献阅读技巧详解在科学研究的道路上,掌握有效的文献阅读技巧至关重要。
想象一下,文献就像是一座座深奥的宝库,里面珍藏着无数宝贵的知识和经验。
然而,要想从这些宝库中获取有用的信息,需要具备一定的技巧和策略。
首先,当你面对一篇新的科学文献时,它可能会显得有些“冷漠”。
不过,不要担心,这只是因为它还没有“认识”你。
开始阅读前,先浏览摘要部分,这就像与文献“打个招呼”,让它知道你对它感兴趣。
接下来,进入文献的正文部分,你会发现它有如一位导游,带领你探索未知的领域。
要有耐心,不要急于求成。
有时候,文献会使用复杂的术语和句子,就像在说一门外语一样。
这时,不妨反复阅读,逐步理解每一个词语背后的含义,就像与文献进行一场深入的交流。
在阅读过程中,可以时常停下来思考,并做好记录。
文献常常会提出问题或者让你有新的启发,这就像它在与你进行互动,促使你深入思考。
记得,做好笔记非常重要,这有助于你将碎片化的信息整理成有条理的知识体系。
此外,不要忽视文献中的图表和数据。
它们就像文献的“视觉演示”,通过直观的方式展示研究结果。
深入理解图表背后的数据,有助于你更全面地把握文献的核心内容。
最后,要保持批判性思维。
就像与一位智者交谈一样,不要轻易接受文献中的每一个观点。
要学会提出问题,评估实验设计的有效性,并思考研究结果的可能局限性。
这样,你才能更好地理解文献,甚至为未来的研究提供新的思路和方法。
总结来说,科学文献阅读并非一项简单的任务,它需要技巧和耐心。
通过与文献建立良好的互动关系,你将能够开启一段充满发现和启发的学术之旅。
不断地练习和改进阅读技巧,相信你定能在科学研究的道路上越走越远。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Algebraic theories for contextual pre-netsRoberto Bruni1,Jos´e Meseguer2,Ugo Montanari1,and Vladimiro Sassone31Dipartimento di Informatica,Universit`a di Pisa,Italia.2University of Illinois at Urbana-Champaign,IL,USA.3COGS,University of Sussex,Brighton,UK.bruni@di.unipi.it,meseguer@,ugo@di.unipi.it,vs@ Abstract.The algebraic models of computation for contextual nets that havebeen proposed in the literature either rely on a non-free monoid of objects,orintroduce too manyfictitious behaviors that must be somewhatfiltered out.Inthis paper,we exploit partial membership equational logic to define a suitabletheory of models,where the meaningful concurrent computations can be selectedby means of membership predicates.1IntroductionThanks to their friendly formulation as multiset rewrite systems and to their graphical presentation,Petri nets[25,26]are an appealing formalism for the specification and study of concurrent and distributed systems:states consist of token distributions over the set of places and transitions can atomically fetch the tokens in their presets and generate new tokens according to their postsets.In particular,several transitions can execute concurrently when they work on mutually disjoint sets of tokens.Contextual nets[24](also introduced separately with different names,such as nets with read arcs[30],nets with test arcs[8],and nets with activator arcs[16])encompass a non-destructive reading operation not present in the basic Petri net model.In fact, read arcs allow multiple concurrent readings of the same resource,an operation whose need arises naturally in many distributed systems,while the na¨ıve encoding of read arcs as self-loops in ordinary Petri nets serializes all the accesses to read tokens with a dramatic loss of s with read arcs have been used to model a variety of applications and phenomena,such as transaction serializability in databases[11], concurrent constraint programming[23],asynchronous systems[29],and analysis of cryptographic protocols[10].As a drawback,the presence of read arcs introduces some complication in the math-ematical characterization of computations,leading to the development of suitable ex-tensions of well-studied domains and models for Petri nets.Extensions of this kind include:the asymmetric event structures of[2],the match-share categories of[13],and the monoids of places proposed in[17]and fully developed in[7]and in[22].In this paper we extend the so-called“Petri nets are monoids”approach initiated in[19]tofind a neat algebraic characterization of the monoidal category of concurrentcomputations in the presence of read arcs.In particular,we improve upon[13],where such computations were shown to be faithfully embedded in a too large,freely gener-ated category.Our approach is to define a typing discipline–expressed by membership predicates term:in partial membership equational logic[18]–that characterizes in that category the valid computations,distinguishing them from“garbage”expres-sions.Moreover,by considering pre-nets as“implementations”of ordinary Petri nets (in the sense explained in[5]and recalled in Section2),we are able to give a functorial construction,respecting the simulation morphisms between nets,a result not achieved in all previous proposals in the literature[17,13,7].Synopsis.In Section2we summarize the techniques used for defining functorial models for Petri nets.Section3describes the technical problems arising when extending the approach to nets with read arcs,and Section4presents our solution.Section5gives our conclusions.Proofs omitted for space limitation can be found in the technical report[6].We assume the reader has some familiarity with some basic concepts from category theory as,e.g.,the notion of natural transformation,adjunction and monoidal category. 2On the algebraic semantics of Petri netsPetri nets are one of the most studied models for concurrency,thanks to their natural representation of concurrent and distributed systems based on multiset rewriting.Their flexibility has encouraged many different semantical interpretations.In particular,an overall distinction can be drawn between collective and individual token philosophies (see,e.g.,[14]).According to the collective token philosophy(CTph),net semantics should not distinguish between different tokens in the same place,because any such token is operationally equivalent to all the others.The individual token philosophy (ITph)says that the different origins and histories of tokens must be accounted for, because choosing different tokens can make an event causally dependent on different past events,and causal dependencies may influence the degree of concurrency in the computations.In the classical example below,for instance,after t0and t1havefired,a firing of t will look as caused by one of them and concurrent to the other,depending on which of two tokens in c is consumed.Also,two instances of t mayfire concurrently that only differ in their causal histories.a t0ctb t1The“Petri nets are monoids”approach[19]is an algebraic approach to the analysis of concurrent semantics based on the observation that the monoidal structure of mark-ings can be lifted to computations,in such a way that the suitably axiomatized terms of the new algebra exactly correspond to the concurrent computations of place/transitions Petri nets(PT nets),according to the CTph.This construction respects the intuitive sim-ulation morphisms between nets,when these are seen as graphs with structured nodes.This is expressed as a functor T from the category Petri of PT nets(as objects)and sim-ulation morphisms(as arrows)to the category CMonCat of strictly symmetric strict monoidal categories(as objects)and monoidal functors(as arrows).Moreover,T is the left adjoint to an obvious forgetful functor from the full subcategory of CMonCat consisting of categories whose set of objects is a free monoid.The functorial character of the construction is important for at least two reasons: (1)working within categories,we make explicit the associated morphisms,which cor-respond to appropriate notions of“simulation”or“refinement”between nets;(2)func-tors act on objects and behave consistently on their simulation maps,preserving them. Furthermore,when functors are adjoints they preserve limits or colimits,yielding good compositionality properties,since complex models can often be expressed as(co)limits of their simpler constituents[31].Since the publication of[19],several studies have extended the functorial construc-tion from the CTph towards the ITph[12,21,28].Building on the notion of process presented in[15],the idea has been to take semantic models in the category of symmet-ric monoidal categories.But all the proposed constructions lacked functoriality.The difficulty in dealing with the ITph is that net morphisms in Petri allow replacing two different tokens a and b in the source net by,say,the same token c in the target net.In this way,an ambiguity about the origin of c is introduced that confuses causal histo-ries in the target net and makes a functorial treatment impossible.Afirst solution was proposed in[28]based on pseudo functors(see also[21]).In[5],we introduced pre-nets,which are more suitable than PT nets to be given a functorial semantics according to the ITph.A pre-net is essentially an implementation of a PT net,where the abstract data structure of multisets is refined into a more concrete string structure,and where each transition t:u v is simulated by one,arbitrarily fixed,linear implementation t¯u¯v:¯u¯v for some linearizations¯u and¯v of u and v.4 Although resorting to pre-nets(instead of PT nets)might atfirst appear unnatural to net enthusiasts,our formal approach to the ITph benefits from several good properties:–All the pre-net implementations of the same net share the same semantic model,i.e.the semantics is independent of the choice of linearizations.–Algebraic models of pre-nets are freely generated and,as part of adjunctions,pre-serve colimit constructions,allowing a form of compositional reasoning.In[5]it is shown that the construction can be conveniently expressed at the level of algebraic theories of the formΣE,rather than at the level of their categories of mod-els,i.e.ofΣE-algebras.Essentially,if is the theory of PT nets andis the theory of strictly symmetric monoidal categories,then there is a theory mor-phism form to that induces a forgetful functor between the category of-algebras(i.e.,strictly symmetric monoidal categories)and the category of -algebras(i.e.,PT nets).The left-adjoint to this forgetful functor is the free con-struction that associates to each PT net the strictly symmetric monoidal category of itsconcurrent computations.In such category,objects are the markings of the net,arrows are computations,(arrow)composition models progression in time of a computation, while tensor product accounts for concurrent activities.For instance,in the exampleabove,t0;t represents the sequential execution of t0and t,while t0t1stands for the concurrentfiring of t0and t1.In the individual token philosophy,the strict symmetry–characteristic of the collective token interpretation–must be given up to model the causalflows of tokens in computations.The order of transitions in a parallel composi-tion,say t0t1,determines the order of tokens“in the output”and,consequently,the causal connections to the activities that may follow.For instance,t0t1;t id c rep-resents the computation where t depends causally on t0(that is,it consumes the instance of c generated by that transitions).We are allowed to exchange t0and t1in the tensor product only if we keep track of this and maintain the correct order of output tokens,as e.g.in t1t0;γ;t id c,forγthe swap symmetry on c c.(A thorough discussion and the details are given,e.g.,in[27],but see also[12,21].)As explained above,we can relate the theory of pre-nets(where pre-and post-sets of transitions are taken in the free monoid of places instead than in the free commutative monoid)to the theory of symmetric monoidal categories(details in[5]).The above-mentioned theories can be conveniently expressed in partial member-ship equational logic(PMEqtl,see[18,20]for self-contained presentations),taking advantage of membership predicates and subsorting to model objects as a special kind of arrows(the identities),and of partiality to model sequential composition,defined only if the codomain of thefirst arrow coincides with the domain of the second arrow. Moreover,the notion of tensor product of theories allows a more modular presentation of concepts;for example,we can define the theory of monoidal categories as the tensor product of the theory of monoids and that of categories.3Atoms,electrons and match-share categoriesThe extension of the approach to nets with read arcs has been considered in[7],by relying on non-free monoids of objects,and in[13],exploiting match-share categories in place of symmetric monoidal categories.Regarding[7],the idea is to model each token a as an atom that can emit“neg-ative”particles a-(electrons)while keeping track of their number,i.e.,as suggested in[17],we have that for all k,a a k k i1a-,where a k represents an atom that has released exactly k particles to the environment.Then,by replacing context arcs on a with self-loop arcs on a-,we obtain an axiomatic construction of the monoidal category of concurrent net computations.The approach of[7]deals satisfactorily with both the collective and the individual token philosophy;possibly,a remaining concern is that non-free monoids of objects sit uneasily with the traditional intuition of tokens as atomic pieces of data that one should not be able to decompose.The problem with the construction in[13]is instead that the freely generated model of computations has too many arrows,representing spurious computations that contextual nets cannot perform.In this paper we improve upon[13]by selecting suitable theories in partial mem-bership equational logic in order to distinguish‘good’arrows–corresponding to com-putations–from meaningless ones.ops d(_)c(_):Arrow->Object.***domain and codomainop__:Arrow->Object.***monoidal productop e:Object.***unit ofop_;_.***Arrow composition(partial op.)opγ(_,_):Object Object->Arrow.***symmetric natural transformationFig.1.Operators in.We refer the reader to the appendix of[5]for the essentials of partial membership equational logic.Instead,for the reader’s convenience,we summarize in Appendix A the description of the theories of monoids,categories,monoidal categories and symmet-ric monoidal categories.Here we just remark that includes two sorts called and(with a subsort of,written),and six operators(see Figure1)satisfying the axioms of symmetric monoidal categories.The idea presented in[13]is to model multiple concurrent readings by introduc-ing in the class of net computations suitable transformations that take care of creating as many copies as needed(sharing phase)and then reassembling all copies after the reading(matching phase).These two transformations are called duplicators and co-duplicators and are denoted by∇and∆respectively.It is worth observing that they are “non-natural”,in the technical sense that the naturality axioms f;∇∇;f f and ∆;f f f;∆are not enforced.The theory of match-share categories is summarized in Figure2.The right-hand side of thefigure gives a pictorial representation of the main axioms of the left-hand side.Thefirst group of axioms expresses the coherence of∇(defining the domain and codomain of each component of∇,stating that the unit e is trivially shared and that the component for a b can be expressed in terms of the components for a and b,the last two axioms roughly establishing that sharing is associative and commutative),and the second group that of∆.The third group of axioms states how the two transformations interact together.If we look at∇as a wiring establishing two connections between the object a in the domain and the occurrences of a in the codomain,and dually for ∆,the last two axioms say that the multiplicity of connections is not important,and that connections are bidirectional,i.e.it is not important how objects are connected but just the fact that they are connected by an undirected path of“wiring.”The theory of match-share categories is a conservative extension of the theory of symmetric monoidal categories and therefore the construction between(pre-)nets and symmetric monoidal categories can be straightforwardly extended to match-share cate-gories.For modeling read arcs,the idea is tofirst view read arcs as self-loops(i.e.pairs of inbound and outbound arcs),so that a transition t:u w v from u to v in context w is regarded as an ordinary pre-net transition t:u w v w,and then apply the free construction to the resulting pre-net,building a match-share category of computations. The special role of w–a“context”marking represented as an ordinary one–is dealt with by copying∇and matching∆.This however generates arrows that do not represent admissible computations of the net.The construction is not resource-conscious,and the distinction between read arcs and pre/post-sets is lost,since each token can be matched and shared in all possible ways.fth MSCAT isincluding SMONCAT.ops∇(_)∆(_):Object->Arrow.vars a b:Object.eq d(∇(a))= a.eq c(∇(a))=a a.eq∇(e)= e.eq∇(a b)=(∇(a)∇(b));(aγ(a,b)b). eq∇(a);(∇(a)a)=∇(a);(a∇(a)).eq∇(a);γ(a,a)=∇(a).eq d(∆(a))=a a.eq c(∆(a))= a.eq∆(e)= e.eq∆(a b)=(aγ(b,a)b);(∆(a)∆(b)). eq(∆(a)a);∆(a)=(a∆(a));∆(a).eqγ(a,a);∆(a)=∆(a).eq∇(a);∆(a)= a.eq∆(a);∇(a)=(a∇(a));(∆(a)a). endfthfth RAUT is including MON.sort Rtrans.subsort Monoid<Rtrans.ops pre(_)post(_)ctx(_):Rtrans->Monoid.var u:Monoid.eq pre(u)= e.eq post(u)= e.eq ctx(u)=u.endfth.Fig.3.Theory of read-automata.Proposition1(cfr.[13]).The image E S R MS R is isomorphic(via a sym-metric monoidal functor)to the category of concatenable contextual processes of R.The question that then arises is how to tell whether an arrow of MS R belongs to E S R.We answer this by reformulating the construction at the level of theories in partial membership equational logic,thus expressing a typing discipline for discarding all meaningless arrows from MS R,while keeping all the good ones.4Functorial models for pre-nets with read arcsThefirst step is to define the theory of“programs,”that is our base category of nets.It is technically convenient to consider a larger class of nets,whose states are elements of a generic,non-free monoid,as expressed in Figure3.The class of pre-nets with read arcs is then embedded as the full subclass whose states are free monoids(generated from the set of places),and the results can be extended via the obvious embedding.The theory has three operations,,and,).Note that these operators,unlike those for domain and codomain(i.e.,),are not defined for all arrows,but only for the elements of.Note also that they are related to the domain and codomain of transitions by thefirst two equations of the theory.The membership axioms state that the sort is closed under monoidal and sequential composition and that it contains all the symmetries.The main novel ingredient is the operatoris also technically convenient to prove the main correspondence results.fth RCOMP is including MSCAT.sorts Rtrans Rarrow.subsorts Object<Rtrans<Rarrow<Arrow.ops pre(_)post(_)ctx(_):Rtrans->Object.op mk(_):Rtrans->Arrow.vars h k:Rarrow.var t:Rtrans.var u:Object.mb h k:Rarrow.mbγ(u,v):Rarrow.cmb h;k:Rarrow if c(h)==d(k).eq pre(t)ctx(t)=d(t).eq post(t)ctx(t)=c(t).eq pre(u)= e.eq post(u)= e.eq ctx(u)=u.eq d(mk(t))=d(t).eq c(mk(t))=c(t).eq mk(u)=u.eq(pre(t)∇(ctx(t)));(mk(t)ctx(t));(post(t)∆(ctx(t)))=t.endfth.Fig.4.Theory of read-computations.view RV from RAUT to RCOMP issort Monoid to Object.endview.Fig.5.The view RV.The third step is to express the adjunction between the class of programs and that of models.This task is accomplished by the signature morphism in Figure5,which embeds homonym sorts and operators and maps the sort of to the sort of.It is easy to verify that all axioms in are respected by:Proposition2.The view is a theory morphism.By Proposition2and because of the properties of theory morphisms[18],we know that there is a right-adjoint forgetful functor U from the category of-algebras to the category of-algebras,which includes all pre-nets with read arcs.We denote by F the left-adjoint going in the opposite direction.Lemma1.Given a pre-net with read arcs R,its initial-algebra F R is a match-share category.Proof.The free functor F ensures that the elements of sort of F R are built by composing objects,transitions t R,symmetries and(co-)duplicators,together with the additional elements t for any t R.The axioms of match-share categories are enforced on all the elements of by inclusion of the theory into.The fourth andfinal step is to show that the sort can be used to characterize all meaningful computations of R.For the following definition,we recall that a lluf subcategory A of a category C is just a subcategory having all the objects of C.Definition2.Given a pre-net with read arcs R,we let R denote the lluf sub-category of the match-share category F R whose arrows have sort. Lemma2.For any pre-net with read arcs R,an element t has sort in F R ifand only if t is a transition of R or t is a string of places.Lemma3.The category R is symmetric monoidal.Theorem1.The category MS R is isomorphic(via a match-share functor S)to F R.Proof.The match-share category F R is generated by composing t and t(for any transition t)with identities,symmetries and(co-)duplicators in all possible ways. Any expression of sort can be equivalently expressed as the parallel and sequen-tial composition of just the t’s with identities,symmetries and(co-)duplicators, because of the equationeq(pre(t)∇(ctx(t)));(mk(t)ctx(t));(post(t)∆(ctx(t)))=t. that allows replacing all occurrences of t.Note that if t u for some object u,then u u.Hence the constructoru 1u 1v 1v 1a ∇a h a a γu 2v 2∆γu 2a a v 2Fig.6.A read object a for the arrow h .u w∇∇t ∆∆v w u w ∇∇t ∆∆v w u w∇t∆v wFig.7.The proof of Lemma 4,graphically.Definition 3.Let hR and let a be an object with h u 1a u 2and h v 1a v 2for suitable objects u 1,u 2,v 1,v 2.The object a is said to be read in h if h can be written as (cf.Figure 6):u 1∇a u 2;u 1a γa u 2;h a ;v 1a γv 2a ;v 1∆a v 2Lemma 4.Let t :.Then,t is read in h.The proof is graphically illustrated in Figure 7,where for simplicity we let u t ,v t and w t .The marking read –and not consumed –by h is the maximum marking read by h ,and it can be characterized as follows.Definition 4.Let h R .The arrow h is pure if h u w and h v w,with u ∇w ;h w ;v ∆w h and no other object in u and v is read.Theobject w is called the context of h and denoted byh ,while u and v are denoted respectively by h and h .For h pure,we denote by h the twisted version of h obtained by exchanging the position of the context with that of the pre-and post-set (respectively,in the domain and codomain of h ),i.e.h γw u ;h ;γv w .Corollary 1(From Lemma 4).Any arrow hR is pure.Lemma 5.Let h R be pure,withh u,h v and h w.Then h R and h ∇w u ;w h ;∆w vu1w u2 h1v1w u2h2 v1w v2u1w∇u2h1∆v1w∇u2h2∇v1w v2u1w∇u2∇∇h1∆h2∆v1w∆v2u1w∇u2h1h2v1w∆v2 Fig.8.The proof of Proposition3,graphically.The following result shows that computations which are serialized on contexts are equivalent to the concurrent executions with multiple readings of the context. Proposition3.Let h1h2R be pure arrows,with h i u i,h iv i and h i w for i12.Then:h1u2;v1h2u1∇w u2;h1h2;v1∇w v2u1h2;h1v2Proof.The proof exploits Lemmas4and5and is(partially)illustrated in Figure8:–wefirst make explicit that the arrows h1and h2read the context w by applying the laws(valid for pure arrows):h1u1∇w;h1w;v1∆wh2∇w u1;w h2;∆w v1–then,we apply the axioms of match-share categories to rearrange the matching and sharing of w to have enough concurrent copies of it available at the same time and use functoriality of the tensor to shift h1and h2in parallel;–finally,we get rid of additional copies by applying back the laws of pure arrows.The equality with the expression where h2precedes h1is analogous.5ConclusionPrevious approaches to extending the“Petri nets are monoids”semantics to nets with read arcs have either relied on structured tokens or have defined a too rich category of computations,where it was difficult tofilter out meaningless arrows.We have employed theories in partial membership equational logic to solve the latter problem.Specifically,we have introduced a suitable theory that provides us with atyping discipline to select all and only the correct concurrent computations.The theory enucleates the fundamental algebraic principles on which the non-trivial opera-tion of reading without consuming is based on.The functorial construction presented inthis paper has been reconciled with unfolding semantics in[1].Moreover,as equational reasoning in PMEqtl is supported by the rewriting logic language Maude[9],the the-ory offers a mathematical basis for the analysis and optimization of concurrent computations in systems with many-readers access policies to shared resources(e.g., for the applications of contextual nets in[11,23,29,10]).We conclude by mentioning that a non-initial match-share category of abstract mod-els for nets with read arcs has been used in[4],based on categories of(co)spans in Set. However,the models in[4]do not retain all the information about the concurrent com-putations of the net:they just keep track of which resources have been read throughout the computation and thus can be concurrently accessed from the environment. Acknowledgment.We warmfully thank Paolo Baldan for many interesting discussions on the semantics of contextual nets.We thank the anonymous referees for their criti-cisms and suggestions that helped us in preparing thefinal version.References1.P.Baldan,R.Bruni,and U.Montanari.Pre-nets,read arcs and unfolding:a functorial pre-sentation.Proc.WADT2002,LNCS.Springer,2003.To appear.2.P.Baldan,A.Corradini,and U.Montanari.Contextual Petri nets,asymmetric event struc-tures,and rm.and Comput.,171(1):1–49,2001.3. A.Bouhoula,J.-P.Jouannaud,and J.Meseguer.Specification and proof in membershipequational put.Sci.,236:35–132,2000.4.R.Bruni and F.Gadducci.Some algebraic laws for spans(and their connections with mul-tirelations).Proc.RelMiS2001,ENTCS44.3,Elsevier,2001.5.R.Bruni,J.Meseguer,U.Montanari,and V.Sassone.Functorial models for petri nets.Inform.and Comput.,170(2):207–236,2001.6.R.Bruni,J.Meseguer,U.Montanari,and V.Sassone.Functorial models for contextual pre-nets.Technical Report TR-02-09,Computer Science Department,University of Pisa,2002.7.R.Bruni and V.Sassone.Two algebraic process semantics for contextual nets.Advances inPetri Nets:Unifying Petri Nets,LNCS2128,pp.427–456.Springer,2001.8.S.Christensen and N.D.Hansen.Coloured petri nets extended with place capacities,testarcs and inhibitor arcs.Proc.ICATPN’93,LNCS691,pp.186–205.Springer,1993.9.M.Clavel,F.Dur´a n,S.Eker,P.Lincoln,N.Mart´ı-Oliet,J.Meseguer,and J.Quesada.Maude:Specification and programming in rewriting put.Sci.,285:187–243,2002. 10. F.Crazzolara and G.Winskel.Events in security S’01,pp.96–105.ACM,2001.11.N.De Francesco,U.Montanari,and G.Ristori.Modeling concurrent accesses to shared datavia Petri nets.Programming Concepts,Methods and Calculi,IFIP Transactions A-56,pp.403–422.North Holland,1994.12.P.Degano,J.Meseguer,and U.Montanari.Axiomatizing the algebra of net computationsand processes.Acta Inform.,33(7):641–667,1996.13. F.Gadducci and U.Montanari.Axioms for contextual net processes.Proc.ICALP’98,LNCS1443,pp.296–308.Springer,1996.14.R.J.van Glabbeek and G.D.Plotkin.Configuration structures.Proc.LICS’95,pp.199–209.IEEE Computer Society Press,1995.15.U.Goltz and W.Reisig.The non-sequential behaviour of Petri rm.and Comput.,57:125–147,1983.16.R.Janicki and M.Koutny.Semantics of inhibitor nets.Inf.and Comput.,123(1):1–16,1995.17.J.Meseguer.Rewriting logic as a semantic framework for concurrency:A progress report.Proc.CONCUR’96,LNCS1119,pp.331–372.Springer,1996.18.J.Meseguer.Membership algebra as a logical framework for equational specification.Proc.WADT’97,LNCS1376,pp.18–61.Springer,1998.19.J.Meseguer and U.Montanari.Petri nets are monoids.Inf.and Comp.88(2):105–155,1990.20.J.Meseguer and U.Montanari.Mapping tile logic into rewriting logic.Proc.WADT’97,LNCS1376,pp.62–91.Springer,1998.21.J.Meseguer,U.Montanari,and V.Sassone.Representation theorems for Petri nets.Founda-tions of Computer Science:Potential-Theory-Cognition,to Wilfried Brauer on the occasion of his sixtieth birthday,LNCS1337,pp.239–249.Springer,1997.22.J.Meseguer,P.C.¨Olveczky,and M.-O.Stehr.Rewriting logic as a unifying framework forPetri nets.Advances in Petri Nets:Unifying Petri Nets,LNCS2128,pp.250–303.Springer, 2001.23.U.Montanari and F.Rossi.Contextual occurrence nets and concurrent constraint program-ming.Proc.Dagstuhl Seminar on Graph Transformations in Computer Science,LNCS776, pp.280–295.Springer,1994.24.U.Montanari and F.Rossi.Contextual nets.Acta Inform.,32:545–596,1995.25. C.A.Petri.Kommunikation mit Automaten.PhD thesis,Institut f¨u r Instrumentelle Mathe-matik,Bonn,1962.26.W.Reisig.Petri Nets:An Introduction.EATCS Monographs.Springer,1985.27.V.Sassone.An axiomatization of the algebra of Petri net concatenable processes.Theoret.Comput.Sci.,170(1-2):277–296,1996.28.V.Sassone.An axiomatization of the category of Petri net computations.Math.Struct.inComput.Sci.,8(2):117–151,1998.29.W.V ogler.Efficiency of asynchronous systems and read arcs in Petri nets.Proc.ICALP’97,LNCS1256,pp.538–548.Springer,1997.30.W.V ogler.Partial order semantics and read arcs.Proc.MFCS’97,LNCS1295,pp.508–517.Springer,1997.31.G.Winskel and M.Nielsen.Models for concurrency.Handbook of Logic in ComputerScience.Oxford University Press,1995.A Theories in partial membership equational logicThe theory of categories is defined in Figure9.It has sorts and with .There are two unary total operations,for domain and codomain,and a binary composition defined iff the codomain of thefirst argument is equal to the domain of the second argument.By convention,functions with given domain and codomain are total on that domain and codomain.It is easy to check that a model of is a category(in which objects coincide with identity arrows),and that-homomorphisms are just functors(cf.[20]for the details).The theory of monoids is even simpler(Figure9).It has a unique sortand two total operators:the associative tensor and the unit element,which is the identity for.Then,by exploiting the tensor product of theories defined in[20],。