江苏省高邮市2015届九年级上学期期末学业质量监测数学试题苏科版

合集下载

2015届九年级上期末考试数学试题

2015届九年级上期末考试数学试题

九年级期末质量监测一、选择题(本题有12小题,每小题4分,共48分)每小题只有一个答案是准确,请将准确答案的代号填入下面的表格里1.一元二次方程240x -=的解为( ) A .12x =,22x =-B .2x =-C . 2x =D .12x =,20x =2.抛物线1)3(22+-=x y 的顶点坐标是( )A.(3, 1)B.(3,-1)C.(-3, 1)D.(-3, -1) 3.点M (2,-3)关于原点对称的点N 的坐标是: ( ) A.(-2,-3) B.(-2, 3) C.(2, 3) D.(-3, 2) 4.已知圆的半径为3,一点到圆心的距离是5,则这点在( )A .圆内B .圆上C .圆外D .都有可能 5.用配方法解方程2420x x -+=,下列配方准确的是( ) A .2(2)6x -= B .2(2)2x +=C .2(2)2x -=-D .2(2)2x -=6.下列平面图形中,既是轴对称图形,又是中心对称图形的是 ( )7.抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A. 23(1)2y x =++ B. 23(1)2y x =+- C. 23(1)2y x =-- D. 23(1)2y x =-+8.某品牌服装原价173元,连续两次降价x%后售价为127元,下面所列方程中准确的是( )A . 173(1+x%)2=127 B .173(1-2x%)=127C . 127(1+x%)2=173D .173(1-x%)2=127 9.一个布袋里装有6个只有颜色不同的球,其中2个红球,4个白球.从布袋里任意摸出1个球,则摸出的球是白球的概率为( )A.21B.51 C. 31 D.3210.一个圆锥的母线长为10,侧面展开图是半圆,则圆锥的侧面积是( )A .10πB .20πC .50πD .100π11.三角形两边长分别为2和4,第三边是方程x 2-6x+8=0的解,•则这个三角形的周长是( ) A .10 B .8或10 C .8 D .8和1012.如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2> 4ac ;②2a+b=0;③a-b +c=0;④5a < b .其中准确结论有( )A .1个B .2个C .3个D .4个二、填空题(本题有6小题,每小题4分,共分24分)13.二次函数2)1(2+-=x y 的最小值是 .14.已知关于x 方程x 2-3x +m =0的一个根是1,则它的另一个根是______.15.如图,A 、B 、C 为⊙O 上三点,且∠OAB=55°,则∠ACB 的度数是_______度.16.⊙O 的直径为10,弦AB=6,P 是弦AB 上一动点,则OP 的取值范围是 . 17.现有6张正面分别标有数字—1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为a ,则使得关于x 的一元二次方程2220x x a -+-=有实数根,且关于x 的分式方程11222ax x x-+=--有解的概率为 .18.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC=90°,AB=AC=22,则图中阴影部分的面积等于 . 三、解答题:19.解方程:02632=--x xBO AC15题图18题图20题图OPCBA20.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点都在格点上,点C 的坐标为(41)-,. (1)把ABC △向上平移5个单位后得到对应的111A B C △, 画出111A B C △,并写出1C 的坐标;(2)以原点O 为对称中心,再画出ABC △关于原点O 对称的222A B C △,并写出点2C 的坐标.21.先化简,再求值:)211(1222x x xx x ++÷--,其中3-=x22.如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PB 、AB ,PBA C ∠=∠. 求证:PB 是O ⊙的切线;23.已知点A (3,3)在抛物线21433y x x =-+的图象上,设点A 关于抛物线对称轴对称的点为B .(1)求点B 的坐标; (2)求AOB ∠度数.24.某商场服装部销售一种名牌衬衫,平均每天可售出40件,每件盈利50元.为了扩大销售,减少库存,商场决定降价销售,经调查,每件降价1元时,平均每天可多卖出2件. (1)若商场要求该服装部每天盈利2400元,尽量减少库存,每件衬衫应降价多少元? (2)试说明每件衬衫降价多少元时,商场服装部每天盈利最多.25.如图,抛物线y=-x 2+bx+c 与x 轴交于A (2,0),B (-4,0)两点. (1) 求该抛物线的解析式;(2) 若抛物线交y 轴于C 点,在该抛物线的对称轴上是否存在点Q ,使得△QAC 的周长最小?若存在,求出Q 点的坐标;若不存在,请说明理由.(3) 在抛物线的第二象限图像上是否存在一点P ,使得△PBC 的面积最大?,若存在,求出点P 的坐标及△PBC 的面积最大值;若不存,请说明理由.备用图九年级期末质量监测数 学 试 卷参考答案一、选择题(本题有12小题,每小题4分,共48分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案AABCDBCDDCAB二、填空题(本题有6小题,每小题4分,共分24分)13、2 14、x=2 15、35 16、54≤≤OP 17、2118、424—三、解答题:(本大题共2个小题,每小题7分,共14分) 19、解: 3224366⨯+±=x -----------------------------3分61526±=3151±=----------------------------------7分 20、(1)图略,C 1(4, 4)------------------------------3分 (2)图略,C 2(-4,1)------------------------------7分四、解答题:(本大题共个4小题,每小题10分,共40分)21、解:原式=xx x x x x x 212)1()1)(1(2++÷--+-----------------3分=2)1(2)1()1)(1(+⋅--+x xx x x x --------------------5分=12+x ----------------------------------8分当3-=x 时,原式=—1------------------------10分22、(1) 20 ,图略----------------------------------2分(2) 126 ---------------------------------------4分(3)树状图或列表法略 ----------------------------8分21=p ------------------------------------10分 23、解:(1)设每件衬衫应降价x 元,由题意得:(50-x )(40+2x)=2400 解得:x 1=10 ,x 2=20因为尽量减少库存,x 1=10舍去答:每件衬衫应降价20元。

苏科版2015年上学期九年级第三次学业检测名校联考数学试题及答案

苏科版2015年上学期九年级第三次学业检测名校联考数学试题及答案

苏科版 2015年上学期九年级第三次学业检测名校联考数学试卷时间120分钟 满分150分 2015.4.3一、精心选一选(本大题共8题,每题3分,共24分)1.下列方程是一元二次方程的是 ( ▲ )A .7=xB .8=+y xC .)1()1(4-=-y y yD .3)1(43=+x2.在⊙O 中,半径为6,圆心O 在坐标原点上,点P 的坐标为(4,5),则点P 与⊙O 的位置关系是( ).A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .不能确定 3.样本方差的计算式S 2=901[(x 1-30)2+(x 2-30)2+…+(x 90-30)2]中,数字90和30分别表示样本中的 ( ▲ )A .众数、中位数B .样本中数据的个数、平均数C .方差、标准差D .样本中数据的个数、中位数4、如图,是半圆,O 为AB 中点,C 、D 两点在上,且AD∥OC,连接BC 、BD .若=63°,则的度数是(▲)A .54°B .57°C .60°D .63°5、已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点,若四边形EFDC 与矩形ABCD 相似,则AD=(▲ ) A .215- B .215+ C . 3 D .2(第4题图) (第5题图) (第7题图) 6、对于抛物线y=﹣(x+1)2+3,下列结论:①抛物线的开口向下;②对称轴为直线x=1;③顶点坐标为(﹣1,3);④x ≥0时,y 随x 的增大而减小,其中正确结论的个数为(▲)A .1B .2C .3D .47、如图,点A ,B ,C ,D 为⊙O 上的四个点,AC 平分∠BAD ,AC 交BD 于点E ,CE=4,CD=6,则AE 的长为(▲)A. 4B. 5C. 6D.7 8.如图,∠BAC=∠DAF=90°,AB=AC ,AD=AF ,点D 、E 为BC 边上的两点,且∠DAE=45°,连接EF 、BF ,则下列结论:①△AED ≌△AEF ;②△ABE ∽△ACD ;③BE+DC >DE ;④BE 2+DC 2=DE 2,其中正确的有(▲ )个. A. 1 B.2 C.3 D.4二、填空题(本大题共10小题,每小题3分,共30分)9.数据1、2、3、5的方差是 ▲10.在⊙O 的内接四边形ABCD 中,∠A=50°则∠C= ▲ °. 11.方程x 5x 2=的两个解是 ▲12.已知圆锥的底面半径为cm 3,母线长为cm 5,则这个圆锥的侧面积为 ▲ 2cm .13一只自由飞行的小鸟,将随意地落在如图所示的方格地面上,每个小方格形状完全相同,则小鸟落在阴影方格地面上的概率是 ▲ .(第13题) 14、比例尺为1:150000的某地图上,黄海路在图上长度约为6cm, 黄海路的实际长度约为▲ km (精确到个位)15.关于x 的一元二次方程02x 2kx 2=+-有实数根,则k 的取值范围是 ▲ .16、如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为 ▲17、如图,已知点P 是边长为4的正方形ABCD 内的一点,且PB=3,BF ⊥BP ,若在射线BF 有一点M ,使以点B ,M ,C 为顶点的三角形与△ABP 相似,那么BM= ▲)0,)0,2(C ,以点C 为圆心,半径为1作⊙C,将⊙C 沿x 轴向左平移, 在平移的过程中,当⊙C 与ABO ∆的一边所在的直线相切时, 平移的距离为 ▲ .三、解答题(本大题共10题,共96分,解答应写出必要的计算过程、推演步骤或文字说明)19.(本题满分8分)(1)计算:﹣24﹣+|1﹣23|+(π﹣)0;(2)解方程:3x2﹣4x+1=0.20.(本题满分8分)甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179;乙队:178,179,176,178,180,178,176,178,177,180;(1)通过计算甲队队员身高的平均数为178厘米,请你计算出乙队队员身高的平均数为多少厘米。

2015年秋九年级数学(上)(江苏科技版)期末检测题

2015年秋九年级数学(上)(江苏科技版)期末检测题

期末检测题(满分:120分,时间:100分钟)一、选择题(每小题3分,共36分)1.若2121003m x x m -++=是关于x 的一元二次方程,则m 的值应为( ) A.m =2 B.23m = C.32m = D.无法确定2.若x =(0)n n ≠是关于x 的方程220x mx n ++=的根,则m n +的值为( )-1 D.-2 3.已知a 、b 、c 分别是三角形的三边长,则方程2()2()0a b x cx a b ++++=的根的情况是( ) A.没有实数根 B.可能有且只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根4.(2014•浙江舟山中考)如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )5.(2014•四川凉山中考)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB =8 cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( )A.25 cmB.45 cmC.25 cm 或45 cmD.23cm 或43cm6.(2014•四川内江中考)如图,⊙O 是△ABC 的外接圆,∠AOB =60°,AB =AC =2,则弦BC 的长为( ) A.3 B.3 C.23 D.47. 在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生要想知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数8.(2014•山东淄博中考)如图是交警在一个路口统计的某个时段来往车辆的车速(单位:千米/时)情况,则这些车的车速的众数、中位数分别是( ) A.8,6 B.8,5 C.52,53 D.52,529.(2014•天津中考)某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面候选人甲 乙 丙 丁 测试成绩(百分制)面试 86 92 90 83 笔试90838392如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( ) A.甲 B.乙 C.丙 D.丁第4题图 第6题图第8题图10.四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A.14B.12C.3411.如图,A 、B 是数轴上的两个点,在线段AB 上任取一点C ,则点C 到表示-1的点的距离不大于...2的概率是( ) A.21 B.32C.43 D.5412.航空兵空投救灾物质到指定的区域(大圆)如图所示,若要使空投物质落在中心区域(小圆)的概率为41,则小圆与大圆的半径比值为( )A.4121 二、填空题(每小题3分,共30分)13.如果()21640250x y x y -+-+=(),那么x 与y 的关系是________. 14.若0a b c ++=且a ≠0,则一元二次方程20ax bx c ++=必有一个定根,它是_______.15.关于x 的一元二次方程220x mx m -+=的一个根为1,则方程的另一根为 . 16.某校八年级甲、乙两班举行电脑汉字输入比赛,两个班参加比赛的学生每分钟输入汉字的个数经统计和计算后结果如下表:班级 参加人数 平均字数 中位数 方差 甲 55 135 149 191 乙55135151110有一位同学根据上面表格得出如下结论: ①甲、乙两班学生的平均水平相同;②乙班优秀人数比甲班优秀人数多(每分钟输入汉字达150个以上为优秀); ③甲班学生比赛成绩的波动比乙班学生比赛成绩的波动大. 上述结论正确的是___________(填序号).17.(2014•福建漳州中考)在《中国梦•我的梦》演讲比赛中,将5个评委对某选手打分情况绘成如下图的统计图,则该选手得分的中位数是_________分.18.(2014•南京中考)如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,连接BC ,若AB =22cm ,'3022 =∠BCD ,则⊙O 的半径为_____cm.19.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不能得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某第11题图第17题图第18题图观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是 .20.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆半径r =2 cm ,扇形的圆心角 120=θ,则该圆锥的母线长l 为_____cm.21.(2014•内蒙古包头中考)如图,AB 是⊙O 的直径,BC 是弦,点E 是弧BC 的中点,OE交BC 于点D .连接AC ,若BC =6,DE =1,则AC 的长为_______.22.小华买了一套科普读物,有上、中、下三册,要整齐地摆放在书架上,有____种摆法,其中恰好摆成“上、中、下”顺序的概率是 . 三、解答题(共54分)23.(6分)已知关于x 的方程2()20a c x bx c a ++--=()的两根之和为-1,两根之差为1,•其中a ,b ,c 是△ABC 的三边长. (1)求方程的根;(2)试判断△ABC 的形状.24.(6分)方程2 2 009 2 0100x x +-=的较大根为m ,方程2(2 010) 2 009 2 011x x +⨯10-=的较小根为n ,求n m +的值.25.(7分)(2014•浙江温州中考)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A ,B ,C ,D ,E 五位同学对照评分标准回忆并记录了自己的答题情况(E 同学只记得有7道题未答),具体参赛同学 答对题数 答错题数 未答题数 A 19 0 1 B 17 2 1 C 15 2 3 D 17 1 2 E//7(1)根据以上信息,求A ,B ,C ,D 四位同学成绩的平均分;(2)最后获知A ,B ,C ,D ,E 五位同学成绩分别是95分,81分,64分,83分,58分. ①求E 同学的答对题数和答错题数; ②经计算,A ,B ,C ,D 2627.(9分)(2014•山西中考)某公司招聘人才,对应聘者分别进行阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的成绩如下表(单位:分): 阅读 思维 表达 甲 93 86 73 乙958179(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将能被录用? (2)根据实际需要,公司将阅读、思维和表达能力三项测试得分按3:5:2的比确定每人的最后成绩,若按此成绩在甲、乙两人中录用一人,谁将被录用?(3)公司按照(2)中的成绩计算方法,将每位应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最右边一组分数x 为:85≤x <90),并决定由高分到低分录用8名员工,甲、乙两人能否被录用?请说明理由,并求出本次招聘人才的录用率.项 目 人员第20题图 第21题图第27题图28.(9分)甲、乙两个盒子中装有质地、大小相同的小球,甲盒中有2个白球,1个黄球和1个蓝球;乙盒中有1个白球,2个黄球和若干个蓝球.从乙盒中任意摸取一球为蓝球的概率是从甲盒中任意摸取一球为蓝球的概率的2倍.(1)求乙盒中蓝球的个数;(2)从甲、乙两盒中分别任意摸取一球,求这两球均为蓝球的概率.29.(10分)(2014·天津中考)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB 的平分线交⊙O于点D.(1)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;(2)如图②,若∠CAB=60°,求BD的长.第29题图期末检测题参考答案一、选择题212m -=,解得32m =.故选C.x n =代入方程得220n mn n ++=,∵ 0n ≠,∴ 20n m ++=,∴ 2m n +=-.故选D.()()()()()2244c a b a b c a b c a b ∆=-++=++--,又因为a 、b 、c 分别是三角形的三边长,所以c +a +b >0,c -a -b <0,所以Δ<0,所以方程没有实数根. ∵ CE =2,DE =8,∴ OB =5,∴ OE =3.∵ AB ⊥CD ,∴ 在△OBE 中,得BE =4,∴ AB =2BE =8.故选D . AC ,AO ,∵ ⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm , ∴ AM =12AB =12×8=4 cm ,OD =OC =5 cm. 当C 点位置如图1所示时,∵ OA =5 cm ,AM =4 cm ,CD ⊥AB ,∴ 2222543OM OA AM =-=-=cm , ∴ CM =OC +OM =5+3=8 cm ,∴22224845AC AM CM =+=+=cm ;当C 点位置如图2所示时,同理可得OM =3 cm. ∵ OC =5 cm ,∴ MC =5-3=2 cm. 在Rt △AMC 中,22224225AC AM MC =+=+= cm .故选C .AO 与BC 交于点D . ∵ ∠AOB =60°,∴ ∠C =12∠AOB =30°. 又∵ AB =AC ,∴ 弧AB =弧 AC ∴ AD ⊥BC ,∴ BD =CD , ∴ 在Rt △ACD 中,CD =AC •cos 30°=2×32=3, ∴ BC =2CD =23.故选C .:本题考查了平均数、众数、中位数及方差等几个统计量,众数是出现次数最多的数,方差表示数据的波动程度,平均数表示一组数据的平均水平,中位数是一个位置代表值,把一组数据按由小到大(或由大到小)的顺序排列后,它处于这组数据的中间位置,大于或等于中位数的数据至少有一半.第5题答图第6题答图为52千米/时,车速分别为50,50,51,51,51,51,51,52,52,52,52,52,52,52,52,53,53,53,53,53,53,54,54,54,54,55,55, 中间的为52,即中位数为52千米/时,则这些车的车速的众数、中位数分别是52,52.故选D . 丙的平均成绩为:(90×6因为乙的平均分数最高,所以乙将被录取.故选B .12. C 点对应的数为,则|x -(-1)|≤2,解得-3≤x ≤1.此区域在数轴上对应的长度为4,AB 的长度为5,所以概率是54. 41,从而小圆的半径是大圆半径的21. 二、填空题 13.x -y =54-解析:原方程可化为[]24()50x y -+=,∴ x -y =54-. 0a b c ++=,得b a c =-+(),原方程可化为20ax a c x c -++=(), 解得121cx x a==,.15.-2 解析:把x =1代入220x mx m -+=,得m =-1,所以方程220x mx m -+=可化为220x x +-=,解这个方程得1212x x ==-,.所以此方程的另一根为-2. 16. ①②③ 解析:由于乙班学生每分钟输入汉字的平均数为135,中位数为151,说明有一半以上的学生都达到每分钟150个以上,而甲班学生的中位数为149,说明不到一半的学生达到每分钟150个以上,说明乙班优秀人数比甲班优秀人数多,故②正确;由平均数和方差的意义可知①③也正确.位于中间位置的数为9,故中位数为9分.18.2 解析:如图,连接OB ,∵ '2230,BCD ︒∠=∴ 245.BOD BCD ︒∠=∠=∵ ,AB CD ⊥∴ 1122222BE AE AB ===⨯=(cm ),∴ △BOE 为等腰直角三角形,∴ OB =22=BE cm ,故⊙O 的半径为2 cm. 19.16解析:共20个商标牌,有5个有奖,观众已经翻开了两个有奖的,那么剩下的18个商标牌中还有3个有奖,第三次观众抽到有奖商标牌的概率为31186=.∵ 圆锥底面圆的半径r =2 cm ,∴ 圆锥底面圆的周长是4π cm.设圆锥的母线长是l . ∵ 圆锥底面圆的周长等于它的侧面展开图的弧长, ∴180120πl =4π,解得l =6. OC ,如图所示.∵ 点E 是弧BC 的中点,∴ ∠BOE =∠COE .第18题答图第21题答图∵ OB =OC ,∴ OD ⊥BC ,BD =DC . ∵ BC =6,∴ BD =3.设⊙O 的半径为r ,则OB =OE =r . ∵ DE =1,∴ OD =r -1. ∵ OD ⊥BC ,即∠BDO =90°,∴ OB 2=BD 2+OD 2.∵ OB =r ,OD =r -1,BD =3,∴ 22231r r =+-().解得r =5.∴ OD =4. ∵ AO =BO ,BD =CD ,∴ OD =21AC .∴ AC =8. 三、解答题 23.解:(1)设方程的两根为x 1,x 2 (x 1>x 2),则x 1+x 2=-1,x 1-x 2=1, 解得x 1=0,x 2=-1.(2)当x =0时,20200a c b c a +⨯+⨯--=()(),所以c =a . 当x =-1 时,()21210a cb c a +⨯-+⨯---=()()(), 即20a c b c a +--+=,所以a =b ,所以a =b =c ,所以△ABC 为等边三角形.24.解:将方程2 2 009 2 0100x x +-=因式分解,得( 2 010)(1)0x x +-=, ∴2 0100x +=或10x -=,∴ 1 2 010x =-,21x =. ∴ 较大根为1,即1m =.将方程2(2 010) 2 009 2 01110x x +⨯-=变形为2(2 010)(2 0101)(2 0101)10x x +-⨯+-=,∴ 22(2 010) 2 01010x x x +--=,∴ 22 010(1)(1)0x x x +-+=, ∴ 2(2 0101)(1)0x x -+=, ∴ 22 01010x -=或10x +=,∴ 23010 21=x ,14-=x . ∴ 较小根为1-,即1n =-.∴ 1(1)0m n +=+-=.25.解:(1)()()()1917151752212 82.54x +++⨯+++⨯-==(分).答:A ,B ,C ,D(2)①设E 同学答对x 题,答错y 题,由题意得5258, 13,x y x y -⎧⎨+⎩==解得12,1.x y =⎧⎨=⎩答:E 同学答对12题,答错1题.②C 同学,他实际答对14题,答错3题,未答3题. 26.解:设鱼塘中有鱼条,则 10010100x =,解得 1 000x =. 因为鱼的平均质量为130÷10即李大爷应以6 500元钱转包给老张.27.解:(1)∵ 甲的平均成绩是:938673843x ++==甲(分), 乙的平均成绩为:958179853x ++==乙(分), ∴ x x 乙甲>,∴ 乙将被录用. (2)根据题意得:93386573285.5352x ⨯+⨯+⨯==++甲(分), 95381579284.8352x ⨯+⨯+⨯==++乙(分), ∴ x x 甲乙>,∴ 甲将被录用.(3)甲一定被录用,而乙不一定能被录用,理由如下:由直方图知成绩最高一组分数段85≤x <90中有7人,公司招聘8人,又因为85.5x =甲分,显然甲在该组,所以甲一定能被录用;在80≤x <85这一组内有10人,仅有1人能被录用,而84.8x =乙分,在这一段内不一定是最高分,所以乙不一定能被录用;由直方图知,应聘人数共有50人,录用人数为8人, 所以本次招聘人才的录用率为:8100%16%50⨯=. 28.解:(1)设乙盒中有x 个蓝球,则从乙盒中任意摸取一球,摸到蓝球的概率13xP x =+; 从甲盒中任意摸取一球,摸到蓝球的概率214P =; 根据题意,得132x x =+, 解得3x =,所以乙盒中有3个蓝球. (2)方法一:列表如下: 白 黄1 黄2 蓝1 蓝2 蓝3 白1 白1,白 白1,黄1 白1,黄2 白1,蓝1 白1,蓝2 白1,蓝3 白2 白2,白 白2,黄1 白2,黄2 白2,蓝1 白2,蓝2 白2,蓝3 黄黄,白黄,黄1黄,黄2黄,蓝1黄,蓝2黄,蓝3蓝 蓝,白 蓝,黄1 蓝,黄2 蓝,蓝1 蓝,蓝2 蓝,蓝3 取一球,两球均为蓝球的概率31248P ==. (也可以用画树状图法或枚举法)方法二:从甲盒中任意摸取一球,摸到蓝球的概率为14,从乙盒中任意摸取一球,摸到蓝球的概率为12, 则从甲、乙两盒中各摸取一球,两球均为蓝球的概率为111428P =⨯=. 29.解:(1)如图(1),由已知,BC 为⊙O 的直径,得∠CAB =∠BDC =90°. 在Rt △CAB 中,BC =10,AB =6,∴ AC =.86102222=-=-AB BC∵ AD 平分∠CAB ,∴ 弧CD =弧BD ,∴ CD =BD. 在Rt △BDC 中,BC =10,CD 2+BD 2=BC 2, ∴ BD 2=CD 2=50,∴ BD =CD =52.乙 甲(2)如图(2),连接OB ,OD .∵ AD 平分∠CAB ,且∠CAB =60°,∴ ∠DAB =21∠CAB =30°, ∴ ∠DOB =2∠DAB =60°.又∵ ⊙O 中OB =OD ,∴ △OBD 是等边三角形. ∵ ⊙O 的直径为10,∴ OB =5,∴ BD =5.第29题答图。

苏科版九年级上册数学期末测试卷及含答案

苏科版九年级上册数学期末测试卷及含答案

苏科版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列说法错误的是()A.通过平移或旋转得到的图形与原图形全等B.“对顶角相等”的逆命题是真命题C.圆内接正六边形的边长等于半径D.“经过有交通信号灯的路口,遇到红灯”是随机事件2、为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如下表:下列说法错误的是()A.众数是60分钟B.平均数是52.5分钟C.样本容量是10D.中位数是50分钟3、甲、乙、丙、丁参加体育训练,近期10次跳绳测试的平均成绩都是每分钟174个,其方差如下表:则这10次跳绳中,这四个人发挥最稳定的是()A.甲B.乙C.丙D.丁4、已知两组数据:x1、x2、x3、x4、x5和x1+2、x2+2、x3+2、x4+2、x5+2,下列有关这两组数据的说法中,正确的是()A.平均数相等B.中位数相等C.众数相等D.方差相等5、袋中装有大小一样的白球和黑球各3个,从中任取2个球,则两个均为黑球的概率是()A. B. C. D.6、下列说法中,错误的有( )①任意三点确定一个圆②相等的圆心角所对的弧相等③各边相等的圆内接多边形是正多边形④若点C是线段AB的黄金分割点,且AB=10,则AC=5 -5A.1个B.2个C.3个D.4个7、一元二次方程x2+kx-3=0的一个根是x=1,则k的值为()A.2B.-2C.3D.-38、如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()A. B. C. D.9、下列关于圆的说法,正确的是()A.弦是直径,直径也是弦B.半圆是圆中最长的弧C.圆的每一条直径所在的直线都是它的对称轴D.过三点可以作一个圆10、如图,点A、B、C在⊙O上,若∠ABC=52°,则∠AOC的度数为()A.128°B.104°C.50°D.52°11、下列判断正确的是().A.数据3,5,4,1,-2的中位数为4B.从初三月考成绩中抽取100名学生的数学成绩,这100名学生是总体的一个样本C.甲、乙两人各射靶5次,已知方差,,那么乙的射击成绩较稳定D.了解云南省昆明市居民疫情期间的出行方式,采用全面调查的方式12、如图,二次函数y=ax2+bx+c的图象与x轴相交于A,B两点,C(m,﹣3)是图象上的一点,且AC⊥BC,则a的值为()A.2B.C.3D.13、三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点14、一元二次方程的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.只有一个实数根15、如图,四边内接于,若,则的度数为()A. B. C. D.二、填空题(共10题,共计30分)16、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”,随机掷一次小正方体,朝上一面的数字是奇数的概率是________.17、如图,已知圆锥的底面直径为4,母线长为6,则它的全面积为________.18、一个扇形的面积为12πcm2,圆心角为120°,则该扇形的半径是________.19、某校5个假日小队参加植树活动,平均每组植树10株.已知第一、二、三、五组分别植树9株、12株、9株、8株,则第四小组植树________株.20、关于x的方程2x2﹣4x+(m﹣1)=0有两个不相等的实数根,则m的取值范围是________.21、当m________时,关于x的方程(m-4)x2+(m+4)x+3=0是一元二次方程.22、设x1、x2是方程x2-4x+3=0的两根,则x1+x2=________ .23、设a,b是方程x2+x﹣2011=0的两个实数根,则a2+2a+b的值为________.24、从2,3,4,5,6,7,8,9中随机选出一个数,所选的数是2的倍数或3的倍数的概率为________。

2015届苏科版数学九年级上学期期末考试试题1

2015届苏科版数学九年级上学期期末考试试题1

江苏省扬州梅岭中学2015届九年级数学上学期期末考试试题(满分:150分 考试时间:120分钟) 友情提醒:本卷中的所有题目均在答题卷上作答,在本卷中作答无效。

一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题..卷.相应位置....上) 1.在Rt △ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正切值A .扩大2倍B .缩小2倍C .不变D .扩大1倍2.用配方法解方程x 2-2x =2,原方程可变形为A .(x +1)2=3B .(x -1)2=3C .(x +2)2=7D .(x -2)2=73.如果关于x 的一元二次方程(m -1)x 2+2x +1=0有两个不相等的实数根,那么m 的取值范围是A .m >2B .m <2C .m >2且m ≠1D .m <2且m ≠14.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是A .2)1(2+-=x y B .2)1(2++=x y C .2)1(2--=x y D .2)1(2-+=x y5.下列各组图形不一定相似的是A .两个正方形B .两个等边三角形C .各有一角是100°的两个等腰三角形D .各有一角是45°的两个等腰三角形 6.如图,AB 是半圆的直径,点D 是弧AC 的中点,∠ABC =50°, 则∠DAB 等于A .60°B .65°C .70°D .75°7.如果给定数组中每一个数都加上同一个非零常数,则数据的 A .平均数不变,方差不变 B .平均数改变,方差改变 C .平均数改变,方差不变 D .平均数不变,方差改变8.若关于x 的一元二次方程2250ax x +-=的两根中有且仅有一根在0和1之间(不含0和1),则a 的取值范围是A .3a <B .3a >C .3a <-D .3a >-二、填空题(本大题共10题,每题3分,共30分.不需写出解答过程,请把答案直接填写在答题卷相应位置.......上) 9.方程220x x -=的根是 ▲ .10.如果cos 2A =,那么锐角A 的度数为 ▲ .11. 二次函数22810y x x =+-的图象与x 轴的交点坐标是 ▲ .(第6题)12.点),2(1y P -和点),1(2y Q -分别为抛物线322--=x x y 上的两点,则1y▲ 2y .(用“>”或“<”填空)13.两个相似三角形的面积比为9∶16,则它们的周长之比为 ▲ . 14.正方形网格中,AOB ∠如图放置,则sin ∠AOB 的值为 ▲ .15.如图,在扇形OAB 中,∠AOB =110°,半径OA =18,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为 ▲ .16.某班九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1640张相片,如果全班有x 名学生,根据题意,列出方程为 ▲ . 17. 已知二次函数c bx ax y ++=2中,函数y 与自变量x 的部分对应值如下表:若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,当m = ▲ 时,1y =2y .18. 如图,已知第一象限内的点A 在反比例函数2y x=的图象上,第二象限内的点B 在反比例函数ky x=的图象上,且OA ⊥OB ,tan BAO ∠=,则k = ▲ . 三.解答题(本大题共有10小题,共96分.请在答题卷指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(本题满分8分)(1)计算:20140+121-⎪⎭⎫⎝⎛−2sin45°+tan60°;(2)解方程:0222=--x x .20.(本题满分8分) 已知:二次函数1322-+-=a x ax y 的图象开口向上,并且经过原点O (0,0).(1)求a 的值;(2)用配方法求出这个二次函数图象的顶点坐标. 21.(本题满分8分)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况(单位:元):甲:18, 8,10,43, 5,30,10,22, 6,27,25,58,14,18,30,41(第18题) DCBAO(第15题) (第14题)乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23 小强用如图所示的方法表示甲城市16台自动售货机的销售情况.(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;(2)用不等号填空:x 甲 ▲ x 乙;2s 甲 ▲ 2s 乙;(3)请说出此种表示方法的优点.. 22.(本题满分8分)为了庆祝春节,某食品厂制作了3种不同的精美卡片,每袋食品随机装入一张卡片,集齐三种卡片可获奖,现购买该种食品3袋,能获奖的概率是多少?23.(本题满分10分) 某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是2288m ?24.(本题满分10分)如图,在Rt △ABC 中,∠C =90°,AB 的垂直平分线与AC ,AB 的交点分别为D ,E .(1)若AD =15,4cos 5BDC ∠=,求AC 的长和tan A 的值; (2)若30BDC ∠=︒,求tan15︒的值.(结果保留根号)25.(本题满分10分)如图,在平面直角坐标系xoy 中,⊙A 与y 轴相切于点3(0,)2B ,与x 轴相交于M 、N 两点.如果点M 的坐标为1(,0)2,求⊙A 的半径及点N 的坐标.B AC E D26.(本题满分10分) 已知:如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与BC 交于点D ,DE ⊥AB ,垂足为E ,ED 的延长线与AC 的延长线交于点F . (1)求证:DE 是⊙O 的切线;(2)若⊙O 的半径为4,BE =2,求∠F 的度数.27.(本题满分12分)已知点PPA 交射线OM 于点A ,将射线PA 绕点P 逆时针旋转交射线ON 于点B ,且使∠APB +∠MON =180°. (1)利用图1,求证:PA =PB ;(2)如图2,若点C 是AB 与OP 的交点,当3POB PCB S S ∆∆=时,求PC 与PB 的比值; (3)若∠MON =60°,OB =2,射线AP 交ON 于点D ,且满足且PBD ABO ∠=∠, 请借助图3补全图形,并求OP 的长.28.(本题满分12分)如图,抛物线233y mx mx =+-(m >0)与y 轴交于点C ,与x 轴交于A 、B 两点,点 A 在点B 的左侧,且1tan 3OCB ∠=. (1)求此抛物线的解析式;(2)如果点D 是线段AC 下方抛物线上的动点,设D 点的横坐标为x ,△ACD 的面积为S ,求S 与x 的关系式,并求当S 最大时点D 的坐标;C A O P B M N T图2 图1 T N MB P O A 图3 TNM B P O A C(3)若点E 在x 轴上,点P 在抛物线上,是否存在以A 、C 、E 、P 为顶点的平行四边形?若存在求点P 坐标;若不存在,请说明理由.(备用图)2014-2015学年第一学期期末考试九年级数学参考答案说明:以下解答及标准,如有其它方法可参照评分.一、选择题二、填空题(每题3分,共30分)9.12=02x x =, 10.30° 11.(5,0),(1,0)- 12.> 13.3∶414.216.(1)1640x x -= 17.3218.-6三.解答题(本大题有10题,共96分.解答应写出文字说明、证明过程或演算步骤.) 19.(本题满分8分)(1)化简一个1分共4分,结果错误扣1分. (2)配方得:2(1)3x -= (2分)直接开平方得:1211x x ==(4分).20.(本题满分8分) 解:(1)a =1; ……………………………………………………………3分(2)x x y 32-=494932-+-=x x 49232--=)(x ………………………6分 ∴抛物线顶点坐标为)49,23(- ………………………………8分 21.(本题满分8分)解:(1)图略. ……………………………………………………2分 (2)_ x 甲<_x 乙;s 2甲>s 2乙. ……………………………………………………6分 (3)优点:所有的信息都可以从这张图中获得(或便于记录与表示)等; ………8分22.(本题满分8分)解:分别用卡1、卡2、卡3表示3张卡片,画出树状图(图略) …………4分 P(集齐三种卡片) 62279== …………………………………8分 23.(本题满分10分)设矩形温室的宽为m x ,则长为2m x .根据题意,得 …………………………1分(2)(24)288x x --=. ……………………………………5分解这个方程,得110x =-(不合题意,舍去),214x =. …………………………8分所以14x =,221428x =⨯=.答:当矩形温室的长为28m ,宽为14m 时,蔬菜种植区域的面积是2288m . ……10分 24.(本题满分10分) 解:(1)∵ DE 垂直平分AB ,∴ 15BD AD ==. …………………………1分 在Rt △ACD 中,90C ∠=︒,AD =15,4cos 5BDC ∠=, ∴ 4cos 15125CD AD BDC =⋅∠=⨯=.∴ 27AC CD AD =+=. ………………4分 3sin 1595BC AD BDC =⋅∠=⨯=.在Rt △ABC 中,90C ∠=︒,∴ 91tan 273BC A AC ===. …………………………7分 (2)tan15︒=…………………………10分25.(本题满分10分)解:连接AB 、AM ,过点A 作AC ⊥MN 于点C .∵⊙A 与y 轴相切于点B (0,32),∴AB ⊥y 轴. 又∵AC ⊥MN ,x 轴⊥y 轴,∴四边形BOCA 为矩形. ∴AC =OB =32,OC =BA . ……… 3分 ∵AC ⊥MN ,∴∠ACM = 90°,MC =CN . ∵M (12,0),∴OM =12.在 Rt △AMC 中,设AM =r .理得:222MC AC AM +=.即22213()()22r r -+=, …………………… 6分 求得r=52.∴⊙A 的半径为52. …………………… 8分即AM =CO =AB =52. ∴MC =CN=2 .∴N (92, 0) . …………………… 10分26.(本题满分10分)(1)证明:连接OD .∵AB =AC ,∴ABC ACB ∠=∠.∵OD =OC ,∴ODC OCD ∠=∠. ∴ABC ODC ∠=∠.∴AB ∥OD .∴AED ODF ∠=∠. …………… 3分 ∵DE ⊥AB ,∴90AEF ∠=︒.∴90ODF ∠=︒.∴DE OD ⊥. ∴DE 是⊙O 的切线. …………………………………… 5分 (2)解:连接AD .∵AC 为⊙O 的直径,∴BC ⊥.又∵DE ⊥AB ,∴Rt AED ∆∽Rt ADB ∆.AEAD=.∴2AD AE AB =⋅. ∵⊙O 的半径为4,∴AB =AC =8.∴6AE AB BE =-=.∴AD =.…………………………………………………… 8分在Rt ADB ∆中,∵sin AD B AB ∠===,∴60ABC ∠=︒. 又∵AB =AC ,∴ABC ∆是等边三角形.∴60BAC ∠=︒∴30F ∠=︒. ………………………………………………10分27.解:(1)在OB 上截取OD =OA ,连接PD ,∵OP 平分∠MON ,∴∠MOP =∠NOP . 又∵OA =OD ,OP =OP ,∴△AOP ≌△DOP . ……………2分 ∴PA =PD ,∠1=∠2.∵∠APB +∠MON =180°,∴∠1+∠3=180°.∵∠2+∠4=180°,∴∠3=∠4. ∴PD =PB . ∴PA =PB . ……………4分(2)∵PA =PB ,∴∠3=∠4.∵∠1+∠2+∠APB =180°,且∠3+∠4+∠APB =180°, ∴∠1+∠2=∠3+∠4.∴∠2=∠4.……………6分 ∵∠5=∠5,∴△PBC ∽△POB .∴33P S =∆∆=POB S BC PB PC . …………… 8分 (3)作BE ⊥OP 交OP 于E ,∵∠AOB =600,且OP 平分∠MON , ∴∠1=∠2=30°.∵∠AOB +∠APB =180°,∴∠APB =120°.∵PA =PB ,∴∠5=∠6=30°. ∵∠3+∠4=∠7,∴∠3+∠4=∠7=(180°-30°)÷2=75°.∵在Rt △OBE 中,∠3=600,OB =2∴∠4=150,OE =3,BE =1…………… 10分∴∠4+∠5=450,∴在Rt △BPE 中,EP =BE =1∴OP =13+ ……………12分 28.(本题12分)(1)由已知可得C (0,-3), ∵1tan 3OCB ∠=,∠COB =90°,∴13OB OC = , ∴B (1,0) -----------------------2分∵抛物线233y mx mx =+-(m >0)过点B ,∴m+3m-3=0 , ∴m=43∴抛物线的解析式为349432-+=x x y 51243TNMP OA C7612435ECAOPBM NTD1234A O PBMNT-----------------------4分 (2)如图1,∵抛物线对称轴为23-=x ,B (1,0)∴A (-4,0) 联结OD ,∵点D 在抛物线349432-+=x x y 上 ∴设点D (x ,349432-+x x ),则 ACD AOD DOC AOC S S S S ∆∆∆∆=+-=()2139114334324422x x x ⎛⎫⨯--++⨯--⨯⨯ ⎪⎝⎭ =2362x x -- ---------------------------------------------------------6分 ∴S=()23262x -++ ∴当x=-2时,△ACD 的面积S 有最大值为6. ------ 7分 此时,点D的坐标为(-2,92-). ----------------------------------------------------- 8分 (3)①如图2,当以AC 为边,CP 也是平行四边形的边时, CP ∥AE ,点P 与点C 关于抛物线的对称轴对称,此时P (-3,-3).②如图3,当以AC 为对角线,CP 为边时,此时P 点的坐标是(-3,-3) --------- 9分 ③如图4、图5,当以AC 为边,CP 是平行四边形的对角线时,点P 、C 到x 轴的距离相等,则349432-+x x =3,解得2413±-=x ,此时P (2413--,3)(如图4) 或(2413+-,3)(如图5)--------------------------------------------------------------12分 综上所述,存在三个点符合题意,分别是1P (-3,-3),2P (2413--,3),3P (2413+-,3).(图2)(图3)(图4) (图5)。

苏科版2014-2015年九年级上学期期末考试名校联考数学试题及答案

苏科版2014-2015年九年级上学期期末考试名校联考数学试题及答案

苏科版2014~2015年九年级上学期期末考试名校联考数学试题时间120分钟满分130分2015、2、17一、选择题(每题3分,共30分.)1.一元二次方程x2-x-2=0的解是…………………………………………………().A.x1=1,x2=2 B.x1=1,x2=-2 C.x1=-1,x2=-2 D.x1=-1,x2=2 2.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是…………().A.r> 6 B.r≥ 6 C.r< 6 D.r≤ 6 3.如图,一艘海轮位于灯塔P的北偏东30°方向,距离灯塔60海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处,这时,海轮所在的B处与灯塔P的距离为………………………………………………………………………………().A.302海里 B.303海里 C.60海里 D.306海里4.某机械厂七月份生产零件50万个,第三季度共生产零件196万个,设该厂八、九月份平均每月的增长率为x,那么x满足的方程是……………………………………………().A.50(1+x)2=196 B.50+50(1+x)2=196C.50+50(1+x)+50(1+x)2=196 D.50+50(1+x)+50(1+2x)=196 5.学校组织才艺表演比赛,前6名获奖.有13位同学参加比赛且他们所得的分数互不相同.某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是……………………………………………………………………………().A.众数 B.方差 C.中位数 D.平均数6.如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为6m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是………………………………………().A.AB=12m B.MN∥AB C.△CMN∽△CAB D.CM∶MA=1∶2 7.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列有4个结论:①b2-4ac>0;②abc<0;③b<a+c;④4a+b=1,其中正确的结论为……………………().A.①② B.①②③ C.①②④ D.①③④(第9题) 8.如图,⊙O 的半径为1,△ABC 是⊙O 的内接等边三角形,点D 、E 在圆上,四边形BCDE 为矩形,这个矩形的面积是……………………………………………………………( ).A .2B . 3C . 32D . 329.如图,点A (a ,b )是抛物线y =12x 2上位于第二象限的一动点,OB ⊥OA交抛物线于点B (c ,d ).当点A 在抛物线上运动的过程中,以下结论: ①ac 为定值;②ac =-bd ;③△AOB 的面积为定值;④直线AB 必过一定点.其中正确的结论有………………………………………( ). A .4个 B .3个 C .2个 D .1个10.现定义一种变换:对于一个由任意5个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1.例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2).则下面序列可以作为S 1的是……………………………………………………( ).A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)二、填空题(每题2分,共16分.)11.抛物线y =x 2-2x +3的顶点坐标是 .12.将“定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下洗匀后放在桌子上,任取一张,那么取到字母e 的概率为 .13.已知命题“关于x 的一元二次方程x 2+bx +14=0,当b <0时必有实数解”,能说明这个命题是假命题的一个反例可以是 . 14.如图,圆锥的表面展开图由一扇形和一个圆组成,已知圆的面积为100π,扇形的圆心角为120°,这个扇形的面积为 .15.如图,添加一个条件: ,使△ADE ∽△ACB .16.已知y 是关于x 的函数,函数图象如图所示,则当y >0时,自变量x 的取值范围是 .(第7题)(第8题)(第3题)(第6题)(第17题)(第18题)C17.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =4,⊙O 为△ABC 的内切圆,点D 是斜边AB 的中点,则tan ∠ODA 等于 .18.如图,在Rt △ABC 中,∠B=90°, sin ∠BAC =13,点D 是AC 上一点,且BC =BD=2,将Rt △ABC 绕点C 旋转到Rt △FEC 的位置,并使点E 在射线BD 上,连接AF 交射线BD 于点G ,则AG 的长为 .三、解答题(本大题共10小题,共84分.)19.(本题8分)解方程:(1) (4x -1)2-9=0 (2) x 2-3x -2=020.(本题8分)如图,在△ABC 中,AB =AC =5,BC =6,P 是BC 上一点,且BP =2,将一个大小与∠B 相等的角的顶点放在P 点,然后将这个角绕P 点转动,使角的两边始终分别与AB 、AC 相交,交点为D 、E . (1)求证△BPD ∽△CEP .(2)是否存在这样的位置,使PD ⊥DE ?若存在,求出BD 的长; 若不存在,说明理由.(第14题)(第15题)(第16题)A BCDE O 21.(本题8分)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线.(2)若圆心O到弦DB的距离为1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)22.(本题8分)2014年12月31日晚23时35分许,上海外滩陈毅广场发生拥挤踩踏事故.为了排除安全隐患,因此无锡市政府决定改造蠡湖公园的一处观景平台.如图,一平台的坡角∠ABC=62°,坡面长度AB=25米(图为横截面),为了使平台更加牢固,欲改变平台的坡面,使得坡面的坡角∠ADB=50°,则此时应将平台底部向外拓宽多少米?(结果保留到0.01米)(参考数据:sin62°≈0.88,cos62°≈0.47,tan50°≈1.20)23.(本题8分)有七张除所标数值外完全相同的卡片,把所标数值分别为-2、-1、3、4的四张卡片放入甲袋,把所标数值分别为-3、0、2的三张卡片放入乙袋.现在先后从甲、乙两袋中各随机取出一张卡片,按照顺序分别用x、y表示取出的卡片上标的数值,并把x、y分别作为点A的横坐标、纵坐标.(1)请用树状图或列表法写出点A(x,y)的所有情况.(2)求点A属于第一象限的点的概率.24.(本题8分)学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:甲组7 8 9 7 10 10 9 10 10 10乙组10 8 7 9 8 10 10 9 10 9甲组成绩的中位数是分,乙组成绩的众数是分.(2)计算乙组的平均成绩和方差.(3)已知甲组成绩的方差是1.4,则选择组代表八(5)班参加学校比赛.25.(本题8分)在“美化校园”活动中,某兴趣小组想借助如图所示的直角墙角(两边DA、DC足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB、BC两边),设AB=x (m).(1)若花园的面积为192m2,求x的值.(2)若在P处有一棵树与墙DC、DA的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细).求花园面积S的最大值.26.(本题8分)如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在BC边上,且抛物线经过O、A两点,直线AC交抛物线于点D(1,n).(1)求抛物线的函数表达式.(2)若点M在抛物线上,点N在x轴上,是否存在以点A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由.27.(本题10分)如图,在△ABC中,∠A=90°,AB=2cm,AC=4cm.动点P、Q分别从点A、点B同时出发,相向而行,速度都为1cm/s.以AP为一边向上作正方形APDE,过点Q作QF∥BC,交AC于点F.设运动时间为t (0≤t≤2,单位:s),正方形APDE 和梯形BCFQ重合部分的面积为S (cm2) .(1)当t= s时,点P与点Q重合.(2)当t= s时,点D在QF上.(3)当点P在Q,B两点之间(不包括Q,B两点)时,求S与t之间的函数表达式.28.(本题10分)木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1、O2分别在CD、AB上,半径分别是O1C、O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;方案四:锯一块小矩形BCEF拼到矩形AFED下面,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径.(2)通过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x<1),当x取何值时圆的半径最大,最大半径为多少?并说明四种方案中哪一个圆形桌面的半径最大.答案及评分标准一、选择题:(本大题共10小题,每小题3分,共30分.)1.D 2.A 3. A 4. C 5. C 6 . D 7. B 8.B 9. B 10. D 二、填空题:(本大题共8小题,每小题2分,共16分.)11.(1,2) 12.27 13.当b =-12时,方程无解(答案不唯一) 14.300π15.∠AED =∠B (答案不唯一) 16.x <-1或1<x <2 17.2 18.143三、解答题:(本大题共10小题,共84分.)19.(1) (4x -1)2-9=0 (2)x 2―3x ―2=0 4x -1=±3 ……… 2分 Δ=17 ………2分x 1=1,x 2=-12 ……… 4分 x 1=3+172,x 2=3-172……4分 20.解:(1)∵AB =AC ∴∠B =∠C ……………………1分∵∠DPC =∠DPE +∠EPC =∠B +∠BDP ……2分 ∴∠EPC =∠BDP …………………………3分 ∴△ABD ∽△DCE ……………………………4分 (2)作AH ⊥BC在Rt △ABH 和Rt △PDE 中 ∴cos ∠ABH =cos ∠DPE =BH AB =PD PE =35………………… 6分 ∴PD PE =BD PC =35 又∵PC =4 ∴BD =125……………8分 21.(1)证明:连接OD ∵BC 是⊙O 的切线 ∴∠ABC =90°………………1分∵CD =CB ,OB =OD ∴∠CBD =∠CDB ,∠OBD =∠ODB ……………2分 ∴∠ODC =∠ABC =90°即OD ⊥CD ∴CD 为⊙O 的切线 ……………4分 (2)解:作OF ⊥DB ,在Rt △OBF 中,∵∠ABD =30°,OF =1, ∴∠BOF =60°,OB =2,BF = 3 ……… 5分H……3分∵OF ⊥BD , ∴BD =2BF =23, ∠BOD =2∠BOF =120° …………6分 ∴S 阴影=43π-3. …………………………………………………………8分22.解:过A 点作AE ⊥CD 于E .在Rt △ABE 中,∠ABE =62°.∴AE =AB •sin62°=25×0.88=22米, ……2分 BE =AB •cos62°=25×0.47=11.75米,………4分 在Rt △ADE 中,∠ADB =50°, ∴DE =AE tan50°=553…………………6分 ∴DB =DC -BE ≈6.58米.………………7分 答:向外拓宽大约6.58米. ……………8分23.(1)-2 -1 3 4 -3 (-2, -3) (-1, -3) (3, -3) (4, -3) 0 (-2, 0) (-1, 0) (3, 0) (4, 0) 2(-2, 2)(-1, 2)(3, 2)(4, 2)∴如表所示,所有情况共有12种 …………………………………………………4分(2)因为属于第一象限的点的坐标有(3, 2)和(4, 2)共2种,…………………………6分所以概率P =16 ……………………………………………………………………8分24.(1)9.5 10 ……2分 (2)x —=9,方差=1 ……6分 (3)乙 ……8分 25.(1)根据题意,得x (28-x )=192 ………………………………………………2分解得x =12或x =16 ………………………………………………3分 ∴x 的值为12m 或16m ………………………………………………4分(2)∵根据题意,得6≤x ≤13 …………………………………………………5分 又∵S =x (28-x )=-(x -14)2+196 ……………………………………………6分∴当x ≤14时,S 随x 的增大而增大所以当x =13时,花园面积S 最大,最大值为195m 2 ……………………………8分 26.解:(1)设抛物线顶点为E ,根据题意OA =4,OC =3,得:E (2,3),………1分则可求得抛物线函数关系式为y=-34(x-2)2+3=-34x2+3x;………………………3分(2)可得点D坐标为(1,94) (4)分存在,分两种情况考虑:①当点M在x轴上方时,如答图1所示:四边形ADMN为平行四边形,DM∥AN,DM=AN,∵DM=2,∴AN=2,∴N1(2,0),N2(6,0)………………………………………6分②当点M在x轴下方时,如答图2所示:过点D作DQ⊥x轴于点Q,过点M作MP⊥x轴于点P,可得△ADQ≌△NMP,∴MP=DQ=94,NP=AQ=3,∴N3(-7-1,0),N4(7-1,0).………………8分27.解:(1)1 ……1分(2)45……2分(3)当1<t≤43时,如图②,设DE交FQ于点H,则重合部分为梯形DHQP可求得:PQ=2t-2,HD=52t-2 ……3分∴S=12(PQ+HD)·DP=12(2t-2+52t-2)·t=94t2-2t(1<t≤43) ……5分当43<t<2时,如图③,设DE交BC于点M,DP交BC于点N,则重合部分为六边形EFQPNM可求得:AQ=2-t,AF=4-2t∴S△FAQ=12AQ·AF=(2-t)2 ………………………………………7分同样可求得:DN=3t-4,DM=12(3t-4)初三数学期终试卷2015.2 第 11 页 共 11 页 ∴S △DMN =12 DM ·DN =12 ·12 ( 3t -4 )( 3t -4 )=14( 3t -4 )2………………8分 ∴S =S 正方形APDE -S △FAQ -S △DMN =-94t 2+10t -8……………………9分 综上所述,S =⎩⎪⎨⎪⎧94t 2-2t (1<t ≤43)-94t 2+10t -8(43<t <2) ……………………10分 28.解:(1)方案一中的最大半径为1.………………………2分(2)设半径为r ,方案二:在Rt △O 1O 2E 中, (2r )2=22+(3-2r )2,解得 r =1312 …4分 方案三:∵△AOM ∽△OFN , ∴r3-r =2-r r ,解得r =65…6分 ∵1312<65,∴方案三半径较大 ……………………………………7分 (3)方案四所拼得的图形水平方向跨度为3-x ,竖直方向跨度为2+x .所以所截出圆的直径最大为(3-x )或(2+x )两者之中较小的.……………………………8分当3-x <2+x 时,即当x >12时,r =12(3-x );此时r 随x 的增大而减小,所以r <12(3-12)=54; 当3-x =2+x 时,即当x =12时,r =12(3-12)=54; 当3-x >2+x 时,即当x <12时,r =12(2+x ).此时r 随x 的增大而增大,所以r <12(2+12)=54; ∴方案四,当x =12时,r 最大为54.………………………………………………………………9分 ∵1<1312<65<54, ∴方案四中所得到的圆形桌面的半径最大.……………………………10分。

2014~2015学年度 最新 江苏省2015届九年级上期末数学试题及答案

2014~2015学年度 最新 江苏省2015届九年级上期末数学试题及答案

3l 2l1l F E DC B A 2015学年度第一学期初三质量调研数 学 试 卷(时间:100分钟,满分:150分)一、选择题:(本大题共6题,每题4分,满分24分)[下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上]1.如图1,直线1l ∥2l ∥3l ,两直线AC 和DF 与1l ,2l ,3l 分别相交于点A 、B 、C 和点D 、E 、F .下列各式中,不一定成立的是( ▲ )(A ) EF DE BC AB =; (B )DF DEAC AB = ;(C )CF BE BE AD =; (D )CA BCFD EF =.2.用一个2倍放大镜照一个△ABC ,下面说法中错误的是(▲ )(A )△ABC 放大后,∠A 是原来的2倍; (B )△ABC 放大后,各边长是原来的2倍; (C )△ABC 放大后,周长是原来的2倍; (D )△ABC 放大后,面积是原来的4倍.3.在Rt ABC △中,已知ACB ∠=90°,1BC =,2AB =,那么下列结论正确的是( ▲ ) (A)sin A =; (B )1tan 2A =; (C)cos B = (D)cot B =4.如果二次函数2(0)y ax bx c a =++≠的图像如右图2所示, 那么 ( ▲ )(A )a <0,b >0,c >0; (B )a >0,b <0,c >0; (C )a >0,b <0,c <0; (D )a >0,b >0,c <0. 5.下列命题中,正确的是个数是( ▲ )(1)三点确定一个圆; (2)平分弦的直径垂直于弦; (3)相等的圆心角所对的弧相等; (4)正五边形是轴对称图形. (A )1个; (B )2个; (C )3个; (D )4个. 6.下列判断错误的是( ▲ )图1图2(A )00a =; (B )如果12a b =(b 为非零向量),那么a ∥b ;(C )设为单位向量,1=;(D )=,那么 =或 -=.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知:5:2x y =,那么():x y y += ▲ .8.计算:523()3a ab --= ▲ .9.如图3,在△ABC 中,DE ∥BC ,DE 与边AB 相交于点D ,与边AC 相交于点E . 如果3AD =,4BD =,2AE =,那么AC = ▲ .10.已知线段MN 的长为2厘米,点P 是线段MN的黄金分割点,那么较长的线段MP 的长是 ▲ 厘米.11.二次函数322--=x x y 的图像与y 轴的交点坐标是 ▲ . 12.如果将抛物线22y x =-平移,使顶点移到点(3,1)P -的位置,那么所得新抛物线的表达式是 ▲ .13.正八边形的中心角为 ▲ 度.14.用一根长50厘米的铁丝,把它弯成一个矩形框,设矩形框的一边长为x 厘米,面积为y 平方厘米,写出y 关于x 的函数解析式: ▲ . 15.在地面上离旗杆底部20米处的地方用测角仪测得旗杆顶端的仰角为α,如果测角仪的高为 1.5米,那么旗杆的高为 ▲ 米(用含α的三角比表示).16.如图4,已知⊙O 的半径为5,⊙O 的一条弦AB 长为8,那么以3为半径的同心圆与弦AB 位置关系是 ▲ .图4图3B17.我们定义:如果一个图形上的点'A 、'B 、…、'P 和另一个图形上的点A 、B 、…、P 分别对应,并且满足:(1)直线'A A 、'B B 、…、'P P 都经过同一点O ;(2)'''===OA OB OP k OA OB OP=…,那么这两个图形叫做位似图形,点O 叫做位似中心,k 叫做位似比.如图5,在平面直角坐标系中,△ABC 和△'''C B A 是以坐标原点O 为位似中心的位似图形,且'OB BB =.如果点A (25,3),那么点'A 的坐标为 ▲ .D C图5 图618.如图6,已知△ABC 中,AB =AC ,tan B =2,AD ⊥BC 于点D ,点G 是△ABC 的重心. 将△ABC 绕着重心G 旋转,得到△111C B A ,并且点1B 在直线AD 上,联结1CC ,那么tan ∠11B CC 的值等于 ▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:4sin3060︒︒︒.20.(本题满分10分)如图7,已知AB ∥CD ,AD 与BC 相交于点O ,且32=CD AB(1)求ADAO的值; (2)如果a AO =,请用a 表示.21.(本题满分10分)BC图7如图8,已知二次函数的图像与x 轴交于点A (1,0)和点B ,与y 轴交于点C (0,6),对称轴为直线2=x ,求二次函数的解析式并写出图像最低点的坐标.22.(本题满分10分)如图9,某新建公园有一个圆形人工湖,湖中心O 处有一座喷泉.小明为测量湖的半径,在湖边选择A 、B 两个点,在A 处测得45OAB ∠=,在AB 延长线上的C 处测得30OCA ∠=,已知50BC =米,求人工湖的半径.(结果保留根号)23.(本题满分12分)如图10,已知在△ABC 中,∠ACB =90°,点D 在边BC 上,CE ⊥AB ,CF ⊥AD ,E 、F 分别是垂足. (1)求证:2AC AF AD=;(2)联结EF ,求证:AE DB AD EF =.C图9EABOCBAy xx =2图824.(本题满分12分)如图11,在平面直角坐标系xOy中,点(),0B m(m>0),点C0,2A m-和点()在x轴上(不与点A重合),(1)当△BOC与△AOB相似时,请直接写出点C的坐标(用m表示);(2)当△BOC与△AOB全等时,二次函数2=-++的图像经过A、B、y x bx cC三点,求m的值,并求点C的坐标;(3)P是(2)的二次函数的图像上一点,90∠=,求点P的坐标及∠ACPAPC的度数.图11 备用图25.(本题满分14分)如图12,等边△ABC,4AB=,点P是射线AC上的一动点,联结BP,作BP的垂直平分线交线段BC于点D,交射线BA于点Q,分别联结PD,PQ.(1)当点P在线段AC的延长线上时,①求DPQ∠的度数并求证△DCP∽△PAQ;②设CP x=,AQ y=,求y关于x的函数解析式,并写出它的定义域;(2)如果△PCD是等腰三角形,求△APQ的面积.2015学年度第一学期九年级数学期终考试试卷参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.(C); 2.(A); 3.(D); 4.(C); 5.(A); 6.(D).二、填空题:(本大题共12题,每题4分,满分48分)7. 7:2(或72); 8. 5a b-+; 9.143;10. 1;11.(0,-3);12.()2231y x=-++;13.45; 14.225y x x=-+; 15.1.520tanα+;16.相切; 17.(5,6); 18.三、解答题(本大题共7题,其中第19---22题每题10分,第23、24题每题12分,第25题14分,满分78分)19.解:原式=142⨯+………………………………………………(6分)=21-+………………………………………………………………(3分)图12QPDCBA备用图ABC=1+.……………………………………………………………………(1分) 20.解(1)∵AB ∥CD , ∴AO ABOD CD=. ………………………………………………………………(2分) ∵23AB CD =, ∴错误!未找到引用源。

苏科版2014-2015年九年级上学期期末名校联考数学试题及答案

苏科版2014-2015年九年级上学期期末名校联考数学试题及答案
19.计算(每小题 4 分,共 8 分)
1 (1) 2 sin 45 2 8 ( ) 1 3
(2)
12+(3-π )0-2sin60°
20.解下列方程(每小题 4 分,共 8 分) (1)x2-2x-2=0;
(2)(x-3)2+4x(x-3)=0.
21. (本题满分 6 分)如图:AD 为Δ ABC 的中线,E 为 AD 的中点, 若∠DAC=∠B,CD=CE. 试说明Δ ACE∽Δ BAD.

K1 K2 K3 L1
5.如图,随机闭合开关 K1、K2、K3 中的两个,则能让两盏灯泡 同时发光的概率为( ▲ ) 1 1 1 2 A. B. C. D. 6 3 2 3 6.为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表: 甲和乙两位同学 6 次测试成绩(每分钟输入汉字个数)及部分统计数据表 第 1 次 第 2 次 第 3 次 第 4 次 第 5 次 第 6 次 平均数 甲 乙 134 135 137 136 136 136 136 137 137 136 136 136 136 136 方差 1.0
二、填空题(每空 2 分,共 l6 分.)
x=-1
11. 已知 Rt△ABC 中,∠C=90°, b 12,c 13 ,则 sinA= ▲ . 2 12.已知关于 x 的一元二次方程 2x +3x—1=0 根的情况是 ▲ . 13. 样本数据 2,8,0,-1,4 的极差是 ▲ . 14.任意抛掷一枚质地均匀的正方体骰子 1 次,骰子的六个面上分别刻有 1 到 6 的点数,掷得面朝上的点数大于 4 的概率为 ▲ . 15. 如果圆锥的母线长为 5cm,底面半径为 2cm,那么这个圆锥的侧面积是 ▲ . 16.如图,河堤横断面迎水坡 AB 的坡度是 1∶ 3 ,堤坝高 BC=5m,则坡面 AB 的长度 是 ▲ m. 17. 如图,O 是矩形 ABCD 的对角线 AC 的中点,M 是 AD 的中点,若 AB=5,AD=12, 则四边形 ABOM 的周长为___▲___.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高邮市2014-2015学年度第一学期期末学业质量监测试题九年级数学(满分:150分 考试时间:120分钟)友情提醒:本卷中的所有题目均在答题卡上作答,在本卷中作答无效. 一、选择题 (每题3分,共24分.)1. 下列关于x 的方程中,一定是一元二次方程的是A .230ax x += B .222(3)x x -=+ C .2350x x+-= D .210x -= 2. 若两个相似多边形的面积之比为1∶4,则它们的周长之比为 A. 1∶4 B. 1∶2 C. 2∶1 D. 1∶163. 某班体育委员记录了第一小组七位同学定点投篮(每人投10个)的情况,投进的个数分别为6 , 10 , 5 , 3 , 4 , 8 , 4 ,这组数据的中位数和极差分别是 A .4, 7 B .5, 7 C .7, 5 D .3, 74. 若二次函数y =(a -1)x 2+3x +a 2-3a +2的图象经过原点,则a 的值必为 A .1或2 B .0 C .1 D .25. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为 A .15° B .30° C .45° D .60°6.如图,线段AB两个端点的坐标分别为A (6,6),B (8,2),以原点O 为位似中心,在第一 象限内将线段AB 缩小为原来的12后得到线段CD ,则端点C 的坐标为 A .(3,3)B .(4,3)C .(3,1)D .(4,1)7. 若二次函数2y ax bx c =++(a ≠0)的图象如图,则下列选项正确的是 A .a >0 B .c >0 C .ac >0 D .bc <0第5题图第6题图第7题图8. 小芳对一张圆形纸片进行了如下操作:①如图1,将圆形纸片左右对折,折痕为AB ; ②如图2,将圆形纸片上下折叠,使A 、B 两点重合,折痕CD 与AB 相交于M ;③如图3, 将圆形纸片沿EF 折叠,使B 、M 两点重合,折痕EF 与AB 相交于N ;④如图4,连结AE 、 AF .则四个结论中: CD ∥EF ,四边形 MEBF 是菱形,△AEF 为等边三角形, AEF S ∆:S 圆=4π,正确的有A .1个B .2个C .3个D .4个二、填空题(每题3分,共30分.)9. 已知:2:3a b =,则():a b a += ▲ .11. 已知m 是方程02632=--x x 的一根,则=-m m 22▲.12. 在△ABC 中,若│tanA ﹣1│+﹣cosB )=0,则∠C = ▲ °. 13. 某药品原价每盒16元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现 在售价每盒9元,则该药品平均每次降价的百分率是 ▲ .14. 已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面展开图的圆心角是 ▲ °. 15. 如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为8cm , 则△DEO 的周长为 ▲ cm .图1 图2 图3 图4B BC BB O E DA BC第16题图第15题图16. 如图,Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的 半圆分别与AC 、BC 相切于点D 、E .则AD = ▲ .17. 如图,已知二次函数y 1=ax 2+bx +c 与一次函数y 2=kx +m 的图象相交于A (-1,2)、 B (4,1)两点,则能使关于x 的不等式ax 2+(b -k )x +c -m >0成立的x 的取值范围是 ▲ . 18. 在△ABC 中,AB =AC =6,点M 在边AB 上,且AM =2,若在边BC 上找一点N ,能使19.(本题满分8分)(1)计算:011)()2cos 602--+︒(2)解方程:013212=-+x x20.(本题满分8m ,小数部分为n . (1)m= ▲ ,n= ▲ ; (2)求2m+n 2+3n 的值21.(本题满分8分)已知关于x 的一元二次方程04222=-++k x x 有两个不相等的实数根 (1)求k 的取值范围;(2)若k 为正整数,且该方程的根都是整数,求k 的值.22. (本题满分8分)已知学习小组5位同学参加学业水平测试(满分100分)的平均成绩是80分,其中两位女生的成绩分别为85分,75分,三位男生成绩x 1、x 2、x 3的方差为150(分2). (1)学习小组三位男生成绩x 1、x 2、x 3的平均数是 ▲ 分; (2)求学习小组5位同学成绩的方差.23.(本题满分8分)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC ∠=∠, (1)求证:AC=BD ;(2)若12sin 13C =,BC =36,求AD 的长.24. (本题满分10分)某商品的进价为每件20元,售价为每件30,每个月可买出180件; 如果每件商品的售价每上涨1元,则每个月就会少卖出10件,但每件售价不能高于35元,设每件商品的售价上涨x 元(x 为整数),每个月的销售利润为y 元. (1)求y 与x 的函数关系式,并直接写出自变量x 的取值范围;(2)每件商品的售价为多少元时,每个月可获得最大利润?最大利润是多少? (3)每件商品的售价定为多少元时,每个月的利润恰好是1920元?CDB A25.(本题满分10分)如图,在□ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=33,AE=3,求AF的长.26.(本题满分10分)如图,PB为⊙O的切线,B为切点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.(1)求证:直线P A为⊙O的切线;(2)求证:EF2 = 4·OD·OP;(3)若BC=6,tan∠F=12,求AC的长.AC BD EF O PCDFB EA27.(本题满分12分)已知二次函数y =-x 2+(m -1)x +m .(1)证明:不论m 取何值,该函数图像与x 轴总有公共点;(2)若该函数的图像与y 轴交于点(0,3),求出顶点坐标并画出该函数图像; (3)在(2)的条件下,观察图像.①不等式-x 2+(m -1)x +m >3的的解集是 ▲ ;②若一元二次方程-x 2+(m -1)x +m=k 有两个不相等的实数根, 则k 的取值范围是 ▲ ; ③若一元二次方程-x 2+(m -1)x +m -的范围内有实数根,则t28.(本题满分12分)已知在平面直角坐标系xOy 中,O 是坐标原点,以P (1,1)为圆心的 ⊙P 与x 轴,y 轴分别相切于点M 和点N ,点F 从点M 出发,沿x 轴正方向以每秒1个单位长 度的速度运动,连接PF ,过点P 作PE ⊥PF 交y 轴于点E ,设点F 运动的时间是t 秒(t >0) (1)如图,若点E 在y 轴的负半轴上,求证:PE =PF ;(2)在点F 运动过程中,设OE =a ,OF =b ,试用含a 的代数式表示b ;(3)作点F 关于点M 的对称点F ′,经过M 、E 和F ′三点的抛物线的对称轴交x 轴于点Q ,连接QE .在点F 运动过程中,当1<t <2时,若以点Q 、O 、E 为顶点的三角形与以 点P 、M 、F 为顶点的三角形相似,求t 值.9年级数学答案及评分标准一、选择题(每小题3分,共24分)二、填空题(每小题3分,共30分)9. 5:2 ; 10. > ; 11.32; 12. 105; 13. 25% ; 14. 180; 15. 4; 16. 58; 17. x <-1或x >4; 18. 26≤x ∠12.三、解答题(本大题共有10题,共96分).19.解:(1)0 ………………………4分(2)3111-=x 3112--=x ………………………4分 20.解:(1)m= 2 ,n=27-; ………………………4分(2)2m+n 2+3n=79- ………………………4分21.解:(1)52k <………………………4分 (2)2=k (k =1不符合要求舍去) ………………………4分22.解:(1)80 ………………………3分(2)5)8075()8085()80()80()80(222322212-+-+-+-+-=x x x S215032525100()5⨯++==分 ………………………5分23.解:(1)∵AD 是BC 上的高 ∴在Rt △ABD 中BDADB =tan 在Rt △ACD 中ACADDAC =∠cos ∵tan cos B DAC ∠=∠ ∴ACADBD AD = ∴BD AC = ……………4分P(2)在Rt △ACD 中1312sin =C ∴1312=AC AD 设AD =12k ,AC =13k ∴CD =5k∵BD =AC=13k ∴BC =BD +CD =13k +5k =18k =36∴k =2 ∴AD =12×2=24 ………………………6分 24.解:(1)210801800(05)y x x x x =-++<≤且为整数 ……………3分(2)1960)4(102+--=x y∵0<x ≤5 ∴当x =4时 y 有最大值1960即当售价为34元时 最大利润为1960元 ……………4分 (3)19201960)4(102=+--x ∴ 61=x 22=x ∵0<x ≤5 ∴61=x 舍去∴x =2时利润恰好是1920元即当售价为32元时每个月利润恰好是1920元 ……………3分25.解:(1)略 ……………5分(2)AF =32 ……………5分26.解:(1)连接OB ,∵PB 是⊙O 的切线,∴∠PBO =90°.∵OA =OB ,BA ⊥PO 于D ∴AD =BD ,∠POA =∠POB . 又∵PO =PO ,∴△P AO ≌△PBO . ∴∠P AO =∠PBO =90°∴直线P A 为⊙O 的切线. ……………3分 (2)∵∠P AO =∠PDA =90°,∴∠OAD +∠AOD =90°,∠OP A +∠AOP =90°.∴∠OAD =∠OP A ∴△OAD ∽△OP A ∴OD OA =OAOP即OA 2=OD ·OP . 又∵EF =2OA ∴EF 2=4OD ·OP . ……………3分(3)∵OA =OC ,AD =BD ,BC =6,∴OD =12BC =3. 设AD =x ,∵tan ∠F =12,∴FD =2x ,OA =OF =2x -3. 在Rt △AOD 中,由勾股定理 ,得(2x -3)2=x 2+32. 解之得,x 1=4,x 2=0(不合题意,舍去). AD =4,OA =2x -3=5.∵AC 是⊙O 的直径 ∴AC =2OA =10 ……………4分27.解:(1)△=m m ac b ⨯-⨯--=-)1(4)1(4222)1(+=m ∵0)1(2≥+m∴不论m 取何值,该函数图像与x 轴总有公共点 ……………3分 (2)∵图像与y 轴交点为(3,0) ∴m=3∴4)1(3222+--=++-=x x x y ∴顶点坐标为(1,4) 图像略 ……………3分 (3)① 0 <x <2 ② k <4③ -5<t ≤4 ……………6分28.解:(1)如图,连接PM ,PN ,∵⊙P 与x 轴,y 轴分别相切于点M 和点N , ∴PM ⊥MF ,PN ⊥ON 且PM =PN , ∴∠PMF =∠PNE =90°且∠NPM =90° ∵PE ⊥PF ,∠NPE =∠MPF =90°﹣∠MPE 在△PMF 和△PNE 中∴△PMF ≌△PNE ∴PE =PF ……………4分(2)①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a……………4分(3)如图3,当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF时,=∴=∴t=当△OEQ∽△MFP时,=∴=∴t=,∴当t=,或t=时,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似.……………4分。

相关文档
最新文档