氧化钇稳定氧化锆

合集下载

氧化钇稳定二氧化锆的制备及表征

氧化钇稳定二氧化锆的制备及表征
和 丰富的表面缺 陷 , 同时 具有弱酸 、 弱碱性 和氧化还原性 , 是一 种 P一 型半 导
助剂的添加方法 有好 多种 , 沉淀 法 【 、8l 共 8 0— ] gl e法 J水 热法 ¨ 。共沉 淀 一凝胶 法 、 一 溶液 、 。、 醇 水
体材料 , 易于产生 氧空穴 , 可作 为催化 剂 、 催化 剂载 体及助剂¨ 被广泛用 于能 源、 环境 、 材料等领域 。
稳 定剂 的加 入 , 可使室 温不稳定 的氧 化锆相转 变为稳 态或 亚稳 态 , 使其 具 有更 优 异 的耐 热、 耐腐 蚀、 陶瓷增 韧等特点 , 已成 为材 料领 域研 究 的又一 热点。通 常 目前研究 较多 的添加 剂 主要有两类 : 以 Y 0 为代表的稀土金属氧 化物 和 以 C O为代 表 的 :3 a
性 。0 40℃ 煅烧 样 品的 比表 面 积高 达 10 2 。g 2 .5m / 。 、 -
关 键词 : 钇 ; 氧化 锆 ; 定化 氧化 二 稳 中圈分 类号 :B 8 ;Q 2 .9 T 33 T 44 2 文献 标 识码 : A 文章 编 号 :08- 2 x(o 1 0 10 o 1 2 l )4—02 0 0 3— 4
第 4期
牟 晓磊 , : 化钇 稳定 二 氧化锆 的 制备 及 表征 等 氧
・ 3・ 2
氧化 钇 稳 定 二 氧 化锆 的 制备 及 表 征
牟 晓磊 , 丽杰 , 志 , 国新 胡 陈 孙
( 济南大学 化学化工学院 , 山东 济南 2 0 2 ) 5 0 2
摘要: 以氯氧 化锆 为前躯 体 , 素 为沉 淀剂 , 用溶 胶 一凝 胶 法结 合 超临 界 C 2干燥 进行 了氧化 钇 稳 定 二氧 化锫 的 制备 。 并通 过 尿 采 O X D、G—D A、 E F R T T B T、T—I R等方 式 对所 制 备 的样 品进 行 表 征 。结 果 显 示 , 过 不 同 温 度煅 烧 的样 品都 呈 现 出 四方 相 氧 化 锆 特 经

钇稳定氧化锆有啥奥秘?

钇稳定氧化锆有啥奥秘?

钇稳定氧化锆有啥奥秘?氧化锆作为性能优异的结构材料和功能材料,具有⾼硬度、⾼强度、极⾼的耐磨性、良好的化学稳定性、热稳定性及优异的⽣物相容性等优点,同时,还具有带隙宽、介电常数⾼、折射率⾼等性能,使其⼴泛地应⽤于功能陶瓷材料、电⼦陶瓷材料、耐⽕材料及⽛齿修复材料等领域。

但是,所有的陶瓷材料都有⼀个致命缺陷,就是韧性不⾜,需要加⼊稳定剂或其它⽅法来改善稳定氧化锆是最常⽤的⽅法之⼀。

其韧性,⽽加⼊稳定剂形成稳定氧化锆钇稳定氧化锆的性能是如何提升的纯ZrO2从⾼温冷却到室温的过程中将发⽣如下相变:⽴⽅相(c)→四⽅相(t)→单斜相(m),其中在1150℃左右会发⽣t到m相变,并伴随约5%的体积膨胀。

如果将ZrO2的t→m相变点稳定到室温,使其在承载时由应⼒诱发产⽣t→m相变,由于相变产⽣的体积效应⽽吸收⼤量的断裂能,从⽽使材料表现出异常⾼的断裂韧度,产⽣相变增韧,获得⾼韧性、⾼耐磨性。

要实现相变增韧,必须添加⼀定的稳定剂并适当控制烧结⼯艺,将⾼温稳定相—四⽅相亚稳⾄室温,获得室温下可相变的四⽅相,这就是稳定剂对氧化锆的稳定作⽤。

稳定⾄室温稳⾄室温,获得室温下可相变的四⽅相,这就是稳定剂对氧化锆的稳定作⽤的四⽅相是应⼒诱导相变的前提条件,所以该过程是氧化锆陶瓷获得优良性能的关键,这也⼀直是氧化锆结构陶瓷材料研究的重要内容。

稳定剂中稳定效果最好同时也是最常⽤的是Y2O3。

钇稳定氧化锆的制备⽅法1共沉淀法含有多种阳离⼦的溶液中加⼊沉淀剂后,所有离⼦同时沉淀的⽅法称为共沉淀法。

⼀般在可溶性锆盐和钇盐的混合⽔溶液中,加⼊氨⽔、苛性钠、(NH4)2CO3或尿素等碱性物质,从⽽⽣成锆和钇的氢氧化物沉淀,然后对沉淀物经洗涤、⼲燥、热处理、粉碎即得超细粉末,该法不仅⼯艺简单,对设备要求不⾼,成本低,重复性好,⽽且可制得各种晶型的氧化物粉体,最⼩粒径可达数⼗纳⽶,化学均匀性良好,易烧结,纯度⾼,既适合于实验室规模也可以扩⼤⾄⼯业规模⽣产。

纳米氧化锆 氧化钇

纳米氧化锆 氧化钇

纳米氧化锆氧化钇英文回答:Yttria-Stabilized Zirconia (YSZ)。

Yttria-stabilized zirconia, often abbreviated as YSZ, is a ceramic material that is used in a variety of applications, including as a thermal barrier coating, a solid oxide fuel cell electrolyte, and an oxygen sensor. YSZ is composed of zirconium oxide (ZrO2) that isstabilized with yttrium oxide (Y2O3). The addition of yttrium oxide prevents the ZrO2 from undergoing a phase transformation from a tetragonal to a monoclinic structure, which would cause the material to become brittle and less stable.The properties of YSZ can be tailored by varying the amount of yttrium oxide that is added. For example, YSZthat contains 8 mole percent of yttrium oxide (8YSZ) has a high thermal conductivity and is used as a thermal barriercoating. YSZ that contains 3 mole percent of yttrium oxide (3YSZ) has a high ionic conductivity and is used as an electrolyte in solid oxide fuel cells.YSZ is a versatile material that has a wide range of applications. It is a stable, durable, and chemically inert material that can be used in a variety of high-temperature and corrosive environments.中文回答:氧化钇稳定氧化锆 (YSZ)。

氧化锆陶瓷 钇稳定氧化锆

氧化锆陶瓷 钇稳定氧化锆

氧化锆陶瓷钇稳定氧化锆钇稳定氧化锆(Yttria-Stabilized Zirconia,YSZ)是一种重要的氧化锆陶瓷材料。

它由氧化锆(ZrO2)和钇氧化物(Y2O3)按一定比例混合制备而成。

氧化锆陶瓷具有很高的熔点、硬度和化学稳定性,而钇稳定氧化锆则在这些性质的基础上还具有更好的稳定性和导电性能。

钇稳定氧化锆的稳定性来源于钇氧化物的引入。

钇氧化物在氧化锆晶格中形成固溶体,使晶格结构更稳定。

这种稳定性使得钇稳定氧化锆具有较高的抗热震性能和热循环稳定性,能够在高温下长时间使用而不发生晶格破坏。

此外,钇稳定氧化锆还具有优异的化学稳定性,能够耐受强酸、强碱等腐蚀介质的侵蚀。

钇稳定氧化锆的导电性能使其在固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)等高温电化学器件中得到广泛应用。

由于其晶格中的钇离子部分取代了氧化锆晶格的氧离子,导致氧离子缺陷的形成。

这种氧离子缺陷会导致氧离子在晶体中的迁移,从而产生离子导电性。

钇稳定氧化锆的高离子导电性使得其成为固体氧化物燃料电池中的电解质材料,能够在高温下将化学能转化为电能。

除了在高温电化学器件中的应用外,钇稳定氧化锆还广泛用于热障涂层、传感器、陶瓷刀具等领域。

其高熔点和热稳定性使其成为热障涂层材料的理想选择,能够在高温环境下提供有效的隔热保护。

在传感器中,钇稳定氧化锆的导电性能能够被用来检测气体成分、温度等参数变化。

此外,钇稳定氧化锆的高硬度和耐磨性使其成为陶瓷刀具的重要原料,能够在切割、磨削等应用中提供优异的切割效果和耐用性。

钇稳定氧化锆的制备方法有多种,常见的包括固相烧结法、溶胶-凝胶法、等离子体喷涂法等。

其中,固相烧结法是最常用的制备方法之一。

这种方法首先将氧化锆和钇氧化物粉体按一定比例混合,然后通过高温烧结使粉体颗粒结合成致密块体。

溶胶-凝胶法则是通过溶胶-凝胶反应制备钇稳定氧化锆。

这种方法可以得到纯度较高、孔隙度较低的材料。

等离子体喷涂法则是将粉体材料通过等离子体喷涂技术喷涂到基底上,形成涂层。

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状

氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状/高燕等・51・氧化钇稳定四方氧化锆多晶陶瓷在牙科领域的研究现状高燕1,2,张富强1,2(1上海交通大学医学院附属第九人民医院,上海200011;2上海市口腔医学研究所,上海200011)摘要与传统牙科陶瓷材料相比,以氧化钇(Y2O3)为稳定剂的四方氧化锆(t- ZrO2)多晶陶瓷(Y-TZP)由于存在介稳的四方氧化锆向单斜氧化锆(m- ZrO2 )的应力诱导相变增韧作用,具有较高的韧性,而受到了普遍关注。

主要从材料性能、加工性、美学性能等方面对Y-TZP在牙科领域的研究现状作一综述。

关键词氧化锆 Y-TZP 挠曲强度 CAD-CAMApplication Status and Development Tendency of Yttria-stabilized Tetragonal Zirconia Polycrystals(Y-TZP)GAOYan, ZHANG Fuqiang(1 Department of Prosthetic Dentistry, Shanghai 9th People’Hospital, Shanghai 200011;2.Shanghai JiaotongUniversity and Shanghai Institute of Stomotology, Shanghai 200011)Abstract Compared with traditional dental ceramic, Y-TZP is becoming more and more popular between dentists and patients, due to its stress induced t–m ZrO2 transformation. This paper introduces the mechanical property,machinable and aesthetic property of Y-TZP.Key words zirconia,Y-TZP,flexture strength,CAD-CAMt0 前言与传统的金瓷修复体比较,全瓷冠桥修复体因其在美学和生物相容性方面性能的改善而受到普遍的关注[1~3]。

氧化钇稳定氧化锆原理

氧化钇稳定氧化锆原理

氧化钇稳定氧化锆原理
氧化钇稳定氧化锆(YSZ)是一种重要的功能陶瓷材料,具有优
异的热力学、电学和机械性能,因此在固体氧化物燃料电池、电解质、热障涂层、传感器等领域有着广泛的应用。

在这篇文档中,我
们将着重介绍氧化钇稳定氧化锆的原理及其相关特性。

首先,氧化钇稳定氧化锆的稳定性主要来自于其晶体结构。


化锆晶体结构具有高度的阶段稳定性,而氧化钇的掺杂能够有效地
抑制氧化锆的相变,使其在高温下仍能保持稳定的立方相结构。


种稳定性使得氧化钇稳定氧化锆具有优异的离子传导性能和化学稳
定性,从而使其成为固体氧化物燃料电池和电解质材料的理想选择。

其次,氧化钇稳定氧化锆的离子传导性能是其重要特性之一。

由于氧化钇的掺杂可以引入氧空位,提高氧离子在晶格中的迁移率,使得氧化钇稳定氧化锆具有较高的氧离子传导性能。

这种离子传导
性能对于固体氧化物燃料电池和电解质材料至关重要,能够有效地
提高其电化学性能和稳定性。

此外,氧化钇稳定氧化锆还具有优异的机械性能和热膨胀性能。

由于氧化钇的掺杂能够有效地调控晶格参数,降低晶体的热膨胀系
数,使得氧化钇稳定氧化锆在高温下具有良好的热稳定性和热震稳定性。

这种特性使得氧化钇稳定氧化锆广泛应用于热障涂层和高温结构材料中。

总的来说,氧化钇稳定氧化锆作为一种重要的功能陶瓷材料,具有优异的热力学、电学和机械性能,其稳定性、离子传导性能和热膨胀性能使其在固体氧化物燃料电池、电解质、热障涂层、传感器等领域有着广泛的应用前景。

希望通过本文的介绍,能够更好地了解氧化钇稳定氧化锆的原理及其相关特性,为其在材料科学和工程领域的进一步研究和应用提供参考。

氧化钇稳定氧化锆的晶体结构

氧化钇稳定氧化锆的晶体结构

氧化钇稳定氧化锆的晶体结构
氧化钇稳定氧化锆(YSZ)是一种重要的功能陶瓷材料,具有优异的热稳定性
和化学惰性。

其晶体结构对其性能具有明显的影响。

氧化锆具有非常高的熔点,良好的抗热震性和化学稳定性,但在高温下容易发
生相变,导致晶体结构的不稳定性。

然而,通过向氧化锆中掺杂少量的氧化钇,可以显著提高氧化锆的晶体结构稳定性。

氧化钇掺杂的氧化锆晶体结构主要由四面体氧化锆和八面体氧化钇组成。

通过
氧化钇的掺杂,氧化锆的晶格结构得到了调整,使得晶体结构更加稳定。

这种晶体结构稳定性的改善使得氧化钇稳定氧化锆在高温氧化还原环境下具有出色的性能,如较低的热膨胀系数、较高的热导率和良好的机械强度。

氧化钇稳定氧化锆的晶体结构也对其离子传导性能产生影响。

晶格结构的稳定
性使得氧化钇稳定氧化锆成为一种优良的离子导体材料,主要用于固体氧化物燃料电池和液相氧化物膜层制备等领域。

其高离子导电性能使得氧化锆在高温下能快速传输氧离子,为高温电化学设备的稳定运行提供了关键支持。

综上所述,氧化钇稳定氧化锆的晶体结构具有重要的意义。

通过氧化钇的掺杂,能够调整晶体结构,改善晶体的热稳定性和化学稳定性。

这种结构稳定性的改善使得氧化钇稳定氧化锆在高温环境下表现出优异的性能,特别适用于高温电化学设备和离子传导材料等领域。

氧化钇稳定氧化锆原理

氧化钇稳定氧化锆原理

氧化钇稳定氧化锆原理氧化钇稳定氧化锆(YSZ)是一种重要的功能陶瓷材料,具有优异的化学稳定性、热稳定性和机械性能,被广泛应用于固体氧化物燃料电池、气体传感器、电解质膜等领域。

其稳定性主要依赖于氧化钇(Y2O3)的添加,下面我们将深入探讨氧化钇稳定氧化锆的原理。

首先,氧化钇的添加可以稳定氧化锆的晶体结构。

纯氧化锆在高温下会发生相变,从立方相转变为四方相,导致晶格体积的变化,从而引起材料的蠕变和热膨胀系数的变化。

而氧化钇的加入可以抑制这种相变,使晶体结构保持稳定,从而提高了材料的热稳定性和机械性能。

其次,氧化钇的添加可以提高氧离子传导性能。

氧化锆本身是一种良好的氧离子导体,而氧化钇的加入可以进一步提高材料的氧离子传导性能,降低氧离子的迁移能垒,促进氧离子在晶格中的传输,从而提高固体氧化物燃料电池的性能。

此外,氧化钇的添加还可以提高氧化锆的化学稳定性。

在高温和极端环境下,氧化锆很容易与一些金属元素发生反应,导致材料的老化和性能下降。

而氧化钇的加入可以形成稳定的固溶体结构,阻碍金属元素的扩散,减少材料与外界环境的反应,提高了材料的化学稳定性。

综上所述,氧化钇稳定氧化锆的原理主要包括稳定晶体结构、提高氧离子传导性能和提高化学稳定性。

通过合理控制氧化钇的添加量和制备工艺,可以有效改善氧化锆的性能,拓展其在能源、传感器等领域的应用。

总的来说,氧化钇稳定氧化锆的原理是一个复杂而又精妙的过程,需要深入的材料学和化学知识来加以理解和掌握。

随着科学技术的不断发展,相信氧化钇稳定氧化锆这一领域将会有更多的突破和创新,为人类社会的发展做出更大的贡献。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

氧化钇稳定氧化锆
1 氧化钇稳定氧化锆的概念
氧化钇稳定氧化锆是指采用一种氧化钇化学有机物–加入到氧化锆中,在钇降解产生的少量氢氧化钙和氢氧化氢保护氧化锆不受氧化降解物的攻击。

这种技术目前已经在玻璃陶瓷、耐热材料、无隔热材料等领域得到了广泛的应用。

2 氧化钇稳定氧化锆的优点
(1)抗热稳定性好:由于氧化钇在气化反应时会分解氧化锆表面的氧化物,形成一层钇液滴,从而抵挡氧化作用,不容易发生化学变化,使氧化锆的热稳定性得到进一步的改善。

(2)耐腐蚀性高:氧化钇的添加会使氧化锆表面形成一层钇氧化物,这一层可有效地抑制氧化锆受到其它氧化物和有机物质的攻击,从而提高其耐腐蚀性能。

(3)抗渗性好:氧化钇添加后氧化锆表面形成了一层与渗透剂相抗,能有效防止渗透剂渗入内部,使氧化锆具有良好的抗渗性能。

3 氧化钇稳定氧化锆的应用
氧化钇稳定氧化锆具有优良的热稳定性、耐腐蚀性和抗渗性,可广泛用于制造高温陶瓷、耐热材料、航空复合材料、绝缘材料等。

例如,用于制造火箭结构和陶瓷发动机系统,可以耐受超高温的要求;
用于制造绝缘材料和航空复合材料,能够提高循环耐热性能、劣化率和耐腐蚀性能。

4 氧化钇稳定氧化锆的发展前景
氧化钇稳定氧化锆作为一种高性能抗热、耐腐蚀以及抗渗材料,已经在包括火箭结构、高温陶瓷、耐热材料、航空复合材料、绝缘材料等系统中得到了广泛的应用。

随着材料科学技术的不断发展,氧化钇稳定氧化锆将有望朝着更适用于低能耗、绿色材料和经济材料的方向发展。

未来,氧化钇稳定氧化锆将得到更广泛的应用,为人们提供更多更多实用的高性能陶瓷材料。

相关文档
最新文档