考研数学一历年真题(2002-2011)版)
考研(数学一)历年真题试卷汇编1(题后含答案及解析)

考研(数学一)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(2011)已知当x→0时,函数f(x)=3sin.x=sin 3x与cxk是等价无穷小,则( )A.k=1,c=4.B.k=1,c=4.C.k=3,c=4.D.k=3,c=-4.正确答案:C解析:因为当x→0时,函数f(x)=3sin x=sin 3x与cxk是等价无穷小,所以从而k-1=2,即k=3,于是故应选C.2.(2012)设函数f(x)=(ex-1)(e2x-2).….(enx-n),其中n为正整数,则f’(0)=( ) A.(-1)n-1(n-1)!.B.(-1)n(n-1)!.C.(-1)n-1n!.D.(-1)nn!.正确答案:A解析:利用导数的定义求f’(0).故应选A.3.(2012)曲线的渐近线的条数为( )A.0.B.1.C.2.D.3.正确答案:C解析:应同时考虑水平渐近线、铅直渐近线与斜渐近线.因为所以y=1是曲线的水平渐近线,同时说明曲线无斜渐近线.又因为所以x=1是曲线的铅直渐近线,x=-1不是曲线的铅直渐近线.综上所述,应选C.4.(2009)设A,B均为2阶矩阵,A*,B*分别为A,B的伴随矩阵.若|A|=2,|B|=3,则分块矩阵的伴随矩阵为( )A.B.C.D.正确答案:B解析:本题主要考查分块矩阵的行列式、伴随矩阵的相关公式以及分块矩阵的逆矩阵.由=(-1)2×2|A||B|=6知,矩阵可逆,从而故应选B.5.(2006)设A、B为两个随机事件,且P(B)>0,P(A|B)=1,则必有( ) A.P(A∪B)>P(A).B.P(A∪B)>P(B).C.P(A∪B)=P(A).D.P(A∪B)=-P(B).正确答案:C解析:本题主要考查乘法公式与加法公式.由已知条件与乘法公式有P(AB)=P(B)P(A|B)=P(B),再由加法公式有P(A∪B)=P(A)+P(B)-P(AB)=P(A).故应选C.6.(2003)设函数f(x)在(-∞,+∞)内连续,其导函数的图形如图1所示,则f(x)有( )A.一个极小值点和两个极大值点.B.两个极小值点和一个极大值点.C.两个极小值点和两个极大值点.D.三个极小值点和一个极大值点.正确答案:C解析:本题主要考查导函数y=f’(x)与函数y=f(x)的图形的关系与一元函数的极值(点).由于已知函数是抽象函数,无法用推理法及反例排除法解决.考虑用y=f’(x)与y=f(x)的图形之间的关系画出y=f(x)的图形,利用定性分析的方法解决该问题.根据y=f’(x)的图形画出y=f(x)的图形,如图2所示,根据y=f(x)的图形知,f(x)有两个极小值点和两个极大值点.故应选C.7.(2011)函数f(x)=ln|(x-1)(x-2)(x-3)|的驻点个数为( )A.0.B.1.C.2.D.3.正确答案:C解析:因为,所以x=1,x=2,x=3是曲线y=f(x)的铅直渐近线.又,由此可画出f(x)=ln|(x-1)(x-2)(x-3)|的草图,如图3所示,由图形可知,存在两点x1,x2,使得f’(x1)=f’(x2)=0,即f(x)有两个驻点.故应选C.8.(2006)设函数y=f(x)具有二阶导数,且f’(x)>0,f’’(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则( )A.0<dy<△y.B.0<△y<dy.C.△y<dy<0.D.dy<△y<0.正确答案:A解析:△y=f(x0+△x)-(x0)=f’(ξ)△x (x0<ξ<x0+△x).因为f’’(x)>0,所以f’(x)单调增加,从而f’(ξ)>f’(x0),于是△y=f’(ξ)△x>f’(x0)△x=dy.又因为f’(x)>0,所以0<dy<△y.故应选A.9.(1999)设两个相互独立的随机变量X和Y分别服从正态分布N(0,1)和N(1,1),则( )A.P{X+Y≤0}=B.P{X+Y≤1}=C.P{X-Y≤0}=D.P{X-Y≤1}=正确答案:B解析:由于均服从正态分布且相互独立的随机变量的线性组合仍然服从正态分布,所以由正态分布的几何意义知,正态分布的密度函数关于均值左右对称,于是其小于均值的概率为,从而P{X+Y≤1}=故应选B.10.(2002)设函数y=f(x)在(0,+∞)内有界且可导,则( )A.B.C.D.正确答案:B解析:取,因为排除A、C、D.故应选B.11.(2005)以下四个命题中,正确的是( )A.若f’(x)在(0,1)内连续,则f(x)在(0,1)内有界.B.若f(x)在(0,1)内连续,则f(x)在(0,1)内有界.C.若f’(x)在(0,1)内有界,则f(x)在(0,1)内有界.D.若f(x)在(0,1)内有界,则f’(x)在(0,1)内有界.正确答案:C解析:取f’(x)=,在(0,1)内连续,但f(x)=lnx在(0,1)内无界,排除A.取f(x)=,在(0,1)内连续,但f(x)在(0,1)内无界,排除B.取f(x)=,在(0,1)内有界,但f’(x)=在(0,1)内无界,排除D.故应选C.12.(2004)设f’(x)在[a,b]上连续,且f’(a)>0,f’(b)<0,则下列结论中错误的是( )A.至少存在一点x0∈(a,b),使f(x0)>f(a).B.至少存在一点x0∈(a,b),使f(x0)>f(b).C.至少存在一点x0∈(a,b),使f’(x0)=0.D.至少存在一点x0∈(a,b),使f(x0)=0.正确答案:D解析:取f(x)=2-x2,x∈[-1,1],则f’(x)=-2x在[a,b]=[-1,1]上连续,且f’(a)=f’(-1)=2>0,f’(b)=f’(1)=-2<0,满足已知条件.由f(x)=2-x2的图形可知,在(-1,1)内,f(x)>1,即对任意x0∈(-1,1),都有f(x0)≠0,这表明D选项是错误的.故应选D.13.(2001)设f(x)的导数在x=a处连续,又,则( )A.x=a是f(x)的极小值点.B.x=a是f(x)的极大值点.C.(a,f(a))是曲线y=f(x)的拐点.D.x=a不是f(x)的极值点,(a,f(a))也不是曲线y=f(x)的拐点.正确答案:B解析:由f(x)的导数在x=a处连续及=f’(a)=0,即x=a是f(x)的驻点.从而所以x=a是f(x)的极大值点.故应选B.14.(2003)设f(x)为不恒等于零的奇函数,且f’(0)存在,则函数g(x)=( ) A.在x=0处左极限不存在.B.有跳跃间断点x=0.C.在x=0处右极限不存在.D.有可去间断点x=0.正确答案:D解析:因为f(x)为不恒等于零的奇函数,所以f(0)=0,又f’(0)存在.所以故x=0是g(x)的可去间断点.应选D.15.(2005)设函数u(x,y)=φ(x+y)+φ(x+y)+其中函数φ具有二阶导数,ψ具有一阶导数,则必有( )A.B.C.D.正确答案:B解析:取φ(x)=x2,ψ(x)=0,则u(x,y)=(x+y)2+(x-y)2=2x2+2y2.于是由此可知,选项A、C、D都不正确.故应选B.16.(2005)设an>0,n=1,2,…,若收敛,则下列结论正确的是( ) A.B.C.D.正确答案:D解析:取收敛,但发散,排除A;发散,排除B;发散,排除C.故应选D.17.(2002)设A是m×n矩阵,B是n×m矩阵,则线性方程组(AB)X=0( ) A.当n>m时仅有零解.B.当n>m时必有非零解.C.当m>n时仅有零解.D.当m>n时必有非零解.正确答案:D解析:(推理法)因为当n<m时,齐次线性方程组BX=0有非零解,从而线性方程组(AB)X=0有非零解,故应选D.18.(2002)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对任意常数k,必有( )A.α1,α2,α3,kβ1+β2线性无关.B.α1,α2,α3,kβ1+β2线性相关.C.α1,α2,α3,β1+kβ2线性无关.D.α1,α2,α3,β1+kβ2线性相关.正确答案:A解析:因为β2不能由α1,α2,α3线性表示,则α1,α2,α3,β2线性无关.取k=0,由B知,α1,α2,α3,β2线性相关,与α1,α2,α3,β2线性无关矛盾,排除B.取k=0,由C知,α1,α2,α3,β1线性无关,则β1不能由α1,α2,α3线性表示,与已知条件矛盾,排除C.取k=1,由D知,α1,α2,α3.β1+β2线性相关,因为α1,α2,α3线性无关,所以β1+β2可由α1,α2,α3线性表示,而β1可由α1,α2,α3线性表示,于是β2可由α1,α2,α3线性表示,与已知条件矛盾,排除D.故应选A.填空题19.(2000)=_____,正确答案:解析:由定积分的几何意义,表示由直线x=0,x=1,y=0与曲线y=所围成的图形的面积,如图5所示,所以(其中S为单位圆(x-1)2+y2≤1的面积).20.(2001)(x3+sin2x)cos2xdx=_______.正确答案:解析:21.(2012)设区域D是由曲线y=sinx,x=,y=1围成,则(x5y-1)dxdy=_______.正确答案:-π解析:22.(2008)设D={(x,y)|x2+y2≤1},则(x2-y)dxdy=______.正确答案:解析:因为积分区域D关于x轴对称,函数y关于y是奇函数,所以.由轮换对称性以及极坐标下二重积分的计算方法,有23.(2009)设Ω={(x,y,z)|x2+y2+z2≤1},则z2dxdydz=_______.正确答案:解析:利用轮换对称性,有再利用球坐标下三重积分的计算有24.(2007)设曲面∑:|x|+|y|+|z|=1,则=_______.正确答案:解析:因为∑关于yOz平面对称,x关于x为奇函数,所以.由轮换对称性,其中S是∑的表面积,记∑在第一卦限部分的面积为S1.如图8所示,则。
考研数学一(常微分方程)历年真题试卷汇编4(题后含答案及解析)

考研数学一(常微分方程)历年真题试卷汇编4(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2004年] 微分方程y’’+y=x2+1+sinx的特解形式可设为( ).A.y*=ax2+bx+c+x(Asinx+Bcosx)B.y*=x(ax2+bx+c+Asinx+Bcosx)C.y*=ax2+bx+c+AsinxD.y*=ax2+bx+c+Acosx正确答案:A解析:对应齐次方程y’’+y=0的特征方程为λ2+1=0,特征根为λ=±i.对y’’+y=x2+1=e0x(x2+1)而言,因0不是其特征根,从而其特解形式可设为y1*=ax2+bx+c.对y’’+y=sinx=e0x(0·cosx+1·sinx)(λ=0,w=1),因λ+iw=0+i·1=i 为特征根,从而其特解形式可设为y2*=x(Asinx+Bcosx),从而知,y’’+y=x2+1+sinx 的特解形式为y*=ax2+bx+c+x(Asinx+Bcosx).仅A入选.知识模块:常微分方程2.[2008年] 在下列微分方程中以y=C1ex+C2cos2x+C3sin2x (C1,C2,C3为任意常数)为通解的是( ).A.y’’’+y’’一4y’一4y=0B.y’’’+y’’+4y’+4y=0C.y’’’一y’’一4y’+4y=0D.y’’’-y’’+4y’-4y=0正确答案:D解析:由所给通解可知,其特征根为λ1=1,λ2,3=0+2i,故其特征方程为(λ一1)(λ一2i)(λ+2i)=(λ一1)(λ2+4)=λ3一λ2+4λ一4=0,故所求的微分方程为y’’’一y’’+4y’-4y=0.仅D入选.知识模块:常微分方程3.[2015年] 设是二阶常系数非齐次线性微分方程y’’+ay’+by=cex的一个特解,则( ).A.a=一3,b=2,c=一1B.a=3,b=2,c=一1C.a=一3,b=2,c=1D.a=3,b=2,c=1正确答案:A解析:因为方程y’’+ay’+by=cex的特解,故为原方程对应的齐次方程的解,因而2,1为特征方程λ2+aλ+b=0的特征根,故a=一(2+1)=一3,b=1×2=2.再由所给原方程的特解易看出xex也为原方程的一个特解,将其代入原方程得c=一1.知识模块:常微分方程4.[2016年] 若y=(1+x2)2一,y=(1+x2)2+再是微分方程y’+p(x)y=q(x)的两个解,则q(x)=( ).A.3x(1+x2)B.一3x(1+x2)C.D.正确答案:A解析:利用解的结构和性质,令y1*=(1+x2)2一,y2*=(1+x2)2+,为微分方程y’+p(x)y=q(x)的两个特解.可得到y1*—y2*为y’+p(x)y=0的解(因a=1,b=一1,a+b=0),而将其代入(y1*-y2*)’+p(x)(y1*-y2*)=0,得到又为y’+p(x)y=q(x)的解(因,a+b=1).易求得将其代入方程y’+p(x)y=q(x)得到即4x(1+x2)+(1+x2)2=q(x)故q(x)=4x(1+x2)一(1+x2)2=4x(1+x2)-x(1+x2)=3x(1+x2).仅A入选.知识模块:常微分方程填空题5.[2006年] 微分方程y’=y(1一x)/x的通解是______.正确答案:y=Cxe-x (C为任意常数)解析:直接利用分离变量法求解.由原方程易得到即两边积分,得到ln|y|=ln|x|—x+C1,即=C1一x.故=eC1-x=e-xeC1,所以|y|=eC1|x|e-x,去掉绝对值符号,改写eC1为C,并认为C可取正值或负值,得到y=Cxe-x.由于y=0也是原方程的解.上式中的C也可为0,于是得通解为y=Cxe-x (C为任意常数).知识模块:常微分方程6.[2008年] 微分方程xy’+y=0满足条件y(1)=1的解为______.正确答案:y=1/x解析:由初始条件y(1)=1知,只需考虑xy’+y=0在(0,+∞)内的非负解即可.由dy/(-y)=dx/x得到ln|y|=ln|x|+C1,即|x||y|=eC1,即y=C/x(C=eC1).又因y(1)=1,故C=1,所以y=1/x.知识模块:常微分方程7.[2014年] 微分方程xy’+y(lnx—lny)=0满足条件y(1)=e3的解为y=______.正确答案:y=xe2x+1(x>0)解析:在所给微分方程的两边除以x可得①令,则y=xu,y’=xu’+u,代入式①得到xu’+u=ulnu,即分离变量得即两边积分得到ln|lnu一1|=lnx+lnc,即lnu-1=cx,故则其通解为y=xecx+1.将y(1)=e3代入上式可得c=2,即得其特解为y=xe2x+1(x>0).知识模块:常微分方程8.[2011年] 微分方程y’+y=e-xcosx满足条件y(0)=0的解为y=______.正确答案:y=e-xsinx解析:注意到y’+y=y’+(x)’y=e-xcosx,在其两边乘上ex得到y’ex+exx’y=exe-xcosx=cosx,即(yex)’=cosx.两边积分得到yex=∫cosxdx+C=sinx+C,即y=e-xsinx+Ce-x.由y(0)=0,得到C=0,故所求特解为y=e-xsinx.知识模块:常微分方程9.[2005年] 微分方程xy’+2y=xlnx满足y(1)=一1/9的特解为______.正确答案:y=(x/3)(lnx一1/3)解析:用凑导数法求之.为此在原方程两边乘以x得到x2y’+2xy=x2lnx,即(x2y)’=x2lnx.两边积分得到x2y=∫x2lnxdx=代入初始条件y(1)=一1/9,可得C=0,于是所求的特解为y=(xlnx)/3一x/9=(x/3)(lnx一1/3).知识模块:常微分方程10.[2013年] 已知y1=e3x—xe2x,y2=ex一xe2x,y3=一xe2x是某二阶常系数非齐次线性微分方程的3个解,则该方程的通解为y=______.正确答案:y= c1e3x+c2ex-xe2x,其中c1,c2均为任意常数解析:先由给出的3个解找出对应的齐次线性微分方程的两个线性无关的解.事实上,利用线性微分方程解的性质知,y1一y3=e3x,y2一y3=ex是对应的齐次线性微分方程的两个线性无关的解.因而该齐次微分方程的通解为Y=c1e3x+c2ex.又y3*=一xe2x显然为该非齐次线性微分方程的特解,则由常系数微分方程解的结构知,所求的通解为y=Y+y*=c1e3x+c2ex-xe2x,其中c1,c2均为任意常数.知识模块:常微分方程11.[2002年] 微分方程yy’’+y’2=0满足初始条件y|x=0=1,y’|x=0=1/2的特解是______.正确答案:解析:将y’=p,代入原方程,得到.因而p=0(因不满足初始条件,舍去),.积分后得到,将初始条件代入得到C1=.再对即2ydy=dx积分,得到y2=x+C2,代入初始条件得C2=1,从而y2=x+1,再由y|x=0=1>0,得微分方程的特解. 知识模块:常微分方程12.[2007年] 二阶常系数非齐次线性微分方程y’’-4y’+3y=2e2x的通解为______.正确答案:y= C1ex+C2e2x-2e2x解析:其特征方程为λ2一4λ+3=0,其特征根为λ1=1,λ2=3.对应齐次微分方程y’’一4y’+3y=0的通解为y=C1e*+C2e3x.又设非齐次微分方程y’’-4y’+3y=2e2x的特解为y*=Ae2x,将其代入该非齐次方程得到A=一2,故所求通解为y=Y+y*=C1ex+C2e2x-2e2x.知识模块:常微分方程13.[2012年] 若函数f(x)满足方程f’’(x)+f’(x)-2f(x)=0及f’’(x)+f(x)=2ex,则f(x)=______.正确答案:f(x)=ex解析:方程f’’(x)+f’(x)一2f(x)=0的特征方程为r2+r=2一(r+2)(r一1)=0,其特征根为r1=一2,r2=1.于是齐次方程f’’(x)+f’(x)一2f(x)=0的通解为f(x)=C1ex+C2e-2x,则f’(x)=C1ex-2C2e-2x,f’’(x)=C1ex+4C2e-2x.代入非齐次方程f’’(x)+f(x)=2ex,得到C1ex+4C2e-2x+C1ex+C2e-2x=2C1ex+5C2e-2x=2ex,故C1=1,C2=0,于是所求f(x)=ex.知识模块:常微分方程14.[2017年] 微分方程y’’+2y’+3y=0的通解为y=______.正确答案:y=e-x解析:特征方程为r2+2r+3=0,特征值为λ1,2=,其通解为y=e-x 知识模块:常微分方程15.微分方程xy’’+3y’=0的通解为______.正确答案:y=C1+C2/x2解析:y=C1+C2/x2在所给方程两边乘以x得欧拉方程x2y’’+3xy’=0(a=1,b=3,c=0).可知,令x=et,可化为常系数线性微分方程,其特征方程为r2+2r=r(r+2)=0,其通解为y=C1e0t+C2e-2t=C1+C2e-2t=C1+C2/x2.知识模块:常微分方程16.[2004年] 欧拉方程(x>0)的通解是______.正确答案:y=C1/x+C2/x2,其中C1,C2为任意常数解析:作变量代换x=et,其中a=1,b=4,c=2,则此为二阶常系数的线性齐次微分方程.其特征方程为r2+3r+2=(r+2)(r+1)=0,其特征根为r1=一1,r2=一2,故其通解为y=C1e-t+C2e-2t.代入原变量x,得到原方程的通解为y=C1/x+C2/x2,其中C1,C2为任意常数.知识模块:常微分方程17.[2009年] 若二阶常系数线性齐次微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’+ay’+by=x满足条件y(0)=2,y’(0)=0的解为______.正确答案:y=一xex+x+2解析:由所给通解知,二阶常系数线性齐次微分方程y’’+ay’+by=0的特征根是r1=r2=1.因而特征方程为(r一1)2=r2一2r+1=0.故二阶常系数线性齐次微分方程为y’’一2y’+y=0,故a=一2,b=1.因而非齐次方程为y’’-2y’+y=x.下面求非齐次方程y’’-2y’+y=x ①的特解.由题设条件知,其特解形式为y*=Ax+ B.代入方程①,得到(y*)’’=0,(y*)’=A,于是有一2A+Ax+B=x,即(A 一1)x一2A+B=0,所以A一1=0,B一2A=0,从而A=1,B=2,故一特解为y*=x+2.非齐次方程的通解为y=(C1+C2x)ex+x+2.②将y(0)=2,y’(0)=2,代入方程②得C1=0,C2=一1,满足初始条件的解为y=一xex+x+2.知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
2011年考研数学一试卷真题及答案解析

2011年考研数一真题及答案解析一、选择题1、 曲线()()()()4324321----=x x x x y 的拐点是( )(A )(1,0) (B )(2,0) (C )(3,0) (D )(4,0)【答案】C 【考点分析】本题考查拐点的判断。
直接利用判断拐点的必要条件和第二充分条件即可。
【解析】由()()()()4324321----=x x x x y 可知1,2,3,4分别是()()()()23412340y x x x x =----=的一、二、三、四重根,故由导数与原函数之间的关系可知(1)0y '≠,(2)(3)(4)0y y y '''===(2)0y ''≠,(3)(4)0y y ''''==,(3)0,(4)0y y ''''''≠=,故(3,0)是一拐点。
2、 设数列{}n a 单调减少,0lim =∞→n n a ,()∑===n k k n n a S 12,1 无界,则幂级数()11nn n a x ∞=-∑的收敛域为( ) (A ) (-1,1] (B ) [-1,1) (C ) [0,2) (D )(0,2]【答案】C 【考点分析】本题考查幂级数的收敛域。
主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,综合性较强。
【解析】()∑===n k k n n a S 12,1 无界,说明幂级数()11nn n a x ∞=-∑的收敛半径1R ≤;{}n a 单调减少,0lim =∞→nn a ,说明级数()11nn n a ∞=-∑收敛,可知幂级数()11nn n a x ∞=-∑的收敛半径1R ≥。
因此,幂级数()11nn n a x ∞=-∑的收敛半径1R =,收敛区间为()0,2。
又由于0x =时幂级数收敛,2x =时幂级数发散。
考研数学一(一元函数积分学)历年真题试卷汇编5(题后含答案及解析)

考研数学一(一元函数积分学)历年真题试卷汇编5(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.[2010年]设m,n均是正整数,则反常积分的收敛性( ).A.仅与m的取值有关B.仅与n的取值有关C.与m,n的取值都有关D.与m,n的取值都无关正确答案:D解析:易看出所给的反常积分有两个瑕点x=0与x=1,因而先将该反常积分分解为两个单一型的反常积分之和,即记.下面讨论I1的敛散性.(1)设n>1,取,因知,I1收敛;(2)设n=1,m=1,2,则,此时I1已不是反常积分,当然收敛;(3)设n=1,m>2,取P=1—2/m,则0<p<1,且有可知I1也收敛.综上所述,无论m,n取何正整数,I1均收敛.下面讨论I2的敛散性.对任意0<p <1,知,对任意正整数n,m,有可得I2=∫1/21f(x)dx收敛.因此对任意正整数m,n,所给反常积分都收敛.仅D入选.知识模块:一元函数积分学2.[2016年]若反常积分收敛,则( ).A.a<1且b>1B.a>1且b>1C.a<1且a+b>1D.a>1且a+b>1正确答案:C解析:因收敛,故上述等式右端的两个反常积分收敛,当a<1时,收敛.当a+b>1时,收敛,因而仅C入选.知识模块:一元函数积分学3.[2017年] 甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,下图中,实线表示甲的速度曲线v=v1(t)(单位:m/s),虚线表示乙的速度曲线v=v2(t),三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为t0(单位:s),则( )A.t0=10B.15<t0<20C.t0=25D.t0>25正确答案:C解析:从0到t0时刻,甲、乙的位移分别为∫0t0v1(t)dt与∫0t2v2(t)dt,要使乙追上甲,则有[v2(t)-v1(t)]dt=10,由定积分的几何意义可知,∫025[v2(t)-v1(t)]dt=20—10=10 ,可知t0=25.仅C入选.知识模块:一元函数积分学填空题4.[2002年] =______.正确答案:1解析:故知识模块:一元函数积分学5.[2013年]=______.正确答案:ln2解析:知识模块:一元函数积分学6.[2011年] 曲线y=∫0xtantdt 的弧长s=______.正确答案:解析:因y’(x)=tanx,故知识模块:一元函数积分学解答题解答应写出文字说明、证明过程或演算步骤。
[考研类试卷]考研数学一(级数)历年真题试卷汇编1.doc
![[考研类试卷]考研数学一(级数)历年真题试卷汇编1.doc](https://img.taocdn.com/s3/m/088c75479ec3d5bbfc0a740e.png)
[考研类试卷]考研数学一(级数)历年真题试卷汇编1一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1 (2000年)设级数收敛,则必收敛的级数为( )2 (2002年)设u n≠0(n=1,2,…),且则级数为( )(A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定3 (2004年)设为正项级数,下列结论中正确的是( )4 (2006年)若级数收敛,则级数( )5 (2009年)设有两个数列{a n},{b n},若则( )6 (2011年)设数列{a n}单调减少,无界,则幂级数的收敛域为( )(A)(一1,1](B)[一1,1)(C)[0,2)(D)(0,2-]7 (2015年)若级数条件收敛,则与x=3依次为幂级数的( )(A)收敛点,收敛点(B)收敛点,发散点(C)发散点,收敛点(D)发散点,发散点8 (1999年)设一∞<x<+∞,其中,(n=0,1,2,…),则等于( )9二、填空题10 (2008年)已知幂级数在x=0处收敛,在x=一4处发散,则幂级数的收敛域为_________。
11 (2017年)幂级数在区间(一1,1)内的和函数s(x)=___________。
12 (2003年)设则a2=____________。
13 (2008年)f(x)=1一x2(0≤x≤π)展开成(以2π为周期的)余弦级数,并求级数的和。
三、解答题解答应写出文字说明、证明过程或演算步骤。
14 (1998年)设正项数列{a n}单调减少,且发散,试问级数是否收敛?并说明理由。
15 (1999年)设 (I)求的值; (Ⅱ)试证:对任意的常数λ>0,级数收敛。
16 (2004年)设有方程x n+nx一1=0,其中n为正整数,证明此方程存在唯一正实根x n,并证明当α>1时,级数收敛。
17 (2014年)设数列{a n},{b n}满足cosa n一a n=cosb n且级数收敛。
(I)证明 (Ⅱ)证明级数收敛。
历年考研数学一真题

历年考研数学一真题数学一是中国研究生入学考试的一门科目,属于理工科类别。
随着研究生教育的普及和竞争的加剧,考研数学一的难度逐年增加,对考生的综合能力要求也越来越高。
以下是历年考研数学一真题的一些例子,供考生们参考和复习。
注意,为了版面整洁,我将部分题目以图片形式呈现,但仍保持文字描述的准确性。
一、解析几何1.2009年考研数学一真题题目解析几何是数学一中的一个重要考点,涉及到直线、平面、曲线等几何图形的性质和变换。
下面是2009年考研数学一真题的一个题目示例:题目描述:已知平面上点A(-2, 2),B(-2, 0),C是直线2x+y-5=0上的一点,且BC的斜率等于AC的斜率的绝对值,求点C的坐标。
解答步骤:首先,我们需要计算AC的斜率。
直线AC的斜率为-2/1=-2。
然后,由于BC的斜率等于AC的斜率的绝对值,所以BC的斜率也为2。
根据直线BC的斜率为2,且过点B(-2, 0),可以列出方程为:y-0=2(x+2)。
将直线2x+y-5=0与直线y-0=2(x+2)联立求解,得到点C的坐标。
2.2014年考研数学一真题题目题目描述:已知椭圆x^2/9+y^2/4=1,点P为椭圆上一点,点A(-3, 0),直线PA和x轴交于点B,且AB为直线y=1的中垂线,求点B的坐标。
解答步骤:首先,我们需要求出点P的坐标。
将直线y=1代入椭圆方程,得到x^2/9+1/16=1,解方程后得到点P的坐标。
然后,根据点P和点A(-3, 0),我们可以求出直线PA的方程。
最后,根据直线PA和点P,通过x轴得到点B的坐标。
二、线性代数1.2011年考研数学一真题题目线性代数是数学一中的另一个重要考点,涉及到向量、矩阵、线性变换等概念和运算。
以下是2011年考研数学一真题的一个题目示例:题目描述:设A为3阶方阵,满足A^2-3A+I=0,其中I为3阶单位矩阵,若B=2A-3I,则det(B)的值为多少?解答步骤:首先,根据已知条件A^2-3A+I=0,可以得到A^2=3A-I。
2011年考研数学一真题及答案解析

y(2) 0 , y(3) y(4) 0 , y(3) 0, y(4) 0 ,故(3,0)是一拐点。
n
2、
设数列
an
单调减少,lim n
an
0 ,Sn
ak n
k 1
1,2
无界,则幂级数 an x 1n
n1
0
1
1
3
0
,所以 1 , 3
2011 年考研数一真题及答案解析
一、选择题
1、 曲线 y x 1x 22 x 33 x 44 的拐点是( )
(A)(1,0) (B)(2,0) (C)(3,0) (D)(4,0)
【答案】 C 【考点分析】本题考查拐点的判断。直接利用判断拐点的必要条件和第二充分条件即可。
散。可知收敛域为0, 2 。
3、 设 函数 f (x) 具有二阶连续导数,且 f (x) 0 , f (0) 0 ,则函数 z f (x)ln f ( y)
在点(0,0)处取得极小值的一个充分条件是( )
(A) f (0) 1,f (0) 0 (B) f (0) 1,f (0) 0
的收敛域为(
)
(A) (-1,1] (B) [-1,1) (C) [0,2) (D)(0,2]
【答案】 C 【考点分析】本题考查幂级数的收敛域。主要涉及到收敛半径的计算和常数项级数收敛性的一些结论,
综合性较强。
n
【解析】 Sn ak n 1,2 无界,说明幂级数 an x 1n 的收敛半径 R 1;
所以有 f (0) 1,f (0) 0
2002考研数一真题及答案解析

2002年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)⎰∞+exx dx 2ln =_____________.(2)已知2e 610y xy x ++-=,则(0)y ''=_____________.(3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________.(4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续,②),(y x f 在点),(00y x 处的一阶偏导数连续,③),(y x f 在点),(00y x 处可微,④),(y x f 在点),(00y x 处的一阶偏导数存在.则有:(A)②⇒③⇒①(B)③⇒②⇒①(C)③⇒④⇒①(D)③⇒①⇒④(2)设0≠n u ,且1lim =∞→n n u n ,则级数11()1(11+++-∑n n n u u 为(A)发散(B)绝对收敛(C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则(C)当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x (D)当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数(B))(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数(D))(x F X )(y F Y 必为某一随机变量的分布函数.三、(本题满分6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(本题满分7分)已知两曲线)(x f y =与2arctan 0e x t y dt-=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→.五、(本题满分7分)计算二重积分22m a x {,}e xy Dd x d y⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D.六、(本题满分8分)起点为(b a ,),终点为(d c ,).记dy xy f y yxdx xy f y y I]1)([)](1[1222-++=⎰,(1)证明曲线积分I 与路径L 无关.(2)当cdab=时,求I 的值.七、(本题满分7分)(1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e x y y y '''++=.(2)求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(本题满分7分)设有一小山,取它的底面所在的平面为xoy面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xyy x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(本题满分6分)已知四阶方阵1234(,,,)=A αααα,1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(本题满分8分)(1)若,A B相似,证明,A B的特征多项式相等.(2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当,A B为实对称矩阵时,证明(1)的逆命题成立.十一、(本题满分7分)设维随机变量X 的概率密度为()f x =1cos 0220 xx x ≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望.十二、(本题满分7分)设总体X 的概率分布为X 0123P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X的如下样本值3,1,3,0,3,1,2,3.求θ的矩估计和最大似然估计值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2002数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)⎰∞+exx dx2ln = _____________.(2)已知2e 610y xy x ++-=,则(0)y ''=_____________. (3)02='+''y y y 满足初始条件1(0)1,(0)2y y '==的特解是_____________. (4)已知实二次型323121232221321444)(),,(x x x x x x x x x a x x x f +++++=经正交变换可化为标准型216y f =,则a =_____________.(5)设随机变量),(~2σμN X ,且二次方程042=++X y y 无实根的概率为0.5,则μ=_____________. 二、选择题(每小题3分.)(1)考虑二元函数),(y x f 的四条性质:①),(y x f 在点),(00y x 处连续, ②),(y x f 在点),(00y x 处的一阶偏导数连续, ③),(y x f 在点),(00y x 处可微, ④),(y x f 在点),(00y x 处的一阶偏导数存在. 则有:(A)②⇒③⇒①(B)③⇒②⇒① (C)③⇒④⇒① (D)③⇒①⇒④(2)设0≠n u ,且1lim =∞→nn u n ,则级数)11()1(11+++-∑n n n u u 为 (A)发散(B)绝对收敛 (C)条件收敛(D)收敛性不能判定.(3)设函数)(x f 在+R 上有界且可导,则 (A)当0)(lim =+∞→x f x 时,必有0)(lim ='+∞→x f x(B)当)(lim x f x '+∞→存在时,必有0)(lim ='+∞→x f x(C) 当0)(lim 0=+→x f x 时,必有0)(lim 0='+→x f x(D) 当)(lim 0x f x '+→存在时,必有0)(lim 0='+→x f x .(4)设有三张不同平面,其方程为i i i i d z c y b x a =++(3,2,1=i )它们所组成的线性方程组的系数矩阵与增广矩阵的秩都为2,则这三张平面可能的位置关系为(5)设X 和Y 是相互独立的连续型随机变量,它们的密度函数分别为)(x f X 和)(y f Y ,分布函数分别为)(x F X 和)(y F Y ,则(A))(x f X +)(y f Y 必为密度函数 (B) )(x f X )(y f Y 必为密度函数(C))(x F X +)(y F Y 必为某一随机变量的分布函数 (D) )(x F X )(y F Y 必为某一随机变量的分布函数.三、(6分)设函数)(x f 在0x =的某邻域具有一阶连续导数,且0)0()0(≠'f f ,当0→h 时,若)()0()2()(h o f h bf h af =-+,试求b a ,的值.四、(7分)已知两曲线)(x f y =与2arctan 0ex t y dt-=⎰在点(0,0)处的切线相同.求此切线的方程,并求极限)2(lim nnf n ∞→. 五、(7分))计算二重积分22max{,}ex y Ddxdy ⎰⎰,其中}10,10|),{(≤≤≤≤=y x y x D .六、(8分)设函数)(x f 在R 上具有一阶连续导数,L 是上半平面(y >0)内的有向分段光滑曲线,起点为(b a ,),终点为(d c ,).记dy xy f y yx dx xy f y y I ]1)([)](1[1222-++=⎰, (1)证明曲线积分I 与路径L 无关.(2)当cd ab =时,求I 的值. 七、(7分)(1)验证函数∑∞==03)!3()(n nn x x y (+∞<<∞-x )满足微分方程e x y y y '''++=.(2) 求幂级数∑∞==03)!3()(n nn x x y 的和函数.八、(7分)设有一小山,取它的底面所在的平面为xoy 面,其底部所占的区域为}75|),{(22≤-+=xy y x y x D ,小山的高度函数为),(y x h xy y x +--=2275.(1)设),(00y x M 为区域D 上一点,问),(y x h 在该点沿平面上何方向的方向导数最大?若此方向的方向导数为),(00y x g ,写出),(00y x g 的表达式.(2)现欲利用此小山开展攀岩活动,为此需要在山脚下寻找一山坡最大的点作为攀登的起点.也就是说要在D 的边界线上找出使(1)中),(y x g 达到最大值的点.试确定攀登起点的位置.九、(6分)已知四阶方阵1234(,,,)=A αααα, 1234,,,αααα均为四维列向量,其中234,,ααα线性无关,1232=-ααα.若1234=+++βαααα,求线性方程组x =A β的通解.十、(8分)设,A B 为同阶方阵,(1)若,A B 相似,证明,A B 的特征多项式相等. (2)举一个二阶方阵的例子说明(1)的逆命题不成立.(3)当,A B 为实对称矩阵时,证明(1)的逆命题成立.十一、(7分)设维随机变量X 的概率密度为()f x =1cos 0220 xx x≤≤其它对X 独立地重复观察4次,用Y 表示观察值大于3π的次数,求2Y 的数学期望. 十二、(7分)设总体X 的概率分布为X 0123P2θ)1(2θθ-2θθ21-其中θ(102θ<<)是未知参数,利用总体X 的如下样本值:3,1,3,0,3,1,2,3. 求θ的矩估计和最大似然估计值.2003年全国硕士研究生入学统一考试一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1))1ln(12)(cos lim x x x +→ = .(2)曲面22y x z +=与平面042=-+z y x 平行的切平面的方程是 . (3)设)(cos 02ππ≤≤-=∑∞=x nx ax n n,则2a = .(4)从2R 的基1211,01⎛⎫⎛⎫== ⎪⎪-⎝⎭⎝⎭αα到基1211,12⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ββ的过渡矩阵为 . (5)设二维随机变量(,)X Y 的概率密度为(,)f x y = 60x 01x y ≤≤≤其它,则=≤+}1{Y X P .(6)已知一批零件的长度X (单位:cm)服从正态分布)1,(μN ,从中随机地抽取16个零件,得到长度的平均值为40 (cm),则μ的置信度为0.95的置信区间是 .(注:标准正态分布函数值.)95.0)645.1(,975.0)96.1(=Φ=Φ 二、选择题(每小题4分,)(1)设函数()f x 在),(+∞-∞内连续,其导函数的图形如图所示,则()f x 有(A)一个极小值点和两个极大值点(B)两个极小值点和一个极大值点 (C)两个极小值点和两个极大值点 (D)三个极小值点和一个极大值点(2)设}{},{},{n n n c b a 均为非负数列,且0lim =∞→n n a ,1lim =∞→n n b ,∞=∞→n n c lim ,则必有(A)n n b a <对任意n 成立 (B)n n c b <对任意n 成立 (C)极限n n n c a ∞→lim 不存在(D)极限n n n c b ∞→lim 不存在(3)已知函数(,)f x y 在点(0,0)的某个邻域内连续,且1)(),(lim2220,0=+-→→y x xyy x f y x ,则(A)点(0,0)不是(,)f x y 的极值点 (B)点(0,0)是(,)f x y 的极大值点 (C)点(0,0)是(,)f x y 的极小值点(D)根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点 (4)设向量组I:12,,,r ααα 可由向量组II:12,,,s βββ 线性表示,则 (A)当s r <时,向量组II 必线性相关 (B)当s r >时,向量组II 必线性相关 (C)当s r <时,向量组I 必线性相关(D)当s r >时,向量组I 必线性相关(5)设有齐次线性方程组0x =A 和0x =B ,其中,A B 均为n m ⨯矩阵,现有4个命题: ① 若0x =A 的解均是0x =B 的解,则秩()≥A 秩()B ② 若秩()≥A 秩()B ,则0x =A 的解均是0x =B 的解 ③ 若0x =A 与0x =B 同解,则秩()=A 秩()B ④ 若秩()=A 秩()B , 则0x =A 与0x =B 同解 以上命题中正确的是 (A)①② (B)①③(C)②④ (D)③④(6)设随机变量21),1)((~XY n n t X =>,则 (A)2~()Y n χ(B)2~(1)Y n χ-(C)~(,1)Y F n(D)~(1,)Y F n三、(10分)过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1)求D 的面积A .(2)求D 绕直线e x =旋转一周所得旋转体的体积V .四、(12分)将函数x xx f 2121arctan )(+-=展开成x 的幂级数,并求级数∑∞=+-012)1(n n n 的和.五 、(10分)已知平面区域}0,0),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界.试证: (1)sin sin sin sin e e e e y x y xLLx dy y dx x dy y dx ---=-⎰⎰. (2)sin sin 2ee 2.yx Lx dy y dx π--≥⎰六 、(10分)某建筑工程打地基时,需用汽锤将桩打进土层.汽锤每次击打,都将克服土层对桩的阻力而作功.设土层对桩的阻力的大小与桩被打进地下的深度成正比(比例系数为.0k k >).汽锤第一次击打将桩打进地下a m.根据设计方案,要求汽锤每次击打桩时所作的功与前一次击打时所作的功之比为常数(01)r r <<.问(1)汽锤击打桩3次后,可将桩打进地下多深?(2)若击打次数不限,汽锤至多能将桩打进地下多深? (注:m 表示长度单位米.)七 、(12分)设函数()y y x =在),(+∞-∞内具有二阶导数,且)(,0y x x y =≠'是()y y x =的反函数.(1)试将()x x y =所满足的微分方程0))(sin (322=++dy dx x y dy x d 变换为()y y x =满足的微分方程.(2)求变换后的微分方程满足初始条件23)0(,0)0(='=y y 的解. 八 、(12分)设函数()f x 连续且恒大于零,⎰⎰⎰⎰⎰+++=Ω)(22)(222)()()(t D t d y xf dvz y x f t F σ,⎰⎰⎰-+=tt D dxx f d y x f t G 12)(22)()()(σ,其中}),,{()(2222t z y x z y x t ≤++=Ω,}.),{()(222t y x y x t D ≤+=(1)讨论()F t 在区间),0(+∞内的单调性. (2)证明当0t >时,).(2)(t G t F π>九 、(10分)设矩阵322232223⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,010101001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦P ,1*-=B P A P ,求2+B E 的特征值与特征向量,其中*A 为A 的伴随矩阵,E 为3阶单位矩阵.十 、(8分)已知平面上三条不同直线的方程分别为:1l 032=++c by ax , :2l 032=++a cy bx , :3l 032=++b ay cx .试证这三条直线交于一点的充分必要条件为.0=++c b a十一 、(10分)已知甲、乙两箱中装有同种产品,其中甲箱中装有3件合格品和3件次品,乙箱中仅装有3件合格品. 从甲箱中任取3件产品放入乙箱后,求:(1)乙箱中次品件数的数学期望.(2)从乙箱中任取一件产品是次品的概率.十二 、(8分)设总体X 的概率密度为()f x = 2()2e 0x θ-- 0x x θ>≤其中0>θ是未知参数. 从总体X 中抽取简单随机样本n X X X ,,,21 ,记).,,,min(ˆ21nX X X =θ (1)求总体X 的分布函数()F x . (2)求统计量θˆ的分布函数)(ˆx F θ.(3)如果用θˆ作为θ的估计量,讨论它是否具有无偏性.2004数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上) (1)曲线ln y x =上与直线1=+y x 垂直的切线方程为__________ . (2)已知(e )e x x f x -'=,且(1)0f =,则()f x =__________ . (3)设L 为正向圆周222=+y x 在第一象限中的部分,则曲线积分⎰-Lydx xdy 2的值为__________.(4)欧拉方程)0(024222>=++x y dx dyx dxy d x 的通解为__________ . (5)设矩阵21012001⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,矩阵B 满足**2=+ABA BA E ,其中*A 为A 的伴随矩阵,E 是单位矩阵,则B =__________ .(6)设随机变量X 服从参数为λ的指数分布,则}{DX X P >= __________ .二、选择题(每小题4分) (7)把+→0x 时的无穷小量dt t dt t dt t xx x⎰⎰⎰===0302sin ,tan ,cos 2γβα,使排在后面的是前一个的高阶无穷小,则正确的排列次序是(A)γβα,,(B)βγα,, (C)γαβ,,(D)αγβ,,(8)设函数()f x 连续,且,0)0(>'f 则存在0>δ,使得 (A)()f x 在(0,)δ内单调增加(B)()f x 在)0,(δ-内单调减少(C)对任意的),0(δ∈x 有()(0)f x f >(D)对任意的)0,(δ-∈x 有()(0)f x f >(9)设∑∞=1n na为正项级数,下列结论中正确的是(A)若n n na ∞→lim =0,则级数∑∞=1n na收敛(B)若存在非零常数λ,使得λ=∞→n n na lim ,则级数∑∞=1n na发散(C)若级数∑∞=1n n a 收敛,则0lim 2=∞→n n a n (D)若级数∑∞=1n na发散, 则存在非零常数λ,使得λ=∞→n n na lim(10)设()f x 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则)2(F '等于(A)2(2)f(B)(2)f (C)(2)f - (D) 0(11)设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,则满足=AQ C 的可逆矩阵Q 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101001010 (B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100101010 (C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡110001010 (D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100001110(12)设,A B 为满足=AB O 的任意两个非零矩阵,则必有 (A)A 的列向量组线性相关,B 的行向量组线性相关 (B)A 的列向量组线性相关,B 的列向量组线性相关 (C)A 的行向量组线性相关,B 的行向量组线性相关 (D)A 的行向量组线性相关,B 的列向量组线性相关(13)设随机变量X 服从正态分布(0,1),N 对给定的)10(<<αα,数αu 满足αα=>}{u X P ,若α=<}{x X P ,则x 等于(A)2αu(B)21α-u(C)21α-u(D) α-1u(14)设随机变量)1(,,,21>n X X X n 独立同分布,且其方差为.02>σ 令∑==ni i X n Y 11,则(A)21Cov(,)X Y nσ=(B)21Cov(,)X Y σ= (C)212)(σn n Y X D +=+ (D)211)(σnn Y X D +=- 三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤)(15)(12分)设2e e a b <<<,证明2224ln ln ()eb a b a ->-. (16)(11分)某种飞机在机场降落时,为了减少滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下.现有一质量为9000kg 的飞机,着陆时的水平速度为700km/h 经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为).100.66⨯=k 问从着陆点算起,飞机滑行的最长距离是多少?(注:kg 表示千克,km/h 表示千米/小时) (17)(12分)计算曲面积分,)1(322233dxdy z dzdx y dydz x I ⎰⎰∑-++=其中∑是曲面)0(122≥--=z y x z 的上侧. (18)(11分)设有方程10nx nx +-=,其中n 为正整数.证明此方程存在惟一正实根n x ,并证明当1α>时,级数1n n x α∞=∑收敛.(19)(12分)设(,)z z x y =是由2226102180x xy y yz z -+--+=确定的函数,求(,)z z x y =的极值点和极值.(20)(9分)设有齐次线性方程组 121212(1)0,2(2)20,(2),()0,n nn a x x x x a x x n nx nx n a x ++++=⎧⎪++++=⎪≥⎨⎪⎪++++=⎩试问a 取何值时,该方程组有非零解,并求出其通解.(21)(9分)设矩阵12314315a -⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦A 的特征方程有一个二重根,求a 的值,并讨论A 是否可相似对角化.(22)(9分)设,A B 为随机事件,且111(),(|),(|)432P A P B A P A B ===, 令;,,0,1不发生发生A A X ⎩⎨⎧= .,,0,1不发生发生B B Y ⎩⎨⎧=求:(1)二维随机变量(,)X Y 的概率分布. (2)X 和Y 的相关系数.XY ρ(23)(9分)设总体X 的分布函数为,1,1,0,11),(≤>⎪⎩⎪⎨⎧-=x x xx F ββ其中未知参数n X X X ,,,,121 >β为来自总体X 的简单随机样本,求:(1)β的矩估计量. (2)β的最大似然估计量.2005数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________. (3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(n u∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα, 如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________. 二、选择题(每小题4分) (7)设函数n nn xx f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点 (C)恰有两个不可导点 (D)至少有三个不可导点 (8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有 (A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数 (C)()F x 是周期函数()f x ⇔是周期函数(D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222y ux u ∂∂=∂∂ (C)222yuy x u ∂∂=∂∂∂(D)222xu y x u ∂∂=∂∂∂(10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程 (A)只能确定一个具有连续偏导数的隐函数(,)z z x y =(B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ(B)02≠λ(C)01=λ)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则 (A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B (C)交换*A 的第1列与第2列得*-B(D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为X Y0 1 0 0.4a 1b0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b ==D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ (C))1(~)1(--n t SX n (D)2122(1)~(1,1)n i i n X F n X =--∑ 三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 (16)(12分)求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(1)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(1)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(1)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =10 01,02x y x<<<<其它求:(1)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(1)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2006数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)0ln(1)lim1cos x x x x→+=-.(2)微分方程(1)y x y x-'=的通解是 .(3)设∑是锥面22z x y =+(01z ≤≤)的下侧,则23(1)xdydz ydzdx z dxdy ∑++-=⎰⎰ .(4)点(2,1,0)到平面3450x y z ++=的距离z = . (5)设矩阵2112⎛⎫=⎪-⎝⎭A ,E 为2阶单位矩阵,矩阵B 满足2=+BA B E ,则B = . (6)设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,则{}max{,}1P X Y ≤= . 二、选择题(本题共8小题,每小题4分)(7)设函数()y f x =具有二阶导数,且()0,()0f x f x '''>>,x ∆为自变量x 在0x 处的增量,y ∆与dy 分别为()f x 在点0x 处对应的增量与微分,若0x ∆>,则(A)0dx y <<∆(B)0y dy <∆< (C)0y dy ∆<<(D)0dy y <∆<(8)设(,)f x y 为连续函数,则14(cos ,sin )d f r r rdr πθθθ⎰⎰等于(A)22120(,)x xdx f x y dy -⎰⎰ (B)22120(,)x dx f x y dy -⎰⎰(C)22120(,)y ydy f x y dx -⎰⎰(C)22120(,)y dy f x y dx -⎰⎰(9)若级数1nn a∞=∑收敛,则级数(A)1n n a ∞=∑收敛(B)1(1)nn n a ∞=-∑收敛(C)11n n n a a ∞+=∑收敛(D)112n n n a a ∞+=+∑收敛 (10)设(,)f x y 与(,)x y ϕ均为可微函数,且1(,)0y x y ϕ≠.已知00(,)x y 是(,)f x y 在约束条件(,)0x y ϕ=下的一个极值点,下列选项正确的是(A)若00(,)0x f x y '=,则00(,)0y f x y '= (B)若00(,)0x f x y '=,则00(,)0y f x y '≠ (C)若00(,)0x f x y '≠,则00(,)0y f x y '=(D)若00(,)0x f x y '≠,则00(,)0y f x y '≠(11)设12,,,,s ααα 均为n 维列向量,A 是m n ⨯矩阵,下列选项正确的是 (A)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性相关 (B)若12,,,,s ααα 线性相关,则12,,,,s A αA αA α 线性无关(C)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性相关 (D)若12,,,,s ααα 线性无关,则12,,,,s A αA αA α 线性无关.(12)设A 为3阶矩阵,将A 的第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得C ,记110010001⎛⎫ ⎪= ⎪ ⎪⎝⎭P ,则(A)1-=C P AP(B)1-=C PAP(C)T=C P AP(D)T=C PAP(13)设,A B 为随机事件,且()0,(|)1P B P A B >=,则必有(A)()()P A B P A >(B)()()P A B P B >(C)()()P A B P A =(D)()()P A B P B =(14)设随机变量X 服从正态分布211(,)N μσ,Y 服从正态分布222(,)N μσ,且12{||1}{||1},P X P Y μμ-<>-<则(A)12σσ<(B)12σσ>(C)12μμ<(D)12μμ>三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(10分)设区域D=(){}22,1,0x y xy x +≤≥,计算二重积分2211DxyI dxdy x y +=++⎰⎰.(16)(12分)设数列{}n x 满足()110,sin 1,2,...n x x x n ππ+<<==. 求:(1)证明lim n x x →∞存在,并求之.(2)计算211lim n x n x n x x +→∞⎛⎫ ⎪⎝⎭.(17)(12分)将函数()22xf x x x =+-展开成x 的幂级数.(18)(12分)设函数()()0,,f u +∞在内具有二阶导数且()22z fx y=+满足等式22220z zx y∂∂+=∂∂.(1)验证()()0f u f u u'''+=. (2)若()()10,11,f f '==求函数()f u 的表达式. (19)(12分)设在上半平面(){},0D x y y =>内,数(),f x y 是有连续偏导数,且对任意的0t >都有()()2,,f tx ty t f x y =.证明: 对L 内的任意分段光滑的有向简单闭曲线L ,都有(,)(,)0Lyf x y dx xf x y dy -=⎰ .(20)(9分)已知非齐次线性方程组1234123412341435131x x x x x x x x ax x x bx +++=-⎧⎪++-=-⎨⎪++-=⎩有3个线性无关的解,(1)证明方程组系数矩阵A 的秩()2r =A . (2)求,a b 的值及方程组的通解.(21)(9分)设3阶实对称矩阵A 的各行元素之和均为3,向量()()121,2,1,0,1,1TT=--=-αα是线性方程组0x =A 的两个解.(1)求A 的特征值与特征向量.(2)求正交矩阵Q 和对角矩阵A ,使得T=Q AQ A .(22)(9分)随机变量x 的概率密度为()()21,1021,02,,40,令其它x x f x x y x F x y ⎧-<<⎪⎪⎪=≤<=⎨⎪⎪⎪⎩为二维随机变量(,)X Y 的分布函数.(1)求Y 的概率密度()Y f y . (2)1,42F ⎛⎫-⎪⎝⎭. (23)(9分) 设总体X 的概率密度为(,0)F X =10θθ- 0112x x <<≤<其它,其中θ是未知参数(01)θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数,求θ的最大似然估计.2007数学(一)试卷一、选择题(本题共10小题,每小题4分) (1)当0x +→时,与x 等价的无穷小量是 (A)1ex-(B)1ln1xx+- (C)11x +-D)1cos x -(2)曲线1ln(1e )x y x=++,渐近线的条数为 (A)0(B)1 (C)2 (D)3(3)如图,连续函数()y f x =在区间[3,2],[2,3]--上的图形分别是直径为1的上、下半圆周,在区间[2,0],[0,2]-的图形分别是直径为2的上、下半圆周,设0()()xF x f t dt =⎰.则下列结论正确的是(A)3(3)(2)4F F =-- (B)5(3)(2)4F F =(C)3(3)(2)4F F = (D)5(3)(2)4F F =-- (4)设函数()f x 在0x =处连续,下列命题错误的是(A)若0()limx f x x→存在,则(0)0f =(B)若0()()limx f x f x x→+- 存在,则(0)0f =(C)若0()lim x f x x→ 存在,则(0)0f '=(D)若0()()lim x f x f x x→-- 存在,则(0)0f '=(5)设函数()f x 在(0, +∞)上具有二阶导数,且"()0f x >, 令()1,2,,,n u f n n == 则下列结论正确的是 (A)若12u u >,则{n u }必收敛(B)若12u u >,则{n u }必发散(C)若12u u <,则{n u }必收敛(D)若12u u <,则{n u }必发散(6)设曲线:(,)1L f x y =((,)f x y 具有一阶连续偏导数),过第2象限内的点M 和第Ⅳ象限内的点,N Γ为L 上从点M 到N 的一段弧,则下列小于零的是(A)(,)x y dx Γ⎰(B)(,)f x y dy Γ⎰(C)(,)f x y ds Γ⎰(D)'(,)'(,)x y f x y dx f x y dy Γ+⎰(7)设向量组123,,ααα线性无关,则下列向量组线形相关的是(A),,122331---αααααα (B),,122331+++αααααα (C)1223312,2,2---αααααα(D)1223312,2,2+++αααααα(8)设矩阵211121112--⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭A ,100010000⎛⎫ ⎪= ⎪ ⎪⎝⎭B ,则A 与B(A)合同,且相似(B)合同,但不相似(C)不合同,但相似(D)既不合同,也不相似(9)某人向同一目标独立重复射击,每次射击命中目标的概率为()01p p <<,则此人第4次射击恰好第2次命中目标的概率为(A)23(1)p p -(B)26(1)p p -(C)223(1)p p -(D)226(1)p p -(10)设随即变量(,)X Y 服从二维正态分布,且X 与Y 不相关,()X f x ,()Y f y 分别表示,X Y 的概率密度,则在Y y =的条件下,X 的条件概率密度|(|)XYf x y 为(A)()X f x(B)()Y f y(C)()X f x ()Y f y(D)()()X Y f x f y 二、填空题(11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上) (11)31211e x dx x⎰=_______. (12)设(,)f u v 为二元可微函数,(,)y x z f x y =,则zx∂∂=______. (13)二阶常系数非齐次线性方程2''4'32e x y y y -+=的通解为y =____________. (14)设曲面:||||||1x y z ++=∑,则(||)x y ds ∑+⎰⎰=_____________.(15)设矩阵0100001000010000⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭A ,则3A 的秩为________. (16)在区间(0,1)中随机地取两个数,则这两个数之差的绝对值小于12的概率为________. 三、解答题(17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤) (17)(11分)求函数 2222(,)2f x y x y x y =+-在区域22{(,)|4,0}D x y x y y =+≤≥上的最大值和最小值.(18)(10分)计算曲面积分23,I xzdydz zydzdx xydxdy ∑=++⎰⎰其中 ∑为曲面221(01)4y z x z =--≤≤的上侧. (19)(11分)设函数(),()f x g x 在[,]a b 上连续,在(,)a b 内具有二阶导数且存在相等的最大值,()(),()()f a g a f b g b ==,证明:存在(,)a b ξ∈,使得 ()()f g ξξ''''=.(20)(10分)设幂级数nn n a x∞=∑ 在(,)-∞+∞内收敛,其和函数()y x 满足240,(0)0,(0) 1.y xy y y y ''''--===(1)证明:22,1,2,.1n n a a n n +==+ (2)求()y x 的表达式.(21)(11分) 设线性方程组1231232123020,40x x x x x ax x x a x ++=⎧⎪++=⎨⎪++=⎩与方程12321,x x x a ++=-有公共解,求a 的值及所有公共解.(22)(11分)设3阶实对称矩阵A 的特征向量值12311,2, 2.(1,1,1)T λλλ===-=-α是A 的属于特征值1λ的一个特征向量,记534,=-+B A A E 其中E 为3阶单位矩阵.(1)验证1α是矩阵B 的特征向量,并求B 的全部特征值与特征向量. (2)求矩阵B .(23)(11分)设二维随机变量(,)X Y 的概率密度为 2,01,01(,)0,x y x y f x y --<<<<⎧=⎨⎩其他 (1)求{2}.P X Y >(2)求Z X Y =+的概率密度.(24)(11分)设总体X 的概率密度为12,,n X X X 是来自总体x 的简单随机样本,X 是样本均值(1)求参数θ的矩估计量ˆθ.(2)判断24X 是否为2θ的无偏估计量,并说明理由.1,021(;),12(1)0,x f x x θθθθθ⎧<<⎪⎪⎪=≤<⎨-⎪⎪⎪⎩其他2008数学(一)试卷一、选择题(1-8小题,每小题4分,.)(1)设函数2()ln(2)x f x t dt =+⎰则()f x '的零点个数(A)0(B)1 (C)2 (D)3(2)函数(,)arctanxf x y y=在点(0,1)处的梯度等于 (A)i(B)-i(C)j(D)-j(3)在下列微分方程中,以123cos2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是 (A)440y y y y ''''''+--= (B)440y y y y ''''''+++= (C)440y y y y ''''''--+=(D)440y y y y ''''''-+-=(4)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是 (A)若{}n x 收敛,则{}()n f x 收敛 (B)若{}n x 单调,则{}()n f x 收敛 (C)若{}()n f x 收敛,则{}n x 收敛(D)若{}()n f x 单调,则{}n x 收敛(5)设A 为n 阶非零矩阵,E 为n 阶单位矩阵. 若30=A ,则 (A)-E A 不可逆,+E A 不可逆(B)-E A 不可逆,+E A 可逆(C)-E A 可逆,+E A 可逆(D)-E A 可逆,+E A 不可逆(6)设A 为3阶实对称矩阵,如果二次曲面方程(,,)1x x y z y z ⎛⎫ ⎪= ⎪ ⎪⎝⎭A 在正交变换下的标准方程的图形如图,则A 的正特征值个数为(A)0 (B)1 (C)2(D)3(7)设随机变量,X Y 独立同分布且X 分布函数为()F x ,则{}max ,Z X Y =分布函数为 (A)()2Fx(B) ()()F x F y(C) ()211F x --⎡⎤⎣⎦(D) ()()11F x F y --⎡⎤⎡⎤⎣⎦⎣⎦(8)设随机变量()~0,1X N ,()~1,4Y N 且相关系数1XY ρ=,则 (A){}211P Y X =--=(B){}211P Y X =-= (C){}211P Y X =-+=(D){}211P Y X =+=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.) (9)微分方程0xy y '+=满足条件()11y =的解是y = .(10)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (11)已知幂级数()02nn n a x ∞=+∑在0x =处收敛,在4x =-处发散,则幂级数()03nn n a x ∞=-∑的收敛域为.(12)设曲面∑是224z x y =--的上侧,则2xydydz xdzdx x dxdy ∑++=⎰⎰ .(13)设A 为2阶矩阵,12,αα为线性无关的2维列向量,12120,2==+A αA ααα,则A 的非零特征值为 .(14)设随机变量X 服从参数为1的泊松分布,则{}2P X EX == .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(10分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(10分) 计算曲线积分()2sin 221Lxdx x ydy +-⎰,其中L 是曲线sin y x =上从点()0,0到点(),0π的一段.(17)(10分)已知曲线22220:35x y z C x y z ⎧+-=⎨++=⎩,求曲线C 距离XOY 面最远的点和最近的点.(18)(10分)设()f x 是连续函数, (1)利用定义证明函数()()0xF x f t dt =⎰可导,且()()F x f x '=.(2)当()f x 是以2为周期的周期函数时,证明函数()22()()xG x f t dt x f t dt =-⎰⎰也是以2为周期的周期函数.(19)(10分)()21(0)f x x x π=-≤≤,用余弦级数展开,并求()1211n n n-∞=-∑的和.(20)(11分)T T =+A ααββ,Tα为α的转置,Tβ为β的转置.证明: (1)()2r ≤A .(2)若,αβ线性相关,则()2r <A .(21)(11分)设矩阵2221212n na a a a a ⨯⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭A ,现矩阵A 满足方程=AX B , 其中()1,,Tn x x =X ,()1,0,,0=B , (1)求证()1nn a =+A .(2)a 为何值,方程组有唯一解,求1x . (3)a 为何值,方程组有无穷多解,求通解.(22)(11分)设随机变量X 与Y 相互独立,X 的概率分布为{}()11,0,13P X i i ===-,Y 的概率密度为()1010Y y f y ≤≤⎧=⎨⎩其它,记Z X Y =+, (1)求102P Z X ⎧⎫≤=⎨⎬⎩⎭. (2)求Z 的概率密度.(23)(11分) 设12,,,n X X X 是总体为2(,)N μσ的简单随机样本.记11n i i X X n ==∑,2211()1n ii S X X n ==--∑,221T X S n =- (1)证明T 是2μ的无偏估计量.(2)当0,1μσ==时 ,求DT .2009数学(一)试卷一、选择题(1-8小题,每小题4分.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==-(B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I (B)2I (C)3I(D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为1 ()f x-20 2 3x-1O(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 (A)当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B)当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为 (A)101220033⎛⎫⎪ ⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O ⎛⎫⎪⎝⎭的伴随矩阵为(A)**32O B A O ⎛⎫⎪⎝⎭(B)**23OB A O ⎛⎫⎪⎝⎭ (C)**32O A B O ⎛⎫ ⎪⎝⎭(D)**23OA B O ⎛⎫⎪⎝⎭()f x2 3x1 -2-11()f x2 3x1 -1 1 ()f x2 3x1 -2-11()f x0 2 3x1 -2 -11(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX = (A)0(B)0.3(C)0.7(D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3 二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ .(10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e xy C C x =+,则非齐次方程y ay by x'''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线()2:02L y x x =≤≤,则Lxds =⎰ .(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T =αβ,其中Tα为α的转置,则矩阵T βα的非零特征值为 .(14)设12,,,m X X X 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(9分)求二元函数()22(,)2ln f x y x y y y =++的极值.(16)(9分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成.(1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积.(18)(11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-. (2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(10分)计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰,其中∑是曲面222224x y z ++=的外侧.(20)(11分)设111111042--⎛⎫⎪=- ⎪ ⎪--⎝⎭A ,1112-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关.(21)(11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值. (22)(11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布.(23)(11 分)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X的简单随机样本.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.2010数学(一)试卷一、选择题(1-8小题,每小题4分,共32分.)(1)极限2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦=(A)1(B)e(C)ea b-(D)eb a-(2)设函数(,)z z x y =由方程(,)0y zF x x =确定,其中F 为可微函数,且20,F '≠则z z x y x y∂∂+∂∂= (A)x(B)z(C)x -(D)z -(3)设,m n 为正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性(A)仅与m 取值有关(B)仅与n 取值有关 (C)与,m n 取值都有关(D)与,m n 取值都无关(4)2211lim()()nnx i j nn i n j →∞==++∑∑= (A)121(1)(1)xdx dy x y ++⎰⎰ (B)11(1)(1)xdx dy x y ++⎰⎰(C)1101(1)(1)dx dy x y ++⎰⎰(D)112001(1)(1)dx dy x y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则 (A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B(D)秩(),n =A 秩()n =B(6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(7)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf x00x x ≤>(0,0)a b >>为概率密度,则,a b 应满足(A)234a b += (B)324a b += (C)1a b += (D)2a b += 二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2cos x xdy π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0), 则曲线积分2Lxydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = .(13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T T α=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k === 则2EX = . 三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.) (15)(10分)求微分方程322e x y y y x '''-+=的通解. (16)(10分)求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(10分)(1)比较1ln [ln(1)]n t t dt +⎰与1ln (1,2,)n t t dt n =⎰ 的大小,说明理由.(2)记10ln [ln(1)](1,2,),n nu t t dt n =+=⎰ 求极限lim .n x u →∞(18)(10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数. (19)(10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P 点的轨迹,C 并计算曲面积分22(3)2,44x y z IdS y z yz∑+-=++-⎰⎰其中∑是椭球面S 位于曲线C 上方的部分.(20)(11分)设11010,1,111a λλλ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b 已知线性方程组=A x b 存在两个不同的解.(1)求,.a λ(2)求方程组=A x b 的通解.(21)(11分)设二次型123(,,)T f x x x =A x x 在正交变换x y =Q 下的标准形为2212,y y +且Q 的第三列为22(,0,).22T(1)求.A(2)证明+A E 为正定矩阵,其中E 为3阶单位矩阵. (22)(11分)设二维随机变量()X Y +的概率密度为2222(,)e,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x。