实验 膨胀计法测定聚合物玻璃化温度
高分子物理实验

南昌大学实验报告实验项目名称:_______膨胀计法测定聚合物的玻璃化转变温度______________ 学生姓名:____________ 学号:___________ 专业班级:______________ 实验类别: 基础√专业实验类型:√验证 综合 设计 创新实验要求:√必修 选修实验日期:___________ 实验成绩:________一、实验目的1. 了解膨胀计测量聚合物玻璃化温度的方法。
2. 深入理解自由体积概念在高分子学科中的重要性。
二、实验基本原理在玻璃态下,由于链段运动被冻结,自由体积也被冻结,聚合物随温度升高而发T以上,除了正常的分子生的膨胀只是由于正常的分子膨胀过程造成的,而在g膨胀过程外,还有自由体积的膨胀,因此高弹态的膨胀系数比玻璃态的膨胀系数T就要发生斜率的变化。
来得大。
若以比容对温度作图,在g三、主要仪器设备及耗材膨胀计、水浴及加热器、颗粒状尼龙6、丙三醇。
四、实验步骤1. 洗净膨胀计,烘干。
装入尼龙6颗粒至比重瓶的4/5体积。
2. 在膨胀管内加入丙三醇作为介质,用玻璃棒搅动(或抽气)使膨胀管内没有气泡。
3. 再加入丙三醇至比重瓶口,插入毛细管,使丙三醇的液面在毛细管下部,磨口接头用弹簧固定,如果管内发现有气泡要重装。
4. 将装好的膨胀计浸入水浴中,于30︒C恒定20min后,设置最高温度为60︒C,控制水浴升温速率约为1.25︒C/min。
5. 读取水浴温度和毛细管内丙三醇液面的高度,从30~55︒C每升高1︒C读数一次(升温速率控制为0.5︒C/min ),到55︒C 为止。
6. 毛细管内液面高度对温度作图。
从直线外延点求得升温速度1.25︒C/min 下尼龙6的g T 。
五、实验数据及处理结果3.33.43.53.63.73.83.94.0h /m m Tamperature /o C升温速度1.25︒C/min 下尼龙6的g T 为44︒C 。
六、思考讨论题或体会或对改进实验的建议略七、参考资料1.何平笙,杨海洋,朱平平,瞿保均. 高分子物理实验. 合肥:中国科学技术大学出版社,20022.陈义旺. 高分子物理实验补充讲义. 南昌大学,2006南昌大学实验报告实验项目名称:______________聚合物的温度-形变曲线__________________ 学生姓名:____________ 学号:___________ 专业班级:______________ 实验类别: 基础√专业实验类型:√验证 综合 设计 创新实验要求:√必修 选修实验日期:___________ 实验成绩:________一、实验目的1. 正确理解聚合物的三个力学状态和二个转变。
高分子物理实验指导书详解

高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。
二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。
聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。
球晶可以长得比较大,直径甚至可以达到厘米数量级。
球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。
因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。
偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。
球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。
光是电磁波,也就是横波,它的传播方向与振动方向垂直。
但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。
但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。
a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。
玻璃化温度测量方法

1,体积的变化用膨胀计测定玻璃化温度是最常用的方法。
一般是测定高聚物的比体积对温度的关系.把曲线两端的直线部分外推至交点作为T g(如图1)从图可以看出,玻璃化转变同冷却速率有关:冷却的快。
得出的T g高;冷却的慢,T g就较低。
同样,加热速率或快或慢,T g也或高或低。
产生这种现象的原因是体系没有达到平衡。
但要达到平衡,需要很长的时间(无限长),这在实验上做不到。
通常采用的标准是每分钟3℃。
测量时.常把试样在封闭体系中加热或冷却,体积的变化通过填充液体的液面升降而读出、这种液体不能和高聚物发生反应或溶解、溶胀,最常用的是水银、也有人用空气作测量的流体,达时可测定压力的变化。
其它与体积有关的性质也可用于测定,加试样的折射系数、X射线的吸收等。
2,热力学方法量热方法也是测定玻璃化温度的常用方法。
在T g时,热焓有明显变化,热容有—个突变。
自从有了差热分析(DTA)和差示扫描量热计后,量热方法变得更为重要。
象体积变化一样,热焓和热容的变化也和速率有关:图2表示比体积(V)和焓(H)对温度的关系,图3表示体膨胀系数和热容对温度的关系,都出现行“滞后”现象。
图中曲线1是缓慢冷却,曲线2是正常冷却和升温,曲线3是快速冷却;曲线1、3是正常升温。
3,核磁共振法(NMR)利用电磁性质的变化研究高聚物玻璃化转变的方法是核磁共振法(NMR)。
在分子运动开始前,分子中的质子处于各种不同的状态,因而反映质子状态的NMR谱线很宽。
当湿度升高,分子运动加速后,质子的环境被平均化,共振谱线变窄,到了T g时谱线的宽度有了很大改变。
图5给出了聚氯乙烯的NNR线宽(ΔH)的变化。
由图5可得Tg 为82℃。
图2 非晶高聚物焓和温度的关系图3 非晶高聚物热容和温度的关系4、利用力学性质变化的方法玻璃化温度和脆性温度是聚合物(包括橡胶)在低温下,力学性能发生形态突变时的对应的温度。
这种力学行为可用外力作用下的形变来表征。
假定以固定负荷来测定其温度突变时橡胶的形变量,则随着温度由低到高,可分成A、B、C、D、E五个区,如图1所示。
玻璃化温度测量方法

1,体积的变化用膨胀计测定玻璃化温度是最常用的方法。
一般是测定高聚物的比体积对温度的关系.把曲线两端的直线部分外推至交点作为T g(如图1)从图可以看出,玻璃化转变同冷却速率有关:冷却的快。
得出的T g高;冷却的慢,T g就较低。
同样,加热速率或快或慢,T g也或高或低。
产生这种现象的原因是体系没有达到平衡。
但要达到平衡,需要很长的时间(无限长),这在实验上做不到。
通常采用的标准是每分钟3℃。
测量时.常把试样在封闭体系中加热或冷却,体积的变化通过填充液体的液面升降而读出、这种液体不能和高聚物发生反应或溶解、溶胀,最常用的是水银、也有人用空气作测量的流体,达时可测定压力的变化。
其它与体积有关的性质也可用于测定,加试样的折射系数、X射线的吸收等。
2,热力学方法量热方法也是测定玻璃化温度的常用方法。
在T g时,热焓有明显变化,热容有—个突变。
自从有了差热分析(DTA)和差示扫描量热计后,量热方法变得更为重要。
象体积变化一样,热焓和热容的变化也和速率有关:图2表示比体积(V)和焓(H)对温度的关系,图3表示体膨胀系数和热容对温度的关系,都出现行“滞后”现象。
图中曲线1是缓慢冷却,曲线2是正常冷却和升温,曲线3是快速冷却;曲线1、3是正常升温。
3,核磁共振法(NMR)利用电磁性质的变化研究高聚物玻璃化转变的方法是核磁共振法(NMR)。
在分子运动开始前,分子中的质子处于各种不同的状态,因而反映质子状态的NMR谱线很宽。
当湿度升高,分子运动加速后,质子的环境被平均化,共振谱线变窄,到了T g时谱线的宽度有了很大改变。
图5给出了聚氯乙烯的NNR线宽(ΔH)的变化。
由图5可得Tg 为82℃。
图2 非晶高聚物焓和温度的关系图3 非晶高聚物热容和温度的关系4、利用力学性质变化的方法玻璃化温度和脆性温度是聚合物(包括橡胶)在低温下,力学性能发生形态突变时的对应的温度。
这种力学行为可用外力作用下的形变来表征。
假定以固定负荷来测定其温度突变时橡胶的形变量,则随着温度由低到高,可分成A、B、C、D、E五个区,如图1所示。
《高分子物理实验》讲解

实验1 平衡溶胀法测定交联聚合物的溶度参数与交联度溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子间作用力的物理量。
在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。
例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等,都有一定的参考价值。
对于交联聚合物,与交联度直接相关的有效链平均分子量 C M 是一个重要的结构参数,C M 的大小对交联聚合物的物理机械性能具有很大的影响。
因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接测定交联聚合物的溶度参数与有效链平均分子量 C M 的一种简单易行的方法。
另外还可间接测得高分子-溶剂的相互作用参数1x 。
一、实验目的:(1)了解溶胀法测聚合物溶度参数及 C M 的基本原理。
(2)掌握重量法测交联聚合物溶胀度的实验技术。
(3)粗略地测出交联聚合物的溶度参数、C M 及1x 。
二、实验原理:聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。
交联结构的聚合物不能为溶剂所溶解,但能吸收大量的溶剂而溶胀。
溶胀过程中,溶剂分子渗入聚合物内使体积膨胀,以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。
当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被排出的速度相等,就达到了溶胀平衡态。
溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。
根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能m F <0 ,而m m m S T H F ∆-∆=∆ (1)式中m H ∆和 m S ∆分别为混合过程中焓和熵的变化,T 为体系的温度。
因混合过程的m S ∆为正值,故T m S ∆必为正值。
聚合物的玻璃化转变温度

聚合物的玻璃化转变温度姓名:罗新杰学号:20101648 班级:高分子材料与工程一班摘要:在高分子科学中,聚合物的玻璃化转变是一个非常重要的现象,玻璃化转变是非晶态高分子材料固有的性质,是高分子运动形式转变的宏观体现,它直接影响到材料的使用性能和工艺性能,因此长期以来它都是高分子物理研究的主要内容。
本文主要简单地介绍玻璃化转变温度的相关知识和理论。
前言:玻璃化转变温度(Tg)是非晶态聚合物的一个重要的物理性质,也是凝聚态物理基础理论中的一个重要问题和难题,是涉及动力学和热力学的众多前沿问题。
玻璃转变的理论一直在不断的发展和更新。
从20世纪50年代出现的自由体积理论到现在还在不断完善的模态祸合理论及其他众多理论,都只能解决玻璃转变中的某些问题。
一个完整的玻璃转变理论仍需要人们作艰苦的努力。
对于非晶聚物,对它施加恒定的力,观察它发生的形变与温度的关系,通常特称为温度-形变曲线或热机械曲线。
非晶聚物有四种力学状态,它们是玻璃态、粘弹态、高弹态和粘流态。
在温度较低时,材料为刚性固体状,与玻璃相似,在外力作用下只会发生非常小的形变,此状态即为玻璃态,当温度继续升高到一定范围后,材料的形变明显地增加,并在随后的一定温度区间形变相对稳定,此状态即为高弹态,温度继续升高形变量又逐渐增大,材料逐渐变成粘性的流体,此时形变不可能恢复,此状态即为粘流态。
我们通常把玻璃态与高弹态之间的转变,称为玻璃化转变,它所对应的转变温度即是玻璃化转变温度,或是玻璃化温度。
高分子材料玻璃化转变的表征可提供丰富的信息,例如固化程度、热历史、材料的最高服役温度,共聚、共混物组分的相容性和相分离,组分的定性和定量等等,因此长期以来它都是高分子物理研究的主要内容。
所以我们得研究和掌握不同高分子玻璃化转变温度的测试方法,并比较不同测试方法的优缺点。
通过对玻璃化转变温度的不断研究,人们逐渐了解了影响玻璃化转变温度的不同因素,从而能更加灵活的处理和运用聚合物的玻璃化转变温度。
膨胀计法测玻璃化转变温度思考题

膨胀计法测玻璃化转变温度思考题一、引言在材料科学领域,膨胀计法是一种常用的测试方法,用于测定材料的玻璃化转变温度。
玻璃化转变温度是材料由固态转变为液态的临界温度,也是材料的重要物理性质之一。
本文将从膨胀计法的基本原理出发,探讨如何利用膨胀计法测定玻璃化转变温度,并结合实际案例进行深入探讨,帮助读者更全面地理解膨胀计法及其在材料研究中的应用。
二、膨胀计法的基本原理膨胀计法是通过测定材料在不同温度下的热膨胀系数来确定材料的玻璃化转变温度。
其中,热膨胀系数定义为单位温度变化下材料单位长度的变化量,通常用ppm/℃(百万分之一/摄氏度)来表示。
当材料接近玻璃化转变温度时,其热膨胀系数将显著增加,这一特性可以用来确定材料的玻璃化转变温度。
三、膨胀计法测定玻璃化转变温度的步骤1. 样品准备:需要准备一定量的样品,并将其放置在膨胀计中进行测定。
2. 设定实验条件:在进行实验之前,需要根据样品的性质和要求设置好实验条件,包括温度范围、升温速率等。
3. 开始实验:将样品放置在膨胀计中,然后根据设定的实验条件进行升温,同时记录样品的长度变化。
4. 分析数据:通过分析样品在不同温度下的热膨胀系数曲线,可以找到热膨胀系数发生显著变化的温度点,即玻璃化转变温度。
五、实际案例分析以某种工程塑料为例,通过膨胀计法测得其在升温过程中的热膨胀系数曲线,如下图所示:在这个实际案例中,我们可以清晰地看到随着温度的升高,工程塑料的热膨胀系数呈现出先缓慢增加,然后在约180℃时急剧增加的趋势。
而在这个温度点附近,可以认为工程塑料发生了玻璃化转变。
通过膨胀计法测定,我们确定了这种工程塑料的玻璃化转变温度为180℃。
在实际工程实践中,准确测定材料的玻璃化转变温度对于材料的选取和设计具有重要意义。
膨胀计法作为一种可靠的测试方法,在材料科学研究和工程应用中得到了广泛的应用。
六、总结与展望通过本文的讨论,我们对膨胀计法测定玻璃化转变温度的原理和方法有了更深入的理解。
高分子考试题Q20

1.用自由体积理论解释聚合物的玻璃化转变过程,写出四种测定聚合物玻璃化温度的方法,描述其原理及过程。
试用玻璃化转变的自由体积理论解释:(1)非晶态聚合物冷却时体积收缩速率发生变化;Tg前后,聚合物自由体积膨胀情况不同(2)速度愈快,测定的Tg值愈高。
外力作用时间短,链段来不及发生运动,呈现出玻璃态,Tg↑答:①膨胀计法原理:Tg前后试样比容发生突变,膨胀计内的水银高度发生偏折;②量热法(DSC法)原理:给基准物和样品相同的热量(仪器采用两侧等速升温或降温进行控制),基准物是热惰性的,而样品在温度改变时会出现各种转变,会吸热或放热,与基准物的温度有一差值(通过热电偶测出),将温度差值—温度作一图线,就可以得到差热曲线。
曲线上的转折对应于Tg;③温度-形变法(热机械法)原理:动态模量和力学损耗一温度的变化制成样品,在仪器上进测试得到内耗-温度曲线最高损耗峰的峰位对应的温度就是Tg;④核磁共振法(NMR) 原理:在Tg变化前后,核磁共振谱线的宽度有很大变化,根据线宽的变化就可以得到Tg。
不同的测试方法所得结果不同,因为实验速率不同2.高聚物的玻璃化温度有什么物理意义和实际使用价值,讨论分子链的柔顺性和分子量对玻璃化温度的影响。
高聚物由高弹态转变为玻璃态的温度,指无定型聚合物(包括结晶型聚合物中的非结晶部分)由玻璃态向高弹态或者由后者向前者的转变温度,是无定型聚合物大分子链段自由运动的最低温度,通常用Tg表示,随测定的方法和条件有一定的不同。
高聚物的一种重要的工艺指标。
在此温度以上,高聚物表现出弹性;在此温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。
如聚氯乙烯的玻璃化温度是80℃。
但是,他不是制品工作温度的上限。
比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。
玻璃化转变温度Tg是材料的一个重要特性参数,材料的许多特性都在玻璃化转变温度附近发生急剧的变化。
以玻璃为例,在玻璃化转变温度,由于玻璃的结构发生变化,玻璃的许多物理性能如热容、密度、热膨胀系数、电导率等都在该温度范围发生急剧变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验膨胀计法测定聚合物玻璃化温度
1.1 实验目的
1.掌握膨胀计法测定聚合物玻璃化温度的方法。
2.了解升温速度对玻璃化温度的影响。
1.2实验内容
利用膨胀计来测定聚苯乙烯玻璃化温度Tg 值。
1.3基础知识
•聚合物的玻璃化转变是玻璃态和高弹态之间的转变。
在发生转变时,聚合物的许多物理性质起了急剧的变化。
如果固定其他条件而仅改变温度,那么在玻璃化转变温度范围内,聚合物的比容、比热、导热系数、介电常数、弹性模量、介电损耗等都发生突变或不连续的改变。
同样,如果固定温度而改变其他条件,例如压力、频率、分子量、增塑剂浓度、共聚物组成等,也可观察到玻璃化转变现象。
图3-1为聚合物的比容随压力的变化,Pg称为玻璃化转变压力。
图3-2为375K时聚甲基丙烯酸甲酯(PMMA)的比容随分子量的变化,My称为玻璃化转变分子量。
通常,由于改变温度来观察玻璃化转变最为方便,又具有实用意义,所以玻璃化温度是表示玻璃化转变的最重要的指标。
图3-1聚合物的比容随压力的变化图3-2 聚甲基丙烯酸甲酯的比容随分子量的变化
•本实验是利用膨胀计来测定玻璃化温度Tg的,膨胀计法是一种玻璃化温度静态测定方法。
聚合物的比容是一个与高分子链段运动有关的物理量,它在玻璃化转变温度范围内有不连续的变化,即利用膨胀计测定聚合物的体积随温度的变化时,在Tg处有一个转折,如图3-3所示。
图3-3 聚合物比容与温度间的关系
•众所周知,玻璃化转变不是热力学平衡过程,而是一个松弛过程,因此Tg值的大小和测试条件有关。
图3-4表明在降温测量中,降温速度加快,Tg向高温方向移动。
根据自由体积理论,在降温过程中,分子通过链段运动进行位置调整,多余的自由体积腾出并逐渐扩散出去,因此在聚合物冷却、体积收缩时,自由体积也在减少。
但是由于粘度因降温而增大,这种位置调整不能及时进行,所以聚合物的实际体积总比该温度下的平衡体积大,表现为比容一温度曲线上在Tg处发生拐折。
降温速度越快,拐折得越早,Tg就偏高。
反之,降温速度太慢,则所得Tg偏低,以至测不到Tg。
一般控制在1-2℃/min为宜。
升温速度对Tg的影响,也是如此。
Tg的大小还和外力有关:单向的外力能促使链段运动,外力越大,Tg降低越多;外力的频率变化引起玻璃化转变点的移动,频率增加则Tg升高,所以膨胀计法比动态法所得的Tg要低一些。
图3-4 降温速度对聚合物玻璃化温度的影响
•除了外界条件以外,显然Tg值还受到了聚合物本身的化学结构之支配,同时也受到其他结构因素的影响,例如共聚、交联、增塑以及分子量等。
图3-5表明Tg值随分子量的增大而升高,特别当分子量较低时,这种影响更为明显。
自由体积理论可以解释这一现象。
图3-5 聚合物分子量对玻璃化温度的影响
1.4 实验方法与操作步骤
1、洗净膨胀计、烘干,装入聚苯乙烯颗粒,充填膨
胀管的4/5体积。
2、在膨胀管内加入乙二醇作为介质,用玻棒搅动
(或抽气)使膨胀管内没有气泡。
3、再加入乙二醇至膨胀管口,插入毛细管,使乙二
醇的液面在毛细管下部,磨口接头用弹簧固定,
如果发现管内留有气泡必须重装。
(为什么?)
4、将装好的膨胀计浸入水浴中,控制水浴升温速度为1℃/min。
5、读取水浴温度和毛细管内乙二醇液面的高度(每升高5℃读一次,在55—80℃之间每升高2℃或1℃读一次),直到90℃为止。
6、将已装好样品的膨胀计经充分冷却后,再在升温速度为2℃/min的热水浴中读取温度和毛细管内液面高度。
1.5 实验结果
1.水浴升温速度为1℃/min:
记录水浴温度和当时毛细管内乙二醇液面的高度。
读数范围:实验开始时的水浴温度到90℃为止。
读数方式:每升高5℃记录一次,在55—80℃之间每升高2℃或1℃记录一次。
2.水浴升温速度为2℃/min:
读数范围和读数方式同上。
1.6 实验结果统计与分析
作毛细管内液面高度对温度的图。
从直线外延交点求得两种不同升温速度的聚苯乙烯的Tg值。
如图3—6所示。
图3-6 h-T图
1.7 注意事项
1.膨胀计在使用前必须洁净,干燥。
毛细管内应当
没有任何残留液体。
2.膨胀计的磨口接头处用久后会沾有聚合物,因此
会引起溶液泄漏。
此时可用滤纸浸渍少量甲苯将
其擦去。
3.在插入毛细管后,若发现管内留有气泡必须重装。
4.实验结束后应即时将膨胀计洗净并且干燥。