PWM控制电路的基本构成及工作原理
PWM整流电路的原理及控制

PWM整流电路的原理及控制
PWM 整流电路是采用PWM 控制方式和全控型器件组成的整流电路,它能在不同程度上解决传统整流电路存在的问题。
把逆变电路中的SPWM 控制技术用于整流电路,就形成了PWM 整流电路。
通过对PWM 整流电路进行控制,使其输入电流非常接近正弦波,且和输入电压同相位,则功率因数近似为1。
因此,PWM 整流电路也称单位功率因数变流器。
1.单相PWM 整流电路
单相桥式PWM 整流电路如单相桥式PWM 整流电路按升压斩波原理工作。
当交流电源电压时,由VT2、VD4、VD1、Ls 和VT3、VD1、VD4、Ls 分别组成两个升压斩波电路。
以VT2、VD4、VD1、Ls 构成的电路为例,当
VT2 导通时,通过VT2、VD4 向Ls 储能;当VT2 关断时,Ls 中的储能通过VD1、VD4 向直流侧电容C 充电,致使直流电压高于的峰值。
当时,则由VT1、VD3、VD2、Ls 和VT4、VD2、VD3、Ls 分别组成两个升压斩波电路,工作原理与时类似。
由于电压型PWM 整流电路是升压型整流电路,其输出直流电压应从交流电压峰值向上调节,向低调节会恶化输入特性,甚至不能工作。
输入电流相对电源电压的相位是通过对整流电路交流输入电压的控制来实现调节。
2
2.三相PWM 整流电路
三相桥式PWM 整流电路结构如
PWM 整流电路的控制
为使PWM 整流电路获得输入电流正弦且和输入电压同相位的控制效果,。
三相pwm整流电路工作原理

三相pwm整流电路工作原理三相PWM整流电路是一种能够将三相交流电转换为直流电的电路。
该电路采用PWM(脉宽调制)技术控制混合型整流桥,通过改变开关器件的导通时间比来控制输出电流的大小。
本文将介绍三相PWM整流电路的工作原理,并提供相关参考内容。
三相PWM整流电路的工作原理:三相PWM整流电路由混合型整流桥和PWM控制电路组成。
混合型整流桥由六个可控硅(或IGBT)开关组成,它们分别位于三相交流电源的三个相线和直流输出端之间。
PWM控制电路通过控制六个开关器件的导通时间比例,来实现对输出电流的精确控制。
三相PWM整流电路的工作过程如下:1. 三相交流电源通过三个变压器分别接到整流桥的三个输入端,供电给负载。
2. PWM控制电路通过测量负载电流、输入电压、温度等信息,计算需要输出的电流,并产生相应的PWM信号。
3. PWM信号控制开关器件的导通时间比例。
在每个电流周期内,通过适当的开关动作,调整开和关的时间,以控制输出电流的大小。
开关器件导通时,正向电压施加在负载上,负载得到能量;开关器件关闭时,负载断电。
4. 通过不断调整开关器件的导通时间比例,以跟踪负载电流,实现输出电流的稳定控制。
三相PWM整流电路的特点:1. 输出电流可进行精确控制。
通过调整开关器件的导通时间比例,可以实现精确的输出电流控制。
这种控制不仅能保证输出电流的恒定性,还能避免电流过大或过小导致的电路损坏。
2. 效率高。
由于PWM技术的应用,整流过程中开关器件的损耗较小,从而提高了整体的能效。
3. 传输效率高。
三相PWM整流电路可以实现三相交流电到直流电的转换,因此在电能的传输效率上相对较高。
4. 可靠性高。
通过PWM控制电路对整流桥的开关器件进行控制,可以提高电路的稳定性和可靠性。
关于三相PWM整流电路的相关参考内容:1. 《电力电子技术及应用》杜聪,中国电力出版社。
2. 《实用电能质量调节与控制技术》王军,机械工业出版社。
3. 《交直流三相不对称和谐波控制的综合分析与计算方法》杨占明,中国科学技术大学硕士学位论文。
PWM整流工作原理

PWM整流工作原理1.开关电源:PWM整流电路由一对开关电路组成,通常是MOSFET或IGBT(绝缘栅双极晶体管)。
2.控制信号:通过其中一种控制算法,将输入的直流电源信号转换为控制开关的PWM信号。
控制算法通常基于反馈控制,可以使用PID(比例积分微分)控制器或其他控制算法。
3. PWM信号:PWM信号是脉冲信号,其占空比(Pulse Width)根据控制算法的输出变化。
占空比是指PWM信号高电平持续的时间与一个周期内总时间的比例。
通过调整占空比,可以控制开关电路的导通和断开时间。
4.输出滤波:PWM信号通过一个滤波电路,将其转换为平滑的直流输出。
滤波电路通常是一个电感和电容的组合,用于滤除PWM信号中的高频噪声。
5.输出电压:整流电路将滤波后的PWM信号转换为输出电压。
当PWM信号高电平时,开关电源导通,将直流电源的电能储存在电感中。
当PWM信号低电平时,开关电源断开,电感中储存的能量被转移到输出电容上,供电给负载。
6.负载控制:输出电压经过调整和稳压电路控制,以保持恒定的输出电压。
控制电路根据负载的变化,调整PWM信号的占空比,以保持输出电压的稳定性。
1.高效性:PWM整流技术可以通过准确控制开关的导通和断开时间,最大限度地减少功率损耗,并提高整流电路的效率。
2.精确控制:PWM信号的占空比可以很容易地调整,以实现对输出电压的精确控制。
由于PWM整流技术可提供高频开关特性,因此调整输出电压的响应速度非常快。
3.可靠性:PWM整流电路中的开关元件通常由可靠的MOSFET或IGBT 组成,其寿命较长。
此外,PWM整流技术还具有较少的电磁干扰和噪声。
4.小尺寸:由于高效性和精确控制的特性,PWM整流电路可以使用较小的电感和电容组件,从而减小整流电路的体积。
5.可调度:PWM整流技术可以适应各种负载变化,通过调整占空比,以保持稳定的输出电压和电流。
总之,PWM整流工作原理是基于PWM信号控制开关导通和断开时间,实现高效的切换电流输出。
PWM整流电路及其控制方法

PWM整流电路及其控制方法引言PWM(脉宽调制)技术是一种常用的电磁能源转换技术,广泛应用于各种电力电子设备中。
在电力转换中,如何实现高效率、低功率损失的能源转换一直是研究的热点之一。
PWM整流电路是一种典型的能源转换电路,它通过控制开关器件的导通时间来实现电源直流化的同时降低功率损耗。
本文将介绍PWM整流电路的基本原理、关键元件以及控制方法。
PWM整流电路的基本原理PWM整流电路主要由开关器件、滤波电容、感性元件和控制电路组成。
其基本原理是将输入交流电通过开关器件进行脉宽调制,从而获得平均值等于输出直流电压的脉冲电流。
通过滤波电容以及感性元件对脉冲电流进行平滑处理,得到稳定的直流输出电压。
开关器件的选择在PWM整流电路中,开关器件是实现脉宽调制的关键部件。
常见的开关器件有MOSFET(金属氧化物半导体场效应晶体管)和IGBT(绝缘栅双极型晶体管)两种。
MOSFET具有开关速度快、损耗小的特点,适用于低功率应用;而IGBT则适用于高功率应用,具有较高的承受电压和电流能力。
滤波电容和感性元件滤波电容和感性元件是PWM整流电路中的关键元件,它们的作用是对脉冲电流进行平滑处理。
滤波电容可以存储电荷并平滑输出电流,而感性元件则可以平滑输出电压。
合理选择滤波电容和感性元件的值可以在保证输出电压稳定的同时减小纹波电流和纹波电压。
控制方法PWM整流电路的控制方法主要有两种:固定频率控制和变频控制。
固定频率控制是指在整个转换过程中,开关器件的频率保持不变。
这种控制方法简单可靠,但效率较低。
变频控制是根据输出电压的需求,自适应地改变开关器件的频率,以提高整流效率。
变频控制方法相对复杂,但具有较高的效率和稳定性。
控制电路设计PWM整流电路的控制电路设计是实现控制方法的关键。
控制电路主要包括PWM生成电路和反馈控制电路。
PWM生成电路负责生成脉宽信号,控制开关器件的导通时间;反馈控制电路用于检测输出电压,并根据检测结果调整PWM信号以实现稳定的输出电压控制。
PWM控制原理(精编文档).doc

【最新整理,下载后即可编辑】PWM控制技术主要内容:PWM控制的基本原理、控制方式与PWM波形的生成方法,PWM逆变电路的谐波分析,PWM整流电路。
重点:PWM控制的基本原理、控制方式与PWM波形的生成方法。
难点:PWM波形的生成方法,PWM逆变电路的谐波分析。
基本要求:掌握PWM控制的基本原理、控制方式与PWM波形的生成方法,了解PWM逆变电路的谐波分析,了解跟踪型PWM逆变电路,了解PWM整流电路。
PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。
第3、4章已涉及这方面内容:第3章:直流斩波电路采用,第4章有两处:4.1节斩控式交流调压电路,4.4节矩阵式变频电路。
本章内容PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。
本章主要以逆变电路为控制对象来介绍PWM控制技术,也介绍PWM 整流电路1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。
效果基本相同,是指环节的输出响应波形基本相同。
低频段非常接近,仅在高频段略有差异。
图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示。
其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。
从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。
脉冲越窄,各i(t)响应波形的差异也越小。
如果周期性地施加上述脉冲,则响应i(t)也是周期性的。
用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。
图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。
pwm整流电路工作原理

pwm整流电路工作原理一、前言PWM整流电路是一种常见的电路,它主要用于将交流电转换为直流电。
本文将详细介绍PWM整流电路的工作原理。
二、PWM技术简介PWM技术是指通过改变信号的占空比来控制电源输出的一种技术。
在PWM技术中,周期保持不变,而占空比则可以根据需要进行调节。
当占空比为0时,输出为0;当占空比为100%时,输出为最大值。
三、PWM整流电路基本结构PWM整流电路包括三个部分:输入滤波器、PWM调制器和输出滤波器。
其中输入滤波器用于平滑交流输入信号;PWM调制器用于控制直流输出信号的大小;输出滤波器用于平滑直流输出信号。
四、输入滤波器输入滤波器主要由一个电容和一个电感组成。
它的作用是平滑交流输入信号,并减小噪声干扰。
当交流输入信号经过输入滤波器后,会变成一个近似直流的信号。
五、PWM调制器PWM调制器主要由一个比较器和一个三角形波发生器组成。
它的作用是根据需要改变直流输出信号的大小。
当三角形波发生器的输出电压高于比较器输入信号时,输出为高电平;当三角形波发生器的输出电压低于比较器输入信号时,输出为低电平。
通过改变三角形波发生器的频率和占空比,可以控制直流输出信号的大小。
六、输出滤波器输出滤波器主要由一个电容和一个电感组成。
它的作用是平滑直流输出信号,并减小噪声干扰。
当直流输出信号经过输出滤波器后,会变得更加平稳。
七、工作原理PWM整流电路的工作原理如下:1. 输入滤波器将交流输入信号平滑成近似直流的信号。
2. PWM调制器根据需要改变直流输出信号的大小。
3. 输出滤波器将直流输出信号平滑,并减小噪声干扰。
4. 最终得到符合要求的直流电源。
八、总结本文详细介绍了PWM整流电路的工作原理。
通过对输入滤波器、PWM调制器和输出滤波器等部分进行分析,我们可以更好地理解PWM整流电路是如何将交流电转换为直流电的。
pwm的工作原理

pwm的工作原理
PWM(脉宽调制)是一种常用的电子控制技术,它通过控制信号的脉冲宽度来变化输出信号的平均功率。
PWM主要适用于需要精确控制电压、电流或者频率的应用。
其工作原理可以简单描述如下:
1. 信号发生器:PWM的工作原理首先需要一个信号发生器来产生一定频率的方波信号。
这个信号发生器可以是一个晶体振荡器或者其他的任意信号源。
2. 采样:信号发生器产生的方波信号需要经过一个采样电路来进行采样。
采样电路可以是一个比较器,它将方波信号与一个可调的参考电压进行比较。
3. 脉宽控制:比较器的输出信号将进一步通过一个脉宽控制电路进行处理。
脉宽控制电路通常是一个可调的计数器或者定时器。
它根据输入信号的脉冲宽度来控制计数器或者定时器的工作时间。
4. 输出:最后,脉宽控制电路的输出信号将被送入一个功率放大器,用来驱动需要控制的载体。
功率放大器的输出信号即为PWM的最终输出信号。
PWM的工作原理可以通过改变方波信号的脉冲宽度来控制输出信号的平均功率。
通常情况下,脉冲宽度与占空比成正比。
当脉冲宽度增大时,占空比也就增大,输出信号的平均功率也相应增大。
相反,当脉冲宽度减小时,占空比减小,输出信号
的平均功率也减小。
总的来说,PWM的工作原理是通过改变方波信号的脉冲宽度
来控制输出信号的平均功率。
这种控制方法的优点是节省能量、减小功率损耗,并且能够精确控制信号的特性。
在很多电子设备中,PWM被广泛应用于电机控制、光电调光、音频放大以
及电源管理等领域。
三相pwm整流电路工作原理

三相PWM整流电路工作原理一、引言三相PWM(脉冲宽度调制)整流电路是一种常见的电力电子装置,用于将三相交流电转换为直流电。
本文将详细讨论三相PWM整流电路的工作原理,包括整流过程、控制方法以及应用领域。
二、整流过程三相PWM整流电路的主要任务是将三相交流电转换为平滑的直流电。
其基本原理是利用开关器件控制交流电通过滤波电路输出直流电。
下面逐步介绍整流过程的关键步骤:1. 步骤一:电压输入三相PWM整流电路的输入是来自三相交流电源的电压。
通常情况下,输入电压经过输入变压器降压后进入整流电路。
2. 步骤二:整流桥整流桥是三相PWM整流电路的核心部件。
它由六个可控的二极管组成,用于将交流电转换为单向的脉冲电流。
整流桥的工作方式是通过控制二极管的导通和截止,实现交流电的整流。
3. 步骤三:滤波电路滤波电路用于平滑整流后的脉冲电流,将其转换为稳定的直流电压。
在三相PWM整流电路中,常用的滤波电路是电容滤波电路。
该电路通过充放电的方式,减小输出中的脉动成分,使直流电更加稳定。
4. 步骤四:输出电压经过滤波电路后,输出的电压为稳定的直流电压。
该电压可用于供电给各种直流负载,如电动机、电动汽车充电器等。
三、控制方法为了实现对三相PWM整流电路的控制,通常采用了相位控制和宽度控制两种方法。
下面将介绍这两种控制方法的原理及特点:1. 相位控制相位控制是通过改变整流桥中二极管的导通时刻,来控制输出电压的大小。
具体来说,通过改变控制信号的入口时刻,实现调节导通角度,从而改变整流桥的导通时间。
相位控制的特点是控制精度高,输出电压稳定性好。
然而,其缺点是难以实现对负载的快速响应。
2. 宽度控制宽度控制是通过改变整流桥中二极管的导通时间,来控制输出电压的大小。
具体来说,通过改变控制信号的脉冲宽度,来改变整流桥二极管的导通时间。
与相位控制相比,宽度控制具有快速响应的优势。
然而,它的缺点是控制精度相对较低,输出电压稳定性稍差。
四、应用领域三相PWM整流电路广泛应用于各个领域,如工业自动化、电动汽车等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于DSP的三相SPWM变频电源的设计变频电源作为电源系统的重要组成部分,其性能的优劣直接关系到整个系统的安全和可靠性指标。
现代变频电源以低功耗、高效率、电路简洁等显著优点而备受青睐。
变频电源的整个电路由交流-直流-交流-滤波等部分构成,输出电压和电流波形均为纯正的正弦波,且频率和幅度在一定范围内可调。
本文实现了基于TMS320F28335的变频电源数字控制系统的设计,通过有效利用TMS320F28335丰富的片上硬件资源,实现了SPWM的不规则采样,并采用PID算法使系统产生高品质的正弦波,具有运算速度快、精度高、灵活性好、系统扩展能力强等优点。
系统总体介绍根据结构不同,变频电源可分为直接变频电源与间接变频电源两大类。
本文所研究的变频电源采用间接变频结构即交-直-交变换过程。
首先通过单相全桥整流电路完成交-直变换,然后在DSP控制下把直流电源转换成三相SPWM波形供给后级滤波电路,形成标准的正弦波。
变频系统控制器采用TI公司推出的业界首款浮点数字信号控制器TMS320F28 335,它具有150MHz高速处理能力,具备32位浮点处理单元,单指令周期32位累加运算,可满足应用对于更快代码开发与集成高级控制器的浮点处理器性能的要求。
与上一代领先的数字信号处理器相比,最新的F2833x浮点控制器不仅可将性能平均提升50%,还具有精度更高、简化软件开发、兼容定点C28x TM控制器软件的特点。
系统总体框图如图1所示。
图1 系统总体框图(1)整流滤波模块:对电网输入的交流电进行整流滤波,为变换器提供波纹较小的直流电压。
(2)三相桥式逆变器模块:把直流电压变换成交流电。
其中功率级采用智能型IPM功率模块,具有电路简单、可靠性高等特点。
(3)LC滤波模块:滤除干扰和无用信号,使输出信号为标准正弦波。
(4)控制电路模块:检测输出电压、电流信号后,按照一定的控制算法和控制策略产生SPWM控制信号,去控制IPM开关管的通断从而保持输出电压稳定,同时通过SPI接口完成对输入电压信号、电流信号的程控调理。
捕获单元完成对输出信号的测频。
(5)电压、电流检测模块:根据要求,需要实时检测线电压及相电流的变化,所以需要三路电压检测和三路电流检测电路。
所有的检测信号都经过电压跟随器隔离后由TMS320F28335的A/D通道输入。
(6)辅助电源模块:为控制电路提供满足一定技术要求的直流电源,以保证系统工作稳定可靠。
系统硬件设计变频电源的硬件电路主要包含6个模块:整流电路模块、IPM电路模块、IPM隔离驱动模块、输出滤波模块、电压检测模块和TMS320F28335数字信号处理模块。
整流电路模块采用二极管不可控整流电路以提高网侧电压功率因数,整流所得直流电压用大电容稳压为逆变器提供直流电压,该电路由6只整流二极管和吸收负载感性无功的直流稳压电容组成。
整流电路原理图如图2所示。
图2 整流电路原理图IPM电路模块IPM由高速、低功率IGBT、优选的门级驱动器及保护电路组成。
IGBT(绝缘栅双极型晶体管)是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式电力电子器件。
GTR饱和压降低,载流密度大,但驱动电流较大;MOSFET驱动功率很小,开关速度快,但导通压降大,载流密度小。
IGBT综合了以上两种器件的优点,驱动功率小而饱和压降低,非常适合应用于直流电压。
因而IPM具有高电流密度、低饱和电压、高耐压、高输入阻抗、高开关频率和低驱动功率的优点。
本文选用的IPM是日本富士公司的型号为6MBP20RH060的智能功率模块,该智能功率模块由6只IGBT管子组成,其IGBT的耐压值为600V,最小死区导通时间为3μs。
IPM隔离驱动模块由于逆变桥的工作电压较高,因此DSP的弱电信号很难直接控制逆变桥进行逆变。
美国国际整流器公司生产的三相桥式驱动集成电路IR2130,只需一个供电电源即可驱动三相桥式逆变电路的6个功率开关器件。
IR2130驱动其中1个桥臂的电路原理图如图3所示。
C1是自举电容,为上桥臂功率管驱动的悬浮电源存储能量,D 1可防止上桥臂导通时直流电压母线电压到IR2130的电源上而使器件损坏。
R1和R2是IGBT的门极驱动电阻,一般可采用十到几十欧姆。
R3和R4组成过流检测电路,其中R3是过流取样电阻,R4是作为分压用的可调电阻。
IR2130的H IN1~HIN3、LIN1~LIN3作为功率管的输入驱动信号与TMS320F8335的PWM连接,由TMS320F8335控制产生PWM 控制信号的输入,FAULT与TMS320F8335引脚PDPINA连接,一旦出现故障则触发功率保护中断,在中断程序中封锁PWM信号。
图3 IR2130驱动其中1个桥臂的电路原理图输出滤波模块采用SPWM控制的逆变电路,输出的SPWM波中含有大量的高频谐波。
为了保证输出电压为纯正的正弦波,必须采用输出滤波器。
本文采用LC滤波电路,其中截止频率取基波频率的4.5倍,L=12mH,C=10μF。
电压检测模块电压检测是完成闭环控制的重要环节,为了精确的测量线电压,通过TMS320F28335的SPI总线及GPIO口控制对输入的线电压进行衰减/放大的比例以满足A/D模块对输入信号电平(0-3V)的要求。
电压检测模块采用256抽头的数字电位器AD5290和高速运算放大器AD8202组成程控信号放大/衰减器,每个输入通道的输入特性为1MΩ输入阻抗+30pF。
电压检测模块电路原理图如图4所示。
图4 电压检测电路原理图系统软件设计系统上电后按照选定的模式自举加载程序,跳转到主程序入口,进行相关变量、控制寄存器初始化设置和正弦表初始化等工作。
接着使能需要的中断,启动定时器,然后循环进行故障检测和保护,并等待中断。
主要包括三部分内容:定时器周期中断子程序、A/D采样子程序和数据处理算法。
主程序流程图如图5所示。
图5 主程序流程图定时器周期中断子程序主要进行PI调节,更新占空比,产生SPWM波。
定时器周期中断流程图如图6所示。
图6 定时器周期中断流程图A/D采样子程序主要完成线电流采样和线电压采样。
为确保电压与电流信号间没有相对相移,本部分利用TMS320F28335片上AD C的同步采样方式。
为提高采样精度,在A/D中断子程序中采用均值滤波的方法。
对A相电压和电流A/D的同步采样部分代码如下:数据处理算法本系统主要用到以下算法:(1)SVPWM算法(2)PID调节算法(3)频率检测算法SVPWM算法变频电源的核心就是SVPWM波的产生,SPWM波是以正弦波作为基准波(调制波),用一列等幅的三角波(载波)与基准正弦波相比较产生PWM波的控制方式。
当基准正弦波高于三角波时,使相应的开关器件导通;当基准正弦波低于三角波时,使相应的开关器件截止。
由此,逆变器的输出电压波形为脉冲列,其特点是:半个周期中各脉冲等距等幅不等宽,总是中间宽,两边窄,各脉冲面积与该区间正弦波下的面积成比例。
这种脉冲波经过低通滤波后可得到与调制波同频率的正弦波,正弦波幅值和频率由调制波的幅值和频率决定。
本文采用不对称规则采样法,即在三角波的顶点位置与低点位置对正弦波进行采样,它形成的阶梯波更接近正弦波。
不规则采样法生成SPWM波原理如图7所示。
图中,Tc是载波周期,M是调制度,N为载波比,Ton为导通时间。
由图7得:当k为偶数时代表顶点采样,k为奇数时代表底点采样。
SVPWM算法实现过程:利用F28335内部的事件管理器模块的3个全比较单元、通用定时器1、死区发生单元及输出逻辑可以很方便地生成三相六路SPWM波形。
实际应用时在程序的初始化部分建立一个正弦表,设置通用定时器的计数方式为连续增计数方式,在中断程序中调用表中的值即可产生相应的按正弦规律变化的SPWM波。
SPWM波的频率由定时时间与正弦表的点数决定。
SVPWM算法的部分代码如下:PID调节算法在实际控制中很多不稳定因素易造成增量较大,进而造成输出波形的不稳定性,因此必须采用增量式PID算法对系统进行优化。
PID算法数学表达式为Upresat(t)= Up(t)+ Ui(t)+ Ud(t)其中,Up(t)是比例调节部分,Ui(t)是积分调节部分,Ud(t)是微分调节部分。
本文通过对A/D转换采集来的电压或电流信号进行处理,并对输出的SPWM波进行脉冲宽度的调整,使系统输出的电压保持稳定。
PID调节算法的部分代码如下:频率检测算法频率检测算法用来检测系统输出电压的频率。
用TMS320F28335片上事件管理器模块的捕获单元捕捉被测信号的有效电平跳变沿,并通过内部的计数器记录一个周波内标频脉冲个数,最终进行相应的运算后得到被测信号频率。
实验结果测量波形在完成上述硬件设计的基础上,本文采用特定的PWM控制策略,使逆变器拖动感应电机运行,并进行了短路、电机堵转等实验,证明采用逆变器性能稳定,能可靠地实现过流和短路保护。
图8是电机在空载条件下,用数字示波器记录的稳态电压波形。
幅度为35V,频率为60Hz。
图7 不规则采样法生成SPWM波原理图图8 输出线电压波形测试数据在不同频率及不同线电压情况下的测试数据如表1所示。
表1 不同输出频率及不同线电压情况下实验结果结果分析由示波器观察到的线电压波形可以看出,波形接近正弦波,基本无失真;由表中数据可以看出,不同频率下,输出线电压最大的绝对误差只有0.6V,相对误差为1.7%。
结束语本文设计的三相正弦波变频电源,由于采用了不对称规则采样算法和PID算法使输出的线电压波形基本为正弦波,其绝对误差小于1.7%;同时具有故障保护功能,可以自动切断输入交流电源。
因此本系统具有电路简单、抗干扰性能好、控制效果佳等优点,便于工程应用,具有较大的实际应用价值。