人教A版高中数学必修三抽样方法教案分层抽样

合集下载

人教A版高中数学必修三精品教案简单随机抽样新人教

人教A版高中数学必修三精品教案简单随机抽样新人教

2.1.1简单随机抽样教学目标:1、知识与技能:(1)正确理解随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、过程与方法:(1)能够从现实生活或其他学科中提出具有一定价值的统计问题;(2)在解决统计问题的过程中,学会用简单随机抽样的方法从总体中抽取样本。

3、情感态度与价值观:通过对现实生活和其他学科中统计问题的提出,体会数学知识与现实世界及各学科知识之间的联系,认识数学的重要性。

4、重点与难点:正确理解简单随机抽样的概念,掌握抽签法及随机数法的步骤,并能灵活应用相关知识从总体中抽取样本。

教学设想:假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本。

(为什么?)那么,应当怎样获取样本呢?【探究新知】一、简单随机抽样的概念一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,这样抽取的样本,叫做简单随机样本。

【说明】简单随机抽样必须具备下列特点:(1)简单随机抽样要求被抽取的样本的总体个数N是有限的。

(2)简单随机样本数n小于等于样本总体的个数N。

(3)简单随机样本是从总体中逐个抽取的。

(4)简单随机抽样是一种不放回的抽样。

(5)简单随机抽样的每个个体入样的可能性均为n/N。

思考?下列抽样的方式是否属于简单随机抽样?为什么?(1)从无限多个个体中抽取50个个体作为样本。

(2)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子。

二、抽签法和随机数法1、抽签法的定义。

一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

【说明】抽签法的一般步骤:(1)将总体的个体编号。

2014年人教A版高中数学必修三 2.1.3 《分层抽样》

2014年人教A版高中数学必修三 2.1.3 《分层抽样》

入的家庭280个,低收入的家庭95个,为了了解生活购买力的
某项指标,要从中抽取一个容量为100的样本
(C)从1 000名工人中,抽取100名调查上班途中所用时间
(D)从生产流水线上,抽取样本检查产品质量
2.分层抽样又称为类型抽样,即将相似的个体归入一类(层), 然后每层各抽若干个个体构成样本,所以分层抽样为保证每个
(3)采用系统抽样时,当总体容量N能被样本容量n整除时,
抽样间隔为 k
N 当总体容量不能被样本容量整除时,先用 ; n
简单随机抽样剔除多余个体,抽样间隔为 k N .
n
【典例训练】
1.(2012·浏阳高一检测)①学校为了了解高一学生的情况,
从每班抽2人进行座谈;②一次数学竞赛中,某班有10人的成 绩在110分以上,10人的成绩在100~110分,30人的成绩在 90~100分,12人的成绩低于90分,现在从中抽取12人了解有 关情况;③运动会服务人员为参加400 m决赛的6名同学安排跑 道.就这三件事,合适的抽样方法为( )
2.1.3 分层抽样
1.理解分层抽样的概念.
2.掌握分层抽样的一般步骤. 3.区分简单随机抽样、系统抽样和分层抽样,并选择适当的方 法进行抽样.
1.本节重点是正确理解分层抽样的定义和步骤. 2.本节难点是灵活应用分层抽样抽取样本,并恰当地选择三种 抽样方法解决现实生活中的抽样问题.
分层抽样的有关概念
分层抽样的设计 【技法点拨】 分层抽样的操作步骤
第一步,计算样本容量与总体的个体数之比.
第二步,将总体分成互不交叉的层,按比例确定各层要抽取的
个体数.
第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的 个体. 第四步,将各层抽取的个体合在一起,就得到所取样本.

人教A版高中数学必修三《抽样方法》(3)《分层抽样》教案理

人教A版高中数学必修三《抽样方法》(3)《分层抽样》教案理

福建省莆田市第八中学高二数学《抽样方法(3)分层抽样》教案理新人教A版必修3课题教学目标(1)理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;(2)掌握简单随机抽样、系统抽样、分层抽样的区别与联系.重难点正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题。

方法及教具结合实例对比讲解法,多媒体教学。

教学过程二次备课一、问题情境:1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.2.实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理?二、学生活动能否用简单随机抽样或系统抽样进行抽样,为什么?指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性。

由于样本的容量与总体的个体数的比为100:2500=1:25,所以在各年级抽取的个体数依次是100025,80025,70025,即40,32,28.三、建构数学1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,调查的总人数为12000人,其中持各种态度的人数如下表所示:很喜爱喜爱一般不喜爱2435 4567 3926 1072答:用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人数分别为12,23,20,5.说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.例3.下列问题中,采用怎样的抽样方法较为合理?(1)从10台电冰箱中抽取3台进行质量检查;(2)某电影院有32排座位,每排有40个座位,座位号为140。

人教A版高中数学必修三 2.1.3《分层抽样》教案

人教A版高中数学必修三 2.1.3《分层抽样》教案

人教A版高中数学必修三2.1.3《分层抽样》教案人教a版高中数学必修三2.1.3《分层抽样》教案2.1.3分层抽样教学计划【教学目标】1.通过实例了解分层抽样的概念、意义及适用场景2.通过对现实生活中实际问题会用分层抽样的方法从总体中抽出样本,并能写出具体问题的分层抽样的步骤.3.知道在分层抽样的过程中,人口中的每个个体都有相同的被选择的机会4.区分简单随机抽样?系统抽样和分层抽样,并选择适当正确的方法进行抽样.【教学重难点】教学重点:正确理解分层抽样的定义,灵活运用分层抽样进行抽样,正确选择三种抽样方法,解决现实生活中的抽样问题教学难点:应用分层抽样解决实际问题,并恰当的选择三种抽样方法解决现实生活中的抽样问题.[教学过程]我复习复习系统抽样有什么优缺点?它的一般步骤是什么?答:优点是比简单随机抽样更易操,缺点是系统抽样有规律性,样本有可能代表性很差;(1)人口中的n个个体(2)确定分段间隔k,对编号进行分段,当NN(n是样本量)是一个整数,取K=nn;当NN不是整数时,首先从总体中随机移除几个个体,以便对总体中剩余的个体进行采样容量整除.(3)在第一段中,数字L(LWK)通过简单的随机抽样确定起始个体的数量(4)按照一定的规则抽取样本,通常是将起始编号l加上间隔k得到第2个个体编号l+k,再加上k得到第3个个体编号l+2k,这样继续下去,直到获取整个样本.二.创设情境.假设一个地区有2400名高中生、10900名初中生和11000名小学生。

为了了解该地区中小学近视的情况和原因,教育部门应选择该地区1%的中小学生进行调查。

你认为应该如何取样?答:高中生2400Xl%=24人,初中生10900Xl%=109人,小学生11000Xl%=110人,作为样本.这样,如果从学生人数这个角度来看,按照这种抽样方法所获得样本结构与这一地区全体中小学生的结构是基本相同的.三、探索新知识(一)分层抽样的定义.一般来说,在抽样过程中,将种群划分为不相交的层,然后根据一定比例从每个层中独立选择一定数量的个体,并将从每个层中提取的个体组合为样本。

人教A版高中数学必修三教案系统抽样新课标

人教A版高中数学必修三教案系统抽样新课标
②思考:当第二步的k不是整数的时候怎么办呢?例题变式502人.(先随机剔除几个个体)
③练习:在2003名同学间选出100人进行有关视力的问卷调查,你怎样选取样本呢?
分析:我们知道2003/100不是整数,这时我们就要随机的选出3名同学(用什么方法?)
3、小结:由同学来总结系统抽样有那些优点和缺点.(优点:可以利用个体自身的编号,对数量较多的个体操作比较便捷.缺点:当对总体情况不是很了解的情况下,样本的代表性较差.)
注意:在使用抽样方法时,总体的数量较多,但必须要对总体有个大概了解的前提下.
③注意:分段间隔k的确定.当总体个数N恰好是样本容量n的整数倍时,取 ;若 不是整数时,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量n整除.每个个体被剔除的机会相等,从而使整个抽样过程中每个个体被抽取的机会仍然相等.
2、教学例题:
①出示例:我校为了了解高一年级学生对教师教学的意见,打算从高一年级的500名学生中抽取50名进行调查.用系统抽样的方法,你怎样进行操作呢?
教学目标:正确理解系统抽样的概念;掌握系统抽样的步骤;正确理解系统抽样与简单随机抽样的关系;掌握系统抽样的优点和缺点.
教学重点:掌握系统抽样的步骤.
教学难点:系统抽样时,当分段间隔k不是整数的时候怎
教学用具:投影仪
教学方法:类比、观察、交流、讨论、迁移
教学过程:
一、复习准备:
1.提问:简单随机抽样应注意几点?有哪几种方法?每种方法的优点和缺点是什么?
解:第一步,编号,给500名同学编号.(注意和随机数法不同,500人、编号不一定是三位数.如1,2,3. . . );第二步,分段,确定分段间隔k=500/50=10.(把500人分成了10段);第三步,确定起始号,在第一段1~10里随机的选一个数(抽签法)比如6;第四步,抽取样本,每隔10个号码抽取一个,要选的50个数的编号是6、16、26、36、46. . . . . . . . . 496(如果第三步选的是10,则他们的编号是10、20、30. . . . 500)

《分层抽样》说课稿

《分层抽样》说课稿

《分层抽样》说课稿《分层抽样》说课稿1尊敬的各位考官,大家好,我是今天的X号考生,今天我说课的题目是《分层抽样》。

新课标指出:高中教育属于基础教育,具有基础性,且具有多样性与选择性,使不同的学生在数学上得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材我认为要真正的教好一节课,首先就是要对教材熟悉,那么我就先来说一说我对本节课教材的理解。

《分层抽样》是人教A版必修3第二章第一节的第三小节,本节课的内容是对分层抽样进行探讨。

本小节通过具体问题情境引出分层抽样的抽样方法,并对它的概念、特点和步骤进行了探讨。

本节内容是第一节随机抽样方法的扩充,这也为后面学习用样本估计总体奠定基础。

学习本节课将会更好的提高学生解决生活实际问题的能力。

二、说学情合理把握学情是上好一堂课的基础,下面我来谈谈学生的实际情况。

本阶段的学生是高中生,他们具有了自主探索学习的能力,同时观察能力、总结能力、归纳能力、类比能力、抽象能力等已经发展的比较成熟,但本阶段的学生容易脱离生活实际进行机械的学习,所以在教学中老师一定要凸显学生的自主性,可以将更多的活动交给学生进行探究,在探究过程中继续提高学生的各方面能力。

在学习本节知识之前,学生已经具备了统计的一些基础知识,但是对统计具体的抽样方法没有系统的’学习,故本节课的学习应该站在学生已有经验的基础上进行教学,帮助学生提高数学的应用能力。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能了解随机抽样中的分层抽样的特点和适用情况,并会用分层抽样解决实际问题。

(二)过程与方法经历分层抽样的特点的探索过程,提升概括能力和应用能力。

(三)情感、态度与价值观在探索的过程中,学习如何处理数据,运用所学知识和方法解决实际问题,体会数学与生活的紧密联系。

四、说教学重难点我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。

人教A版高中数学必修三系统抽样教案

人教A版高中数学必修三系统抽样教案

凡事豫(预)则立,不豫(预)则废。

系统抽样教学目标:1.结合实际问题情景,理解系统抽样的必要性和重要性2.学会用系统抽样的方法从总体中抽取样本教学重点:学会用系统抽样的方法从总体中抽取样本教学过程:1.系统抽样(等距抽样或机械抽样):把总体的单位进行排序,再计算出抽样距离,然后按照这一固定的抽样距离抽取样本。

第一个样本采用简单随机抽样的办法抽取。

K(抽样距离)=N(总体规模)/n(样本规模)前提条件:总体中个体的排列对于研究的变量来说,应是随机的,即不存在某种与研究变量相关的规则分布。

可以在调查允许的条件下,从不同的样本开始抽样,对比几次样本的特点。

如果有明显差别,说明样本在总体中的分布承某种循环性规律,且这种循环和抽样距离重合。

2.系统抽样,即等距抽样是实际中最为常用的抽样方法之一。

因为它对抽样框的要求较低,实施也比较简单。

更为重要的是,如果有某种与调查指标相关的辅助变量可供使用,总体单元按辅助变量的大小顺序排队的话,使用系统抽样可以大大提高估计精度。

3.例子:(1)某工厂平均每天生产某种机器零件大约10000件,要求产品检验员每天抽取50件零件,检查其质量情况。

假设一天的生产时间中生产的机器零件数是均匀的,请你设计一个调查方案(2)某装订厂平均每小时大约装订图书362册,要求检验员每小时抽取40册图书,检查其质量状况,请你设计一个调查方案.(3)调查某班学生的身高情况,利用系统抽样的方法样本容量为40,这个班共分5个组,每个组都是8名同学,他们的座次是按身高进行编排的。

李莉是这样做的,抽样距是8,按照每个小组的座次进行编号。

你觉得这样做有代表性么?(4)在(3)中,抽样距是8,按身全班身高进行编号,然后进行抽样,你觉得这样做有代表性么?课堂练习:小结:本节重点介绍系统抽样的方法及其局限性课后作业:。

(人教a版)必修三同步课件:2.1.3分层抽样

(人教a版)必修三同步课件:2.1.3分层抽样

B.某社区有500个家庭,其中高收入的家庭125户,中等收
的家庭95户,为了了解生活购买
入的家庭280户,低收入
力的某项指标,要从中抽取一个容量为100户的样本
C.从1 000名工人中,抽取100人调查上班途中所用时间 D.从生产流水线上,抽取样本检查产品质量 答案 B
解析
A中总体所含个体无差异且个数较少,适合用简单随
高中数学· 必修3· 人教A版
2.1.3 分层抽样
[学习目标]
1.理解分层抽样的概念. 2.会用分层抽样从总体中抽取样本. 3.了解三种抽样法的联系和区别.
[知识链接]
学校教务处每年都要进行一次评教、评学活动,即对本学年教师的授课,学生的接受状 况进行了解,教务处规定每班选两名同学作为代表,他们分别是各班的班长和学习委
中,其样本容量分别是多少? (2)上面三种抽取方式各自采用何种抽取样本的方法? (3)试分别写出上面三种抽取方法各自抽取样本的步骤.

(1)这三种抽取方式中,其总体都是指该校高三全体
学生本年度的考试成绩,个体都是指高三年级每个学生
本年度的考试成绩.其中第一种抽取方式中样本为所抽
取的14名学生本年度的考试成绩,样本容量为14;第二 种抽取方式中样本为所抽取的14名学生本年度的考试成 绩,样本容量为14;第三种抽取方式中样本为所抽取的 100名学生本年度的考试成绩,样本容量为100.
分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持_________与_________的一 致性,这对提高样本的代表性非常重要.当总体是由_________的几个部分组成时,
样本结构 总体结构 往往选用分层抽样的方法 .
差异明显
要点一
例1
分层抽样的概念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

抽样方法(3)
分层抽样
教学目标:
1、知识与技能:
(1)正确理解分层抽样的概念;
(2)掌握分层抽样的一般步骤;
(3)区分简单随机抽样、系统抽样和分层抽样,并选择适当正确的方法进行抽样。

2、过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法。

3、情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计
与“精确”性的矛盾统一,培养学生的辩证唯物主义的世界观与价值观。

4、重点与难点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方
法解决现实生活中的抽样问题。

教学设想:
【创设情景】
假设某地区有高中生2400人,初中生10900人,小学生11000人,此地
教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的
小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?
【探究新知】
一、分层抽样的定义。

一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样。

【说明】分层抽样又称类型抽样,应用分层抽样应遵循以下要求:
(1)分层:将相似的个体归人一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。

(2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。

二、分层抽样的步骤:
(1)分层:按某种特征将总体分成若干部分。

(2)按比例确定每层抽取个体的个数。

(3)各层分别按简单随机抽样的方法抽取。

(4)综合每层抽样,组成样本。

【说明】
(1)分层需遵循不重复、不遗漏的原则。

(2)抽取比例由每层个体占总体的比例确定。

(3)各层抽样按简单随机抽样进行。

探究交流
(1)分层抽样又称类型抽样,即将相似的个体归入一类(层),然后每层抽取若干个体构成样本,所
以分层抽样为保证每个个体等可能入样,必须进行 ( )
A 、每层等可能抽样
B 、每层不等可能抽样
C 、所有层按同一抽样比等可能抽样
(2)如果采用分层抽样,从个体数为N 的总体中抽取一个容量为n
样本,那么每个个体被抽到的可能性为 ( )
A .N 1
B.n
1 C.N n D.N n
点拨:
(1)保证每个个体等可能入样是简单随机抽样、系统抽样、分层抽
共同的特征,为了保证这一点,分层时用同一抽样比是必不可少的,故此选C 。

(2)根据每个个体都等可能入样,所以其可能性本容量与总体容量
比,故此题选C 。

知识点2 简单随机抽样、系统抽样、分层抽样的比较
【例选精析】
例1、 某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样
抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为
A.15,5,25
B.15,15,15
C.10,5,30 D15,10,20
[分析]因为300:200:400=3:2:4,于是将45分成3:2:4的三部分。

设三部分各抽取的个体数分别为3x,2x,4x,由3x+2x+4x=45,得x=5,故高一、高二、高三各年级抽取的人数分别为15,
10,20,故选D。

例2:一个地区共有5个乡镇,人口3万人,其中人口比例为3:2:5:2:3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程。

[分析]采用分层抽样的方法。

解:因为疾病与地理位置和水土均有关系,所以不同乡镇的发病情况差异明显,因而采用分层抽样的方法,具体过程如下:
(1)将3万人分为5层,其中一个乡镇为一层。

(2)按照样本容量的比例随机抽取各乡镇应抽取的样本。

300×3/15=60(人),300×2/15=100(人),300×2/15=40(人),300×2/15=60(人),因此各乡镇抽取人数分别为60人、40人、100人、40人、60 人。

(3)将300人组到一起,即得到一个样本。

【课堂练习】P52 练习1. 2. 3
【课堂小结】
1、分层抽样是当总体由差异明显的几部分组成时采用的抽样方法,进行分层抽样时应注意以下几点:
(1)、分层抽样中分多少层、如何分层要视具体情况而定,总的原则是,层内样本的差异要小,面层之间的样本差异要大,且互不重叠。

(2)为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样。

(3)在每层抽样时,应采用简单随机抽样或系统抽样的方法进行抽样。

2、分层抽样的优点是:使样本具有较强的代表性,并且抽样过程中可综合选用各种抽样方法,因此分层抽样是一种实用、操作性强、应用比较广泛的抽样方法。

【评论设计】
1、某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体情况,需从他们中抽取一个容量为36的样本,则适合的抽取方法是()
A.简单随机抽样
B.系统抽样
C.分层抽样
D.先从老人中剔除1人,然后再分层抽样
2、某校有500名学生,其中O型血的有200人,A型血的人有125人,B型血的有125人,AB型血的有50人,为了研究血型与色弱的关系,要从中抽取一个20人的样本,按分层抽样,O型血应抽取的人
数为人,A型血应抽取的人数为人,B型血应抽取的人数为人,AB型血应抽取的人数为人。

3、某中学高一年级有学生600人,高二年级有学生450人,高三年级有学生750人,每个学生被抽到的可能性均为0.2,若该校取一个容量为n的样本,则n= 。

4、对某单位1000名职工进行某项专门调查,调查的项目与职工任职年限有关,人事部门提供了如下资料:。

相关文档
最新文档