机械工程材料复习重点

合集下载

机械工程材料复习

机械工程材料复习

机械工程材料复习第一部分基本知识一、概述1.目的掌握常用工程材料的种类、成分、组织、性能和改性方法的基本知识(性能和改性方法是重点)。

具备根据零件的服役条件合理选择和使用材料;具备正确制定热处理工艺方法和妥善安排工艺路线的能力。

2复习方法以“材料的化学成分-加工工艺-组织、结构-性能-应用”之间的关系为主线,掌握材料性能和改性的方法,指导复习。

二、材料结构与性能:1•材料的性能:①使用性能:机械性能(刚度、弹性、强度、塑性、硬度、冲击韧性、疲劳强度、断裂韧性);②工艺性能:热处理性能、铸造性能、锻造性能、机械加工性能等。

2.材料的晶体结构的性能:纯金属、实际金属、合金的结构(第二章);纯金属:体心立方(-F e )、面心立方(-F e ),各向异性、强度、硬度低;塑性、韧性高实际金属:晶体缺陷(点:间隙、空位、置换;线:位错;面:晶界、压晶界)-各向同性;强度、硬度增高;塑性、韧性降低。

合金:多组元、固溶体与化合物。

力学性能优于纯金属。

单相合金组织:合金在固态下由一个固相组成;纯铁由单相铁素体组成多相合金组织:由两个以上固相组成的合金。

多相合金组织性能:较单相组织合金有更高的综合机械性能,工程实际中多采用多相组织的合金。

3.材料的组织结构与性能⑴。

结晶组织与性能:F、P、A、Fe3G Ld;1)平衡结晶组织平衡组织:在平衡凝固下,通过液体内部的扩散、固体内部的扩散以及液固二相之间的扩散使使各个晶粒内部的成分均匀,并一直保留到室温。

2)成分、组织对性能的影响①硬度(HBS):随C%!,硬度呈直线增加,HBS值主要取决于组成相F63C的相对量。

②抗拉强度(b) : C%v 0.9%范围内,先增加,C%> 0.9〜1.0 %后,b值显着下降。

③钢的塑性()、韧性(a k):随着C%!,呈非直线形下降。

3)硬而脆的化合物对性能的影响:第二相强化: 硬而脆的化合物,若化合物呈网状分布: 则使强度、塑性下降;若化合物呈球状、粒状(球墨铸铁):降低应力集中程度及对固溶体基体的割裂作用,使韧性及切削加工性提高;呈弥散分布于基体上: 则阻碍位错的移动及阻碍晶粒加热时的长大,使强度、硬度增加,而塑性、韧性仅略有下降或不降即弥散强化;呈层片状分布于基体上:则使强度、硬度提高,而塑性、韧性有所下降。

机械工程材料知识要点

机械工程材料知识要点

晶面:② 确定原点,建立坐标系,求出所求晶面在三个坐标轴上的截距。

② 取三个截距值的倒数并按比例化为最小整数,加圆括弧,形式为(hkl )。

晶向:① 确定原点,建立坐标系,求出所求晶面在三个坐标轴上的截距。

② 取三个截距值的倒数并按比例化为最小整数,加圆括弧,形式为(hkl )。

液态金属在理论结晶温度以下开始结晶的现象称过冷。

理论结晶温度与实际结晶温度的差∆T 称过冷度 ∆T= T 0 –T 1细化晶粒的方法增加冷却速度,导致结晶过冷度增加,使得N 较大,从而实现细化晶粒。

变质处理:液态金属中加入难熔固体颗粒增加形核率,而细化晶粒的方法。

机械振动等措施也能细化晶粒。

金属间化合物熔点高、硬度高,很脆,弥散分布的金属间化合物可提高合金强度、硬度和耐磨性,但降低塑性。

以固溶体为基,弥散分布金属间化合物,可提高强度、硬度和耐磨性,即第二相质点强化或称弥散强化。

杠杆原理:① 确定两平衡相的成分:设合金成分为x ,过x 做成分垂线。

在成分垂线相当于温度t 的o 点作水平线,与液固相线交点a 、b 所对应的成分x 1、x 2即分别为液相和固相的成分。

② 确定两平衡相的相对重量(杠杆定律)设合金的重量为1,液相重量为Q L ,固相重量Q α。

Q L + Q α =1Q L x 1 + Q α x 2 =x式中的x 2-x 、x 2-x 1、x -x 1即为相图中线段xx 2 (ob )、x 1x 2 (ab )、 x 1x (ao )的长度。

晶内偏析:溶质原子在液相能够充分扩散,在固相内来不及扩散,以致固溶体内先结晶的中心和后结晶的部分成分不同。

一个枝晶范围内或一个晶粒范围内成分不均匀的现象称作枝晶偏析。

冷速越大,枝晶偏析越严重。

121122x x x x Q x x x x Q αL --=--=加热到固相线以下100-200℃长时间保温,以使原子充分扩散、成分均匀,消除枝晶偏析,这种热处理工艺称作扩散退火。

机械工程材料复习

机械工程材料复习

机械工程材料复习机械工程材料1.力学性能:金属在外力作用下所表现出来的性能(强度、硬度、塑性、韧性、疲劳强度)。

2.强度:金属抵抗塑性变形和断裂的能力。

3.强度的主要判据:★弹性极限:试样产生完全弹性变形时所能承受的最大应力(σe)。

★屈服点:试样在拉伸过程中,力不增加仍能继续伸长时的应力(σs)。

★抗拉强度:试样被拉断前所能承受的最大拉应力(σb)。

4.塑性:材料断裂前发生不可逆塑变形的能力。

判据有断后伸长率和断面收缩率。

5.硬度:材料抵抗局部变形的能力(衡量金属软硬程度)。

6.布氏硬度:以一定的载荷把一定大小的淬火钢球(HBS)或硬质合金球(HBW)压入试件表面,保持规定时间后卸除试验力,试件表面得到一压痕。

7.120HBS10/1000/30:用直径10mm的淬火钢球做压头,在1000kgf试验力作用下,保持30s所测得的布氏硬度值是120。

8.HBS适用于测量硬度值小于450的材料,HBW适用于测量硬度值小于650的材料。

★优点:测量误差小,数据稳定,重复性强。

★缺点:压痕面积大,测量费时。

★应用:常用于测量较软的材料(灰铸铁、有色金属、退火正火钢),不适用于测量成品零件或薄壁零件的硬度。

9.洛氏硬度:顶角为120。

金刚石圆锥体或直径为1.588mm的淬火钢球做压头,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。

10.洛氏硬度的优缺点:★优点:操作简便、迅速,测量硬度范围大,压痕小。

可直接测量成品或薄壁零件。

★缺点:压痕小,对内部组织和硬度不均匀的材料测量结果不够准确。

★应用:HRA(120。

金刚石圆锥)用于硬度极高的材料(硬质合金);HRB (1.588mm钢球)用于硬度较软的材料(灰铸铁、有色金属、退火正火钢);HRC(120。

金刚石圆锥)用于硬度很高的材料(淬火钢)。

11.韧性:金属在断裂前吸收变形能量的能力。

表征金属材料抗冲击的能力。

12.疲劳强度:当应力低于某一值时,材料在该应力作用下,经无数次循环而不断裂的能力。

机械工程材料复习及重点

机械工程材料复习及重点

⒈熟悉碳钢:普通碳素结构钢Q215、Q235等;优质碳素结构钢20、45、60等;碳素工具钢T8、T10、T12等。

1)熟悉合金钢主要钢种低合金结构钢Q345(16Mn)、Q420(15MnVN);渗碳钢20Cr、20MnVB、20CrMnTi、18Cr2Ni4W A;调质钢40Cr、40CrB、40CrNiMo、38CrSi;弹簧钢65Mn、50CrV、60Si2Mn;轴承钢GCr9、GCr15、GCr15SiMn ;冷模具钢Cr12MoV;热模具钢5CrMnMo、5CrNiMo、3Cr2W8V低合金刃具钢9SiCr、CrWMn ;工具钢T8、T10、T12;高速钢W18Cr4V ;不锈钢1Cr13、2Cr13、3Cr13、4Cr13、1Cr17、 1Cr18Ni9Ti;常用铸铁:HT150、HT250、KT350-10、KT450-5、QT420-10、QT800-2等⒊重点复习题型⑴.要制造轻载齿轮、热锻模具、冷冲压模具、滚动轴承、高速车刀、重载机床床身、传动轴、后桥壳、量具、弹簧、汽轮机叶片、等零件,试从下列牌号中分别选出合适的材料,及选择对应的热处理方法(淬火、低温回火、中温回火、高温回火、退火)。

⑴T12 ⑵HT300 ⑶W18Cr4V ⑷GCr15 ⑸40Cr ⑹20CrMnTi ⑺Cr12MoV⑻5CrMnMo ⑼9SiCr ⑽1Cr13 ⑾60Si2Mn ⑿QT400-15 ⒀45 ⒁Q235⑵.有一个45号钢制的变速箱齿轮,其加工工序为:下料→锻造→正火→粗机加工→调质→精机加工→高频表面淬火+低温回火→磨加工→成品,试说明其中各热处理工序的工艺、目的及使用状态下的组织。

⑶.某型号柴油机的凸轮轴要求凸轮表面有高的硬度(HRC>50),心部具有良好的韧性(A k >40))原采用45钢调质处理再在凸轮表面进行高频淬火,最后低温回火现因工厂库存的45钢已用完,只剩下15钢,拟用15钢代替试说明:⑴原45钢各热处理工序的作用⑵改用15钢后,仍按原热处理工序进行能否满足性能要求?为什么?⑶改用15钢后为达到所要求的性能,在心部强度足够的前提下应采用何种热处理工艺?答:⑴:调质处理:获得回火索氏体,以保证工件心部的强度和韧性凸轮表面进行高频淬火:承受弯曲交变载荷或扭转交变载荷,提高耐磨性和承受冲击。

机械工程材料学总复习

机械工程材料学总复习

机械工程材料学总复习引言机械工程材料学是机械工程专业中的一门重要课程,它涉及到机械结构和机械零件的材料选择、制备和性能的理解与应用。

本文将对机械工程材料学的相关内容进行总复习,包括常用材料的分类、机械性能的评价方法、材料制备技术等方面的知识点。

一、常用材料分类根据材料的组织结构和性质,常用材料可以分为金属材料、非金属材料和复合材料三大类。

1. 金属材料金属材料是指主要成分为金属元素的材料,具有良好的导电性、导热性和高的机械强度。

金属材料的分类包括:•结构钢:包括碳素钢、合金钢等,常用于制造机械零件。

•铸造铁:包括灰铸铁、球墨铸铁等,常用于制造铸件。

•铝合金:具有较低的密度和良好的耐腐蚀性能,常用于制造航空航天器件。

•铜合金:具有良好的导电性和导热性能,常用于制造电子器件。

2. 非金属材料非金属材料主要是指主要成分不是金属元素的材料,其具有较好的绝缘性能和轻质化的特点。

非金属材料的分类包括:•聚合物材料:包括塑料、橡胶等,常用于制造塑料制品和橡胶制品。

•玻璃材料:具有良好的透明性和光学性能,常用于制造玻璃器皿和光学器件。

•陶瓷材料:具有较高的硬度和耐高温性能,常用于制造瓷器和陶瓷制品。

•复合材料:由两种或多种不同材料组合而成,具有优良的综合性能,常用于制造高强度和高性能的制品。

3. 复合材料复合材料是由两种或多种不同成分的材料组合而成,具有优异的综合性能。

常见的复合材料包括:•碳纤维增强复合材料:具有轻质、高强度、高模量的特点,广泛应用于航空航天和汽车工业等领域。

•玻璃纤维增强复合材料:具有较好的耐久性和抗腐蚀性能,常用于制造船舶和建筑材料。

•金属基复合材料:具有金属的导电性和复合材料的强度,用于制造电子器件和隔热材料。

二、机械性能的评价方法机械材料的性能评价是对其力学性能进行定性和定量的评定。

常见的机械性能评价方法包括:1. 强度评价强度是材料抵抗外力破坏的能力,常用的强度评价指标包括:•抗拉强度:材料在拉伸状态下承受的最大应力。

机械工程材料重点

机械工程材料重点

1.重结晶的定义(以铁为例说明)重结晶:有些金属在固态下随温度改变会发生同素异晶转变,这便导致结晶后形成的组织在继续冷却过程中发生变化。

以铁为例,铁在912摄氏度一下为体心立方结构,称为α-Fe从912摄氏度转变到1394摄氏度后具有面心立方结构为γ-Fe,当温度超过1394摄氏度熔点,又转变为体心立方结构,称为δ-Fe。

铁的这种转变以上所说的同素异构转变,由于不同晶体结构具有不同的致密度,因而当发生同素异构转变时,将伴有比容和体积的突变,所以在912摄氏度致密度小的α-Fe转变为γ-Fe,体积忽然减小,而在1394度由γ-Fe转变为致密度小的δ-Fe,体积又忽然增大。

2.简要说明滑移的错位理论:滑移时所需要的切应力要比整体滑移所需的切应力小很多,这是由于金属晶体通常不都是完整无缺的,总存在一定的局部缺陷。

因为位错移动一个原子距离时,只是位错附近少数几个原子移动不大的距离,故只需较小的应力。

这样,位移便由左向右一个一个移动,当位移达到晶体边缘时面,晶体上半部就相对于下半部滑移一个原子间距。

3.简述铁碳合金的基本相:A铁素体:碳在α-Fe中形成的间隙固溶体晶格结构:bbc B奥氏体:碳在γ-Fe中形成的间隙固溶体晶格结构:fccC渗碳体:是铁和碳的金属化合物(Fe3C),其含碳量为6.69% 晶格结构:简单六方4.比较重结晶、再结晶的区别有些金属在固态下随温度改变会发生同素异晶转变,这便导致结晶后形成的组织在继续冷却过程中发生变化叫做重结晶,再结晶是若将塑性冷变形后的多晶金属进一步加热到足够的温度,则通过新晶核的形成及长大,原来变了形的晶粒将形成新的、等轴的、无应变的晶粒。

5.铁-碳双重相图第一阶段:即在1153摄氏度时通过共晶反应而形成石墨,其反应式可写成L e→A E’+G第二阶段:即在1153~738摄氏度范围内冷却过程中,自奥氏体中析出二次石墨(GⅡ)。

第三阶段:即在738摄氏度时,通过共析反应而形成的石墨,其反应式如下A S’→F P’+G6.与自由锻相比,模锻具有如下特点(简答):生产效率高。

机械工程材料总复习资料

机械工程材料总复习资料

机械工程材料复习第一部分 基本知识一、概述⒈目的掌握常用工程材料的种类、成分、组织、性能和改性方法的基本知识(性能和改性方法是重点)。

具备根据零件的服役条件合理选择和使用材料;具备正确制定热处理工艺方法和妥善安排工艺路线的能力。

⒉复习方法以“材料的化学成分→加工工艺→组织、结构→性能→应用” 之间的关系为主线,掌握材料性能和改性的方法,指导复习。

二、材料结构与性能:⒈材料的性能:①使用性能:机械性能(刚度、弹性、强度、塑性、硬度、冲击韧性、疲劳强度、断裂韧性);②工艺性能:热处理性能、铸造性能、锻造性能、机械加工性能等。

⒉材料的晶体结构的性能:纯金属、实际金属、合金的结构(第二章); 纯金属:体心立方(e F -α)、面心立方(e F -γ),各向异性、强度、硬度低;塑性、韧性高实际金属:晶体缺陷(点:间隙、空位、置换;线:位错;面:晶界、压晶界)→各向同性;强度、硬度增高;塑性、韧性降低。

合金:多组元、固溶体与化合物。

力学性能优于纯金属。

单相合金组织:合金在固态下由一个固相组成;纯铁由单相铁素体组成。

多相合金组织:由两个以上固相组成的合金。

多相合金组织性能:较单相组织合金有更高的综合机械性能,工程实际中多采用多相组织的合金。

⒊材料的组织结构与性能⑴。

结晶组织与性能:F 、P 、A 、Fe3C 、Ld ;1)平衡结晶组织平衡组织:在平衡凝固下,通过液体内部的扩散、固体内部的扩散以及液固二相之间的扩散使使各个晶粒内部的成分均匀,并一直保留到室温。

2)成分、组织对性能的影响①硬度(HBS):随C ﹪↑,硬度呈直线增加, HBS 值主要取决于组成相C F e3的相对量。

②抗拉强度(b σ):C ﹪<0.9%范围内,先增加,C ﹪>0.9~1.0%后,b σ值显著下降。

③钢的塑性(δϕ)、韧性(k a ):随着C ﹪↑,呈非直线形下降。

3)硬而脆的化合物对性能的影响:第二相强化:硬而脆的化合物,若化合物呈网状分布:则使强度、塑性下降;若化合物呈球状、粒状(球墨铸铁):降低应力集中程度及对固溶体基体的割裂作用,使韧性及切削加工性提高;呈弥散分布于基体上:则阻碍位错的移动及阻碍晶粒加热时的长大,使强度、硬度增加,而塑性、韧性仅略有下降或不降即弥散强化;呈层片状分布于基体上:则使强度、硬度提高,而塑性、韧性有所下降。

考试复习笔记-机械工程材料

考试复习笔记-机械工程材料

•滑移的本质是什么
滑移是通过位错在切应力的作用下,沿着滑移面逐步移动的结果。
•α-Fe是体心立方结构,渗碳能力很小;γ-Fe的晶格结构类型是面心立方。
•马氏体的高、低碳的形态,上、下贝氏体的形态
当ω.c<0.3%时,钢中马氏体形态几乎全为板条马氏体;当ω.c>1.0%时几乎全为片状马氏体;ω.c在0.3%~1.0%之间为板条马氏体和片状马氏体的混合组织。
7、退火:是将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却,以获得接近平衡态组织的热处理工艺
8、正火:是将钢加热到Ac3或Accm(秋魁注:cm是下标)以上30~50℃,保温适当时间后,在静止的空气中冷却的热处理工艺。
9、淬火:是将钢件加热到Ac3或Ac1以上某一温度,保持一定时间后以适当速度冷却,获得马式体或下贝式体物质的热处理工艺。
答:⑴由于铜片宽度不同,退火后晶粒大小也不同。
a、最窄的一端基本无变形,退火后仍保持原始晶粒尺寸;
b、在较宽处处于临界变形范围,再结晶后晶粒粗大;
c、随宽度增大,变形增大,退火后晶粒变细,最后达到稳定值;
d、在最宽处,变形量很大,在局部地区形成形变结构,退火后形成异大晶粒。
⑵再结晶温度主要取决于变形度,变形越大,冷变形储存能越高,越易在结晶,因此在较低温度退火,较宽处优先发生再结晶。
4、淬透性和淬硬性的主要区别和其影响因素?
(1)区别:
淬透性:钢在淬火后的淬硬层深度,表征钢在淬火后获得马式体的能力。
淬硬性:钢在理想条件下进行淬火硬化后所达到的最高硬度的能力。
淬硬性好的钢淬透性不一定好,淬透性好的钢淬硬性也不一定好。
(2)影响因素:
钢的淬透性主要由其临界速度来决定。vK越小,钢的淬透性越好。凡是影响奥式体稳定的因素,均影响淬透性,这些因素有:①合金因素,它是影响淬透性的最主要因素。②碳的质量分数,压共析钢的淬透性随碳含量增加而增大,过共析钢的淬透性随碳含量的增加而减小③奥式体化温度,提高奥式体的温度,使奥式体晶粒长大,成分均匀化,从而减小珠光体的形成率,降低钢的vK,增大其淬透性。④钢中未溶第二相,钢中未溶入奥式体的碳化物、氮化物及其他非金属杂物,可成为奥式体分解的非自发核心,使vK增大,从而降低淬透性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《工程材料学》习题一、解释下列名词1.淬透性与淬硬性; 2.相与组织; 3.组织应力与热应力;4.过热与过烧; 5. 回火脆性与回火稳定性 6. 马氏体与回火马氏体7. 实际晶粒度与本质晶粒度 8.化学热处理与表面热处理淬透性:钢在淬火时获得的淬硬层深度称为钢的淬透性,其高低用规定条件下的淬硬层深度来表示淬硬性:指钢淬火后所能达到的最高硬度,即硬化能力相:金属或合金中,凡成分相同、结构相同,并与其它部分有晶只界分开的均匀组成部分称为相组织:显微组织实质是指在显微镜下观察到的各相晶粒的形态、数量、大小和分布的组合。

组织应力:由于工件内外温差而引起的奥氏体(γ或A)向马氏体(M)转变时间不一致而产生的应力热应力:由于工件内外温差而引起的胀缩不均匀而产生的应力过热:由于加热温度过高而使奥氏体晶粒长大的现象过烧:由于加热温度过高而使奥氏体晶粒局部熔化或氧化的现象回火脆性:在某些温度范围内回火时,会出现冲击韧性下降的现象,称为回火脆性回火稳定性:又叫耐回火性,即淬火钢在回炎过程中抵抗硬度下降的能力。

马氏体:碳在α-Fe中的过饱和固溶体称为马氏体。

回火马氏体:在回火时,从马氏体中析出的ε-碳化物以细片状分布在马氏体基础上的组织称为回火马氏体。

本质晶粒度:钢在加热时奥氏体晶粒的长大倾向称为本质晶粒度实际晶粒度:在给定温度下奥氏体的晶粒度称为实际晶粒度,它直接影响钢的性能。

化学热处理:将工件置于待定介质中加热保温,使介质中活性原子渗入工件表层,从而改变工件表层化学成分与组织,进而改变其性能的热处理工艺。

表面淬火::指在不改变钢的化学成分及心部组织的情况下,利用快速加热将表面奥氏休化后进行淬火以强化零件表面的热处理方法。

二、判断题1. ()合金的基本相包括固溶体、金属化合物和这两者的机械混合物。

错。

根据结构特点不同,可将合金中相公为固溶体和金属化合物两类。

2. ()实际金属是由许多位向不同的小晶粒组成的。

对。

3. ()为调整硬度,便于机械加工,低碳钢,中碳钢和低碳合金钢在锻造后都应采用正火处理。

对。

对于低、中碳的亚共析钢而言,正火与退火的目的相同;即调整硬度,便于切削加工,细化晶粒,提高力学性能,为淬火作组织准备,消除残作内应力,防止在后续加热或热处理中发生开裂或形变。

对于过共析钢而言,正火是为了消除网状二次渗碳体,为球化退火作组织准备。

对于普通话结构钢而言,正火可增加珠光体量并细化晶粒,提高强度、硬度和韧性,作为最终热处理。

4.()在钢中加入多种合金元素比加入少量单一元素效果要好些,因而合金钢将向合金元素少量多元化方向发展。

对。

不同的元素对于钢有不同的效果。

5. ()不论含碳量高低,马氏体的硬度都很高,脆性都很大。

错。

马氏体的硬度主要取决于其含碳量,含碳增加,其硬度也随之提高。

合金元素对马氏体的硬度影响不大,马氏体强化的主要原因是过饱和引起的固溶体强化。

6.()40Cr钢的淬透性与淬硬性都比T10钢要高。

错。

C曲线越靠右,含碳量越低,淬透性越好。

40Cr为含碳量为0.4%,含Cr量为1.5%左右的调质钢。

T10为含碳量为1%左右的碳素工具钢。

但是淬火后45钢香到马氏体,T10钢得到马氏体加少量残余奥氏体,硬度比45钢高。

7.()马氏体是碳在α-Fe中的过饱和固溶体,由奥氏体直接转变而来的,因此马氏体与转变前的奥氏体含碳量相同。

对。

当奥氏体过冷到Ms以下时,将转变为马氏体类型组织。

但是马氏体转变时,奥氏体中的碳全部保留在马氏休中。

马氏体转变的特点是高速长大、不扩散、共格切变性、降温形成、转变不完全。

8.()铸铁中的可锻铸铁是可以在高温下进行锻造的。

错。

所有的铸铁都不可以进行锻造。

9.()45钢淬火并回火后机械性能是随回火温度上升,塑性,韧性下降,强度,硬度上升。

错。

钢是随回火温度上升,塑性,韧性上升,强度,硬度提高。

10.()淬硬层深度是指由工件表面到马氏体区的深度。

错。

淬硬层深度是指由工件表面到半马氏体区(50%马氏体+50%非马氏体组织)的深度。

11.()钢的回火温度应在Ac1以上。

错。

回火是指将淬火钢加热到A1以下保温后再冷却的热处理工艺。

12.()热处理可改变铸铁中的石墨形态。

错。

热处理只能改变铸铁的基休组织,而不能改变石黑的状态和分布。

13.()奥氏体是碳在α-Fe中的间隙式固溶体。

错。

奥氏体是碳在γ-Fe中的间隙固溶体。

用符号A 或γ表示。

14.()高频表面淬火只改变工件表面组织,而不改变工件表面的化学成份。

对。

高频表面淬火属于表面淬火的一种。

表面淬火是指在不改变钢的化学成分及心部组织的情况下,利用快速加热将表面奥氏休化后进行淬火以强化零件表面的热处理方法。

15.()过冷度与冷却速度有关,冷却速度越大,则过冷度越小。

错。

过冷度(ΔT)是指理论结晶温度(T0)与实际结晶温度(T1)的差值,即ΔT=T0-T1。

但是冷却速度越大,则过冷度越大,。

16.()所谓的本质细晶粒钢,是说它在任何条件下晶粒均不粗化。

错。

本质晶粒度是指钢在加热时奥氏体晶粒的长大倾向称为实际晶粒度,通常把钢加热到940±10℃奥氏体化后,设法把奥氏体保留到室温来判断钢的本质晶粒度。

17.()因为单晶体是各项异性的,所以实际应用的金属材料在各个方向上的性能也是不同的。

错。

18.()钢中的杂质元素“硫”会引起钢的“冷脆”。

错。

钢中硫会引起热脆性,而磷有固溶强化作用,右提高强度硬度,但是却显著降低了钢的韧性塑性(叫冷脆性)19.()硬度试验操作简便,迅速,不会破坏零件,根据测量的硬度值还可以估计近似的强度值,因而是生产上常用的一种机械性能试验方法。

对。

20.()含碳量低于0.25%的碳钢,退火后硬度低,切削时易粘刀并影响刀具寿命,工件表面光洁度差,所以常采用正火。

对。

21. ()三种金属晶格类型中,体心立方晶格中原子排列最为紧密。

错。

原子排列紧密度与晶包的致密度有关,致密度越高,原子排列越紧密。

休心立方的致密度为0.68,而面心立方和密排六方的为0.74。

22. ()金属中的固溶体一般说塑性比较好,而金属化合物的硬度比较高。

对。

与纯金属相比,固溶休的强度硬度高,塑性韧性低,但与金属化全物相比其硬度要低得多,而塑性韧性要高得多。

23. ()高速钢反复锻造的目的是为了锻造成型。

错。

高速工具钢是莱氏体钢,其铸态组织为亚共晶组织,由鱼骨状的莱氏休与树枝状的马氏体加托氏体组成。

反复锻打是为了击碎鱼骨状碳化物,使其均匀的人布于基休中。

24. ()金属发生多晶型转变时,不仅晶格要发生变化,组织与性能也要发生变化。

对。

多晶型转变即同互异构转变,热处理的依据,25. ()发生过烧的工件可以通过重新加热后缓慢冷却使晶粒细化,而发生过热的工件只能报废。

错。

发生过热的工件可以通过重新加热后缓慢冷却使晶粒细化,而发生过烧的工件只能报废。

26 .()含Mo、W等合金元素的合金钢,其回火脆性倾向较小。

对。

在钢中加入W(约1%)、Mo(约0.5%)可以有效的抑制回火脆性。

27. ()铸钢的铸造性能比铸铁差,但常用于制造形状复杂,锻造有困难,要求有较高强度和塑性并受冲击载荷,铸铁不易达到的零件。

对。

三、回答下列问题1.零件设计时图纸上为什么常以其硬度值来表示材料力学性能的要求?答:(1)硬度是指材料抵抗局部塑性变形的能力。

(2)硬度试验操作简便,迅速,不会破坏零件,可用于成品件的检测,(3)硬度是一个综合力学性能指数,根据测量的硬度值还可以估计近似的强度值等。

2.说明WSn=25%的Pb—Sn合金在下列各温度时有哪些相组成物?有哪些组织组成物?(1)高于300℃;(2)刚冷却至180℃,共晶转变尚未开始;(3)在183℃共晶转变刚完;(4)室温。

答:(1)高于300℃:相:液相,组织为Pb—Sn溶化物(2)刚冷却至180℃,共晶转变尚未开始:相为液相+α相,组织为Pb—Sn溶化物+α回溶体(3)在183℃共晶转变刚完:相为α相和β相,组织为(α+β)共晶组织(4)室温:相为α相和β相,组织为α+(α+β)+βII。

3.图2—2为简化的铁碳合金状态图。

试回答下列问题:(1)以相组成物填写相图。

(标注见课本P51)(2)填空:碳在α-Fe中的固溶体称铁素体,其符号为 F或α,晶格类型是体心立方晶格,性能特点是强度硬度低,塑性韧性好。

(3)碳在γ-Fe中的固溶体称奥氏体,其符号为 A或γ,晶格类型是面心立方晶格,性能特点是强度低,塑性好。

(4)渗碳体是铁与碳的间隙固溶体,含碳量为 6.69 %,性能特点是硬度很高,脆性韧性几乎为“零”。

(5)ECF称共晶线线,所发生的反应称共晶反应,其反应式是L4.3→γ2.11+Fe3C 得到的组织为莱氏体(Le)。

(6)PSK称共析线,所发生的反应称共析反应,其反应式是γ0.77→α0.0218+Fe3C 得到的组织为珠光体(P)。

(7) E是碳在中的α-Fe最大溶解度点,P是碳在γ-Fe中的最大溶解度点,A1即 PSK 线,A3即 GS 线,Acm即 ES 线。

4.过共析钢的淬火温度是多少?为什么要选择在这一温度?答:对于过共析钢而言,淬火温度为AC1+(30~50)℃5.如下图所示,确定不同冷却速度下可能获得的组织,并比较其硬度值。

答:V1线是炉冷后空冷,得到的是珠光体(P),V2是加热后空冷,得到的是索氏体(S)或回火索氏体(S 回);V3得到的是下贝氏体、马氏体和过冷奥氏体(B下+M+A′);V4为水冷,得到的是马氏体和残余奥氏体(M+A′)。

硬度值:P<S< B下<M+ A′6. 共析钢C曲线与冷却曲线如图(1)指出图中各点的组织(2)并奥氏体化后各冷却方式下的热处理工艺名称答:(1) 1:过冷奥氏体;2:过冷奥氏体和珠光体;3:珠光体(P);4:过冷奥氏体;5:过冷奥氏体和索氏体;6:索氏体(S);7:淬火马氏体+残余奥氏体(M淬A′);8:过冷奥氏体;9:过冷奥氏体和贝氏体;10:贝氏体(B)。

(2) V1:等温退火;V2:正火;V3等温回火;V4:淬火。

7.将一T12钢小试样分别加热到780ºC和860ºC,经保温后以大于Vk的速度冷却至室温,试问:(T12钢Ac1=730ºC Accm=830ºC)(1)、哪个温度淬火后晶粒粗大?(2)、哪个温度淬火后未溶碳化物较多?(3)、哪个温度淬火后残余奥氏体量较多?(4)、哪个淬火温度合适?为什么?答:(1)860℃下淬火后晶粒更细。

860℃>830℃,即加热温度大于AC㎝由于奥氏体晶粒粗大,含碳量提高,使淬火后马氏体晶粒也粗大,且残余奥氏体量增多,使钢的硬度、耐磨性下降,脆性和变形开裂倾向增加。

(2)780ºC下未溶碳化物较多,(3))860℃下残余奥氏体量较多。

相关文档
最新文档