误差理论与数据处理作业答案 第五章
《误差理论与数据处理(第6版)》费业泰-课后答案全

《误差理论与数据处理》练习题第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈-1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T T T h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆- g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
《误差理论与数据处理》答案..

《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
费业泰误差理论与数据处理课后答案全

《误差理论与数据处理》练习题参考答案第一章 绪论1-7 用二等标准活塞压力计测量某压力得100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?【解】在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
故二等标准活塞压力计测量值的绝对误差=测得值-实际值=100.2-100.5=-0.3( Pa )。
相对误差=0.3100%0.3%100.5-⨯≈- 1-9 使用凯特摆时,g 由公式g=4π2(h 1+h 2)/T 2给定。
今测出长度(h 1+h 2)为(1.04230±0.00005)m ,振动时间T 为(2.0480±0.0005)s 。
试求g 及其最大相对误差。
如果(h 1+h 2)测出为(1.04220±0.0005)m ,为了使g 的误差能小于0.001m/s 2,T 的测量必须精确到多少? 【解】测得(h 1+h 2)的平均值为1.04230(m ),T 的平均值为2.0480(s )。
由21224()g h h Tπ=+,得:2224 1.042309.81053(/)2.0480g m s π=⨯= 当12()h h +有微小变化12()h h ∆+、T 有T ∆变化时,令12h h h =+ g 的变化量为:22121212231221212248()()()()42[()()]g g g h h T h h h h Th h T T TTh h h h T Tπππ∂∂∆=∆++∆=∆+-+∆∂+∂∆=∆+-+2223224842()g g g h T h h Th T T TT h h T Tπππ∂∂∆=∆+∆=∆-∆∂∂∆=∆-g 的最大相对误差为:22222222124422[][]244()0.000052(0.0005)[]100%0.054%1.04230 2.0480T T h h h h g h T T T T T g h Th h h T Tππππ∆∆∆-∆-∆∆∆===-+±⨯±=-⨯≈± 如果12()h h +测出为(1.04220±0.0005)m ,为使g 的误差能小于0.001m/s 2,即:0.001g ∆<也即 21212242[()()]0.001Tg h h h h T Tπ∆∆=∆+-+< 22420.0005 1.042200.0012.0480 2.04800.0005 1.017780.00106TT T π∆±-⨯<±-∆< 求得:0.00055()T s ∆<1-10. 检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?【解】 引用误差=示值误差/测量范围上限。
误差理论与数据处理--课后答案

《误差理论与数据处理》练习题参-考-答-案第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10 检定2.5级(即引用误差为2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格? 解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2% 因为 2%<2.5% 所以,该电表合格。
1-12用两种方法分别测量L 1=50mm ,L 2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=I L 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o射手的相对误差为:多级火箭的射击精度高。
第二章 误差的基本性质与处理2-6 测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,168.59,168.40, 168.50。
《误差理论与数据处理》答案

《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
《误差理论与数据处理》答案

《误差理论与数据处理》第一章 绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答: 研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化; 粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm ,已知其最大绝对误差为 1μm ,试问该被测件的真实长度为多少?解: 绝对误差=测得值-真值,即: △L =L -L 0 已知:L =50,△L =1μm =0.001mm ,测件的真实长度L0=L -△L =50-0.001=49.999(mm ) 1-7.用二等标准活塞压力计测量某压力得 100.2Pa ,该压力用更准确的办法测得为100.5Pa ,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
误差理论与数据处理--课后答案

...《误差理论与数据处理》练习题参-考-答-案第一章绪论1-5 测得某三角块的三个角度之和为180o00’02”, 试求测量的绝对误差和相对误差解:绝对误差等于:o180 00 02o 180 2相对误差等于:2o180 180 260 60=26480000.30864 1 0.000031%1-8在测量某一长度时,读数值为 2.31m,其最大绝对误差为20 m,试求其最大相对误差。
相对误差max 绝对误差测得值max100%-620102.31100%8.66 - 410 %1-10 检定 2.5 级(即引用误差为 2.5%)的全量程为l00V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为2V由此求出该电表的引用相对误差为2/100=2%因为2%<2.5%所以,该电表合格。
1-12用两种方法分别测量L1=50mm,L2=80mm。
测得值各为50.004mm,80.6mm。
试评定两种方法测量精度的高低。
相对误差50.4 50L1:50mm I 100% 0.008%15080 .006 80L2:80mm I 100% 0.0075%280I1 I 所以L2=80mm 方法测量精度高。
21-13 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?1解:多级火箭的相对误差为:0.10.00001 0. 001%10000射手的相对误差为:1cm 0.01m0.2 0.002% 50m 50m多级火箭的射击精度高。
第二章误差的基本性质与处理2-6 测量某电路电流共 5 次,测得数据( 单位为mA)为168.41 ,168.54 ,168.59 ,168.40 ,2.32。
试求算术平均值及其标准差、或然误差和平均误差。
解:5IiI i 1 m A8.67( )55(Ii I )i 180.75 15(Ii I )2 2i 150.508 0.053 5 1 35(Ii I )4 4i 10.8 0.065 5 1 52—7 在立式测长仪上测量某校对量具,重复测量 5 次,测得数据( 单位为mm)为20.0015,20.16 ,20.0018 ,20.0015 ,20.0011 。
《误差理论与数据处理(第7版)》费业泰习题解答

《误差理论与数据处理》(第七版)习题及参考答案第一章绪论1-5测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于: 180 o 00 02o 1802 相对误差等于: 2 o180180 2 60 60 =26480000.000003086410.000031%1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m ,试求 其最大相对误差。
相对误差max绝对误差 测得值 max 100%-6 20 102.31100%8.66 -4 10%1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现 50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格? 最大引用误差某量程最大示值误差 测量范围上限100%2 100100%2%2.5%该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.6mm 。
试评定两种方法测量精度的高低。
相对误差50.450L 1:50mmI100%0.008%15080.680L2:80mmI100%0.0075%280I 1I 所以L 2=80mm 方法测量精度高。
21-13多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:0.12.320.001%10000射手的相对误差为:1cm0.01m8.6700020.002%50m50m多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm,其测量误差分别为11和9m;而用第三种测量方法测量另一零件的长度L2=150mm。
m其测量误差为12m,试比较三种测量方法精度的高低。
相对误差I 11m1mm11080.7%I 9m2mm11050.50082%I 12m3mm15080.708%I3II第三种方法的测量精度最高21第二章误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA)为168.41,168.54,1.,168.40,168.50。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
������1 X= ������ = C-1ATL 2 = 即解得 ������1 5.047 ������2 = 8.203 这就是 x1,x2 的最佳估计值,现在再求上述估计量的精度估计。 将最佳估计值代入误差方程可得 ������1 0.0834 ������2 0.0567 ������3 = −0.0399 ������4 −0.1145 得
6
������i = 0.00000451
i=1
设为等精度测量,测得数据标准差相同,为
1
误差理论与数据处理 作业
σ=
6 2 i=1 ������i
������ − ������ 0.00000451 6−3
=
=0.001226 为求出估计量 x1,x2,x3 的标准差,首先求出不定乘数 dij, 。dij 是矩阵 C-1 中各 元素,即 ������11 ������12 ������13 0.50 0.25 0.25 -1 ������ ������ ������ C = 21 = 0.25 0.50 0.25 22 23 ������31 ������32 ������33 0.25 0.25 0.50 则 d11=0.50,d22=0.50,d33=0.50 可得估计量的标准差为 σx1=σ ������11 =0.001226× 0.5= 0.000867 σx2=σ ������22 =0.001226× 0.5= 0.000867 σx3=σ ������33 =0.001226× 0.5= 0.000867
=
=0.112 为求出估计量 x1,x2 的标准差,首先求出不定乘数 dij, 。dij 是矩阵 C-1 中各元
3
误差理论与数据处理 作业
素,即 C-1= 则 d11=0.6276,d22=0.6659 可得估计量的标准差为 σx1=σ ������11 =0.112× 0.6276= 0.0887 σx2=σ ������22 =0.112× 0.6659= 0.0914 ������11 ������21 ������12 ������22 = 0.6276 −0.3278 −0.3278 0.6659
5-9
解:正规方程为 33x1+32x2=70.184 32x1+117x2=111.994 由正规方程的系数,可列出求解不定乘数 d11 d12 d21 d22 的方程组 33d11 + 32d12 = 1 32d12 + 117d12 = 0 33d11 + 32d12 = 0 32d12 + 117d12 = 1 分别解得 d11=0.0412,d22=0.0116 可得估计量的标准差为 σx1=σ ������11 =0.004× 0.0412= 0.000812 σx2=σ ������22 =0.004× 0.0116= 0.000431
误差理论与数据处理 作业
第五章
5-3
解:由误差方程课列出矩阵式 ������1 ������2 ������3 ������4 = ������5 ������6 ������1 1 0 ������2 0 1 ������3 - 0 0 1 −1 ������4 1 0 ������5 0 1 ������6 0 0 1 0 −1 −1
2
误差理论与数据处理 作业
5-10
解:令 v1=0,v2=0 可解得 x10=5.13,x20=8.26。 将 f4 在 x10,x20 处展开,取一次项得 f4(x1,x2)= f4(x10,x20)+∂ x4 (x1 − x10 )+∂ x4 (x2 − x20 )
10 20
∂f
∂f
=3.165+0.3805(x1-5.13)+ 0.1468(x2-8.26) =0.3805x1+ 0.1468x2 +0.0004670 此时可按线性化处理。 由误差方程课列出矩阵式 ������1 ������1 1 0 ������2 ������1 ������2 0 1 = ������3 ������2 1 1 ������3 ������4 0.3805 0.1468 ������4 C-1=(ATA)-1= 0.6276 −0.3278 −0.3278 0.6659
建立经验公式的一般步骤: 1、测定值的校定,估计测定值的测量精度; 2、绘出测验曲线; 3、分析曲线特点,寻求恰当的经验公式形式; 4、确定求解方程中待定系数的方法并计算; 5、检验.
4
=
1 0 0 1 −1 −1
10.013 10.010 10.002 0.004 0.008 0.006
= 即解得
10.0125 10.0093 10.0033
������1 10.0125 ������2 = 10.0093 ������3 10.0033 这就是 x1,x2,x3 的最佳估计值,现在再求上述估计量的精度估计。 将最佳估计值代入误差方程可得 ������1 0.0005 ������2 0.0007 ������3 −0.0012 ������4 = 0.0008 ������5 −0.0013 ������6 −0.0000
4
0.6276 −0.3278
−0.3278 0.6659
1 0
0 1 0.3805 1 1 0.1468
5.130 8.260 13.21 3.010
=
5.047 8.203
������i = 0.0249
i=1
设为等精度测量,测得数据标准差相同,为 σ=
4 2 i=1 ������i
������ − ���2 ������3 0.25 0.25 0.50
0.50 0.25 C-1=(ATA)-1= 0.25 0.50 0.25 0.25 ������1 X= ������2 = C-1ATL ������3 0.50 0.25 0.25 0.50 0.25 0.25 0.25 0.25 0.50 1 0 0 0 1 0 0 0 1 1 −1 0