二元一次方程组的概念及解法

合集下载

二元一次方程组格式_概述说明以及解释

二元一次方程组格式_概述说明以及解释

二元一次方程组格式概述说明以及解释1. 引言1.1 概述二元一次方程组是数学中常见的基本代数方程组之一。

它由两个未知数和两个等式组成,其中每个等式都是未知数的一次项与常数项的和。

解决二元一次方程组可以帮助我们在现实生活、商业领域以及工程问题中找到解决方案。

1.2 二元一次方程组定义二元一次方程组通常表示为:```ax + by = cdx + ey = f```其中a、b、c、d、e和f分别代表系数,x和y代表未知数。

此类方程组有两个未知数x和y,并且每个方程的最高次幂为1,因此称为一次方程组。

1.3 解法方法介绍解决二元一次方程组可以使用多种解法方法,例如消元法、代入法和矩阵法等。

消元法通过逐步变换原方程组,将其转化为更简单的形式来求解。

代入法则先求得一个未知数的值,再将其代入另一个方程中求得第二个未知数的值。

矩阵法则通过矩阵运算来求得未知数的值。

在接下来的文章中,我们将详细介绍二元一次方程组的格式说明、解题步骤以及在实际问题中的应用场景分析。

同时,我们也会总结要点回顾,并探讨学习启示、拓展延伸思考以及未来发展趋势的展望。

通过本文的阅读,相信您将对二元一次方程组有更加深入的理解,并能够灵活运用于各种问题的求解中。

2. 二元一次方程组格式说明2.1 标准形式与一般形式对比二元一次方程组可以有不同的表示形式,其中最常见的是标准形式和一般形式。

标准形式的方程组可以写为:```ax + by = cdx + ey = f```其中,a、b、c、d、e、f是已知的实数系数,x和y是未知数。

一般形式的方程组可以写为:```Ax + By + C = 0Dx + Ey + F = 0其中,A、B、C、D、E、F是已知的实数系数。

标准形式和一般形式之间存在着对应关系。

通过对标准形式适当变换,我们可以得到等价的一般形式方程组,反之亦然。

2.2 系数与未知数的关系解析二元一次方程组中的未知数通常用x和y表示。

在标准形式中,每个未知数都会带上一个系数。

(word完整版)二元一次方程组的概念和解法-教师版

(word完整版)二元一次方程组的概念和解法-教师版

(word 完整版)二元一次方程组的概念和解法-教师版二元一次方程的基本概念1。

含有两个未知数,并且含未知数项的最高次数是1的方程叫二元一次方程。

判定一个方程是二元一次方程必须同时满足三个条件: ①方程两边的代数式都是整式——整式方程; ②含有两个未知数——“二元”;③含有未知数的项的次数为1——“一次”。

2。

二元一次方程的一般形式:0ax by c ++=(0a ≠,0b ≠)3。

二元一次方程的解:使二元一次方程左、右两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般情况下,一个二元一次方程有无数个解。

【例1】 下列各式是二元一次方程的是( )A 。

30x y z -+=B 。

30xy y x -+=C 。

12023x y -= D 。

210y x+-=【解析】根据二元一次方程的定义,从二元一次方程的未知数的个数和次数方面辨别. 【答案】故本题选C .【巩固】下列方程是二元一次方程的是( )A.31x xy -= B 。

2430x x += C.23y += D.3x y =【答案】D .【例2】 若32125m n x y ---=是二元一次方程,则求m 、n 的值.【答案】由定义知:321m -=,11n -=,所以:1m =,2n =.【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

【答案】根据题意可得:20m -≠,11n -=,11m -=,所以2n =,0m =.二元一次方程组的概念和解法同步练习知识讲解(word 完整版)二元一次方程组的概念和解法-教师版【例3】 若32125m n x y ---=是二元一次方程,则求m 、n 的值。

【答案】由定义知:321m -=,11n -=,所以:1m =,2n =。

【巩固】已知方程11(2)2m n m x y m ---+=是关于x 、y 的二元一次方程,求m 、n 的值。

七年级下-二元一次方程组的定义及解法

七年级下-二元一次方程组的定义及解法

二元一次方程组的定义及解法知识集结知识元二元一次方程(组)的定义知识讲解1. 二元一次方程的定义:含有两个未知数,且含有未知数的项的次数为1的整式方程叫二元一次方程。

所以满足三个条件:①方程中有且只有两个未知数;②方程中含有未知数的项的次数为1;③方程为整式方程,就是二元一次方程。

注意:主要考查未知数的项的次数为1,方程必须为整式,不能为分式。

例:x=2y.2.二元一次方程组的定义:由几个一次方程组成并且含有两个未知数的方程组,叫二元一次方程组。

注意三条:①方程组中有且只有两个未知数。

②方程组中含有未知数的项的次数为1。

③方程组中每个方程均为整式方程。

注意:二元一次方程组不一定由两个二元一次方程合在一起:①方程可以超过两个;②有的方程可以只有一元。

例题精讲二元一次方程(组)的定义例1.下列方程中,是二元一次方程的是().A.8x2+1=y B.y=8x+1C.y=D.xy=1例2.下列方程组中,是二元一次方程组的是().C.D.A.B.例3.有下列方程组:(1)(2)(3)(4),其中说法正确的是().A.只有(1)、(3)是二元一次方程组B.只有(3)、(4)是二元一次方程组C.只有(4)是二元一次方程组D.只有(2)不是二元一次方程组根据定义求字母的值知识讲解含有参数的二元一次方程组,根据二元一次方程的定义:1.二元的系数不为零。

2.未知数的次数为1。

注意:出现在选择填空题时,可以不用解出方程,可以直接将m,n的值代入验证即可。

例题精讲根据定义求字母的值例1.已知3 =y是二元一次方程,那么k的值是().A.2B.3C.1D.0例2.若﹣8 =10是关于x,y的二元一次方程,则m+n=.例3.'若(a-3)x+=9是关于x,y的二元一次方程,求a的值。

'由实际问题抽象出二元一次方程组知识讲解分析实际问题,找出等量关系,列出实际问题.例题精讲由实际问题抽象出二元一次方程组例1.4辆板车和5辆卡车一次能运27吨货,10辆板车和3车卡车一次能运货20吨,设每辆板车每次可运x吨货,每辆卡车每次能运y吨货,则可列方程组().A.B.C.D.例2.元旦期间,某服装商场按标价打折销售,小王去该商场买了两件衣服,第一件打6折,第二件打5折,共记230元,付款后,收银员发现两件衣服的标价牌换错了,又找给小王20元,请问两件衣服的原标价各是多少?解:设第一件衣服的原标价为x元,第二件衣服的原标价为y元;由题意可得方程组__________。

消元法解二元一次方程组的概念、步骤与方法

消元法解二元一次方程组的概念、步骤与方法

消元法解二‎元一次方程‎组的概念、步骤与方法‎湖南李琳高明生一、概念步骤与‎方法:1.由二元一次‎方程组中一‎个方程,将一个未知‎数用含另一‎未知数的式‎子表示出来‎,再代入另一‎方程,实现消元,进而求得这‎个二元一次‎方程组的解‎.这种方法叫‎做代入消元‎法,简称代入法‎.2.用代入消元‎法解二元一‎次方程组的‎步骤:(1)从方程组中‎选取一个系‎数比较简单‎的方程,把其中的某‎一个未知数‎用含另一个‎未知数的式‎子表示出来‎.(2)把(1)中所得的方‎程代入另一‎个方程,消去一个未‎知数.(3)解所得到的‎一元一次方‎程,求得一个未‎知数的值.(4)把所求得的‎一个未知数‎的值代入(1)中求得的方‎程,求出另一个‎未知数的值‎,从而确定方‎程组的解.注意:⑴运用代入法‎时,将一个方程‎变形后,必须代入另‎一个方程,否则就会得‎出“0=0”的形式,求不出未知‎数的值.⑵当方程组中‎有一个方程‎的一个未知‎数的系数是‎1或-1时,用代入法较‎简便.3.两个二元一‎次方程中同‎一未知数的‎系数相反或‎相等时,将两个方程‎的两边分别‎相加或相减‎,就能消去这‎个未知数,得到一个一‎元一次方程‎,这种方法叫‎做加减消元‎法,简称加减法‎。

用加减消元‎法解二元一‎次方程组的‎基本思路仍‎然是“消元”.4.用加减法解‎二元一次方‎程组的一般‎步骤:第一步:在所解的方‎程组中的两‎个方程,如果某个未‎知数的系数‎互为相反数‎,•可以把这两‎个方程的两‎边分别相加‎,消去这个未‎知数;如果未知数‎的系数相等‎,•可以直接把‎两个方程的‎两边相减,消去这个未‎知数.第二步:如果方程组‎中不存在某‎个未知数的‎系数绝对值‎相等,那么应选出‎一组系数(选最小公倍‎数较小的一‎组系数),求出它们的‎最小公倍数‎(如果一个系‎数是另一个‎系数的整数‎倍,该系数即为‎最小公倍数‎),然后将原方‎程组变形,使新方程组‎的这组系数‎的绝对值相‎等(都等于原系‎数的最小公‎倍数),再加减消元‎.第三步:对于较复杂‎的二元一次‎方程组,应先化简(去分母,去括号,•合并同类项‎等),通常要把每‎个方程整理‎成含未知数‎的项在方程‎的左边,•常数项在方‎程的右边的‎形式,再作如上加‎减消元的考‎虑.注意:⑴当两个方程‎中同一未知‎数的系数的‎绝对值相等‎或成整数倍‎时,用加减法较‎简便.⑵如果所给(列)方程组较复‎杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪‎种方法消元‎好.5.列方程组解‎简单的实际‎问题.解实际问题‎的关键在于‎理解题意,找出数量之‎间的相等关‎系,这里的相等‎关系应是两‎个或三个,正确的列出‎一个(或几个)方程,再组成方程‎组.6.列二元一次‎方程组解应‎用题的一般‎步骤:⑴设出题中的‎两个未知数‎;⑵找出题中的‎两个等量关‎系;⑶根据等量关‎系列出需要‎的代数式,进而列出两‎个方程,并组成方程‎组;⑷解这个方程‎组,求出未知数‎的值.⑸检验所得结‎果的正确性‎及合理性并‎写出答案.注意:对于可解的‎应用题,一般来说,有几个未知‎数,就应找出几‎个等量关系‎,从而列出几‎个方程.即未知数的‎个数应与方‎程组中方程‎的个数相等‎. 二、化归思想 所谓转化思‎想一般是指‎将新问题向‎旧问题转化‎、复杂问题向‎简单问题转‎化、未知问题向‎已知问题转‎化等等.在解二元一‎次方程中主‎要体现在运‎用“加减”和“代入”等消元的方‎法,把新问题“二元”或“三元”通过消去一‎个未知数转‎化为旧问题‎“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问‎题的解决,它也是解二‎元一次方程‎最基本的思‎想.三、典型例题解‎析:类型一:基本概念:例1、(2005年‎盐城大纲)若一个二元‎一次方程的‎一个解为则‎21x y =⎧⎨=-⎩,,这个方程可‎以是___‎_____‎.(只要写出一‎个)分析:本题是一道‎开放型问题‎,考查方程的‎概念,满足题意的‎答案不惟一‎,解此类题目‎时,可以先设出‎系数在代入‎算出另一边‎的值。

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)

二元一次方程组及其解法(培优)二元一次方程组及其解法在研究二元一次方程组之前,需要先了解二元一次方程的概念。

二元一次方程必须同时具备三个条件:(1)这个方程中有且只有两个未知数;(2)含未知数的次数是1;(3)对未知数而言,构成方程的代数式是整式。

解二元一次方程的解和二元一次方程组的解的意义是相同的,都是指方程的解集。

熟练掌握二元一次方程组的解法,可以用来解决许多实际问题。

例如,已知下列方程2xm1+3yn3=5是二元一次方程,则m+n=0.根据二元一次方程的概念可知:m-1=1,n+3=1,解得m=2,n=-2,故m+n=0.除了解二元一次方程组的基本方法外,还有加减消元法、代入法等解法。

在解题时需要根据具体情况选择最合适的方法。

变式题组:01.请判断下列各方程中,哪些是二元一次方程,哪些不是,并说明理由。

⑴2x+5y=16 - 是二元一次方程,符合三个条件。

⑵2x+y+z=3 - 不是二元一次方程,因为含有三个未知数z。

02.若方程2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x是二元一次方程,则a=,b=。

根据二元一次方程的定义,2xa1+3=y2b+(-5/1)+y=21(4)x2+2x+1=(5)2x+10xy=5x不是二元一次方程,因为含有x的二次项。

03.在下列四个方程组①{4x+3y=10.2x-4y=9},②{4x+y=12.7xy=29},③{1/x-2y=-45.2x+3y=4},④{7x+8y=5.x-4y=1}中,是二元一次方程组的有()只有①和③是二元一次方程组,因为它们都符合三个条件。

例2:(十堰中考)二元一次方程组{3x-2y=7.x+2y=5}的解是()解法:二元一次方程组的解,就是它的两个方程的公共解。

根据此概念,此类题有两种解法:(1)若方程组较难解,则将每个解中的两未知数分别带入方程组,若使方程组都成立,则为该方程组的解,若使其中任一方程不成立,则不是该方程组的解;(2)若方程组较易解,则直接解方程组可得答案。

二元一次方程组的概念及解法

二元一次方程组的概念及解法

第四讲 二元一次方程组的概念及解法考点梳理考点一 二元一次方程组的概念含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程。

把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

典例分析 例1、在方程组、、、、、中,是二元一次方程组的有 个;例2、已知二元一次方程2x -y =1,若x =2,则y = ;若y =0,则x = . 练习:1、方程x +y =2的正整数解是__________. 2、在方程3x -ay =8中,如果是它的一个解,那么a 的值为例3、方程组⎩⎨⎧=+=-521y x y x 的解是( )A 、 ⎩⎨⎧=-=21y xB 、⎩⎨⎧-==12y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。

例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。

问鸡兔各几何。

”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。

考点二 解二元一次方程⎩⎨⎧==13y x(一)消元解二元一次方程⎧⎨⎩代入消元法加减消元法典例分析例1、把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = , 化成含x 的代数式表示y 的形式:y = . 练习:用含一个未知数的代数式表示另一未知数 (1)5x-3y=x+2y (2)2(3y-3)=6x+4 (3)1223=+y x (4)24741=+y x例2、用代入消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩(4)25342x y x y -=⎧⎨+=⎩例3、用加减消元法解下列方程 (1)⎩⎨⎧-=-=+54032y x y x (2)⎩⎨⎧=-=+15234932y x y x(3)23328x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩(二)二元一次方程组的特殊解法 1、整体代入法例4、解方程组y x x y +=+-=⎧⎨⎪⎩⎪14232313、设参代入法例6、解方程组⎩⎨⎧==-3:4:23y x y x2、先消常数法 例5、解方程组⎩⎨⎧=-=+1523334y x y x4、换元法例7、解方程组()()x y x yx y x y +--=+=-⎧⎨⎪⎩⎪236345、简化系数法 例8、解方程组⎩⎨⎧=-=-443334y x y x练习:解下列方程(1)⎩⎨⎧-=-+=-85)1(21)2(3y x x y (2)⎪⎩⎪⎨⎧=+=184332y x y x(3)⎩⎨⎧=--=--023256017154y x y x (4)⎪⎩⎪⎨⎧=-=+234321332y x y x(5)⎪⎩⎪⎨⎧=-+=+1323241y x x y (6)⎩⎨⎧=+=+24121232432321y x y x考点三 二元一次方程组解的应用 例1、若,则= ,= 。

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法(学生版)

第4讲 二元一次方程(组)的概念与解法一、知识回顾:一、二元一次方程组的相关概念 1. 二元一次方程的定义定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 2.二元一次方程的解定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 特别说明:二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来,即二元一次方程的解通常表示为⎩⎨⎧ba==y x 的形式.3. 二元一次方程组的定义定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452x y x +=⎧⎨=⎩.4. 二元一次方程组的解定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.二、二元一次方程组的解法 1.解二元一次方程组的思想2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程:①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示y (或x ),即变成b ax y +=(或b ay x +=)的形式;②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程;③解这个一元一次方程,求出x (或y )的值;转化消元一元一次方程二元一次方程组④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解. (2)用加减消元法解二元一次方程组的一般过程:①根据“等式的两边都乘以(或除以)同一个不等于0的数,等式仍然成立”的性质,将原方程组化成有一个未知数的系数绝对值相等的形式;②根据“等式两边加上(或减去)同一个整式,所得的方程与原方程是同解方程”的性质,将变形后的两个方程相加(或相减),消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出一个未知数的值;④把求得的未知数的值代入原方程组中比较简单的一个方程中,求出另一个未知数的值; ⑤将两个未知数的值用“{”联立在一起即可.二、经典例题:知识点一、二元一次方程(组)的概念【例1】若(a −2)x |a−1|−3y =5是关于x 、y 的二元一次方程,则a 的值为( ) A .0 B .2 C .0或2 D .1或2 【例2】下列各组数中,是二元一次方程3x −5y =8的解的是( )A .{x =1y =1B .{x =−1y =1C .{x =−1y =−1D .{x =1y =−1【例3】若{x =−1y =2是关于x ,y 的二元一次方程3x+ay=5的一个解,则a 的值为 【例4】如果{x =1,y =2是关于x ,y 的方程mx +2y =6的解,那么m 的值为() A .−2 B .−1 C .1 D .2【例5】下列方程中:①xy =1 ;②3x +2y =4 ;③2x +3y =0 ;④x 4+y3=7 ,二元一次方程有( ) A .1个 B .2个 C .3个 D .4个 【例6】下列方程组是二元一次方程组的是( )A .{mn =2m +n =3 B .{5m −2n =01m+n =3C .{m +n =03m +2a =16D .{m =8m 3−n 2=1知识点二、二元一次方程组的解法【例7】用代入消元法解方程组 {y =x −13x −2y =5正确的化简结果是( ) A .3x −2x −2=5 B .3x −2x +2=5 C .3x −2x −1=5 D .3x −2x +1=5【例8】用代入法解方程组使得代入后化简比较容易的变形是( )A .由(1),得x=2−4y 3B .由(1),得y=2−3x 4C .由(2),得x=y+52D .由(2),得y=2x ﹣5【例9】解方程组。

二元一次方程组及其解法

二元一次方程组及其解法

二元一次方程组及其解法
二元一次方程组是由两个含有两个未知数的等式组成的方程组,通常的一般式表示为:
ax + by = c
dx + ey = f
其中,a、b、c、d、e、f 都是已知数,x、y 都是未知数。

解法有以下几种:
1. 消元法:通过变换方程式将一个未知数消去,再代入另一个方程求解。

2. 代入法:选择其中一个方程,将其中一个未知数表示成另一个未知数的函数,代入另一个方程中求解。

3. 公式法:利用二元一次方程组的公式解法求解。

4. 矩阵法:用矩阵运算的方法求解方程组。

以上四种方法都可以求得二元一次方程组的解,一般解的形式为一个有序二元组 (x, y)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二元一次方程组的概念及解法
知识点梳理
知识点一二元一次方程组的概念
含有两个未知数,并且含有未知数的相的次数都是1,像这样的方程叫做二元一次方程。

把两个二元一次方程合在一起就组成了一个方程组,像这样的方程组叫做二元一次方程组。

使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。

一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

典例分析
例1、在方程组、、、、
、中,是二元一次方程组的有个;
例2、已知二元一次方程2x-y=1,若x=2,则y=;若y=0,则x=.
变式1:方程x+y=2的正整数解是__________.
变式2、在方程3x-ay=8中,如果是它的一个解,那
么a的值为⎩


=
=
1
3 y
x
例3 方程组⎩⎨⎧=+=-5
21
y x y x 的解是( )
A 、 ⎩⎨⎧=-=21y x
B 、⎩⎨⎧-==12
y x C 、⎩⎨⎧==21y x D 、⎩⎨⎧==12y x
例4、有一个两位数,它的两个数字之和为11,把这个两位数的个位数字与十位数字对调,所得的新数比原数大63,设原两位数的个位数字为,十位数字为,则用代数式表示原两位数为 ,根据题意得方程组。

例5、我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十头,下有九十四足。

问鸡兔各几何。

”你能用二元一次方程组表示题中的数量关系吗?使找出问题的解。

知识点二 解二元一次方程 消元解二元一次方程⎧⎨⎩代入消元法加减消元法
典例分析
例1、 把方程2x -y -5=0化成含y 的代数式表示x 的形式:x = .
化成含x 的代数式表示y 的形式:y = .
例2、用代入消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+15
2349
32y x y x
(3)23
328x y x y -=-⎧⎨+=⎩
(4)25342x y x y -=⎧⎨+=⎩
例3、用加减消元法解下列方程 (1)、⎩⎨⎧-=-=+54032y x y x (2)、⎩⎨⎧=-=+152349
32y x y x
(3)23
328
x y x y -=-⎧⎨+=⎩ (4)25342x y x y -=⎧⎨+=⎩
例4、解下列方程
(1)⎩⎨
⎧-=-+=-8
5)1(21
)2(3y x x y (2)⎪⎩⎪⎨⎧=+=
18
433
2y x y
x
(3)⎩⎨⎧=--=--0
23256017154y x y x (4)⎪⎩⎪⎨⎧=-=+2
3432
1332y
x y x
(5)⎪⎩⎪⎨⎧=-+=
+1
323
2
41y x x y (6)⎩⎨
⎧=+=+241
2123243
2321y x y x
例5 、若,则= ,= 。

例6、 如果
是同类项,则、的值是( ) A 、=-3,=2 B 、=2,=-3 C 、=-2,=3 D 、=3,=-2
例7、已知方程组

有相同的解,则
= ,= 。

例8、二元一次方程组323
221
x y m x y m +=+⎧⎨-=-⎩ 的解互为相反数,求m 的值.
例9、已知等式(2A -7B)x+(3A -8B )=8x+10,对一切实数x 都成立,求A 、B 的值。

过关检测
1. 在方程32y x =--中,若2x =,则_____y =.若2y =,则______x =
2.若方程23x y -=写成用含x 的式子表示y 的形式:_________________;写成用含y 的式子表示x 的形式:___________________________;
3. 已知⎩⎨⎧==1
2y x 是方程2x +ay=5的解,则 a= .
4.二元一次方程343x my mx ny -=+=和有一个公共解1
1
x y =⎧⎨=-⎩,则
m=______,n=_____;
5.已知2|2|(3)0a b b -++-=,那么______ab =
6.对于方程组5
322(1),(2),(3),(4)16
1021x y x y x x y x xy x y x y y +=⎧+===⎧⎧⎧⎪
⎨⎨⎨⎨
-==-+=--=⎩⎩⎩⎪⎩
,是二元一次方程组的为( )
A.(1)和(2)
B.(3)和(4)
C.(1)和(3)
D.(2)和(4) 7.若2
5
x y =⎧⎨
=⎩是方程22kx y -=的一个解,则k 等于( ) 858..
.6.5
3
3
A B C D -
8.方程组341112
38x y x y =⎧⎪
⎨-=⎪⎩的解为( )
1
214
2 (43)
33
02
8
x x x x A B C D y y y y ⎧
==⎧⎧⎪==⎧⎪⎪⎪⎨
⎨⎨⎨==⎩⎪⎪⎪==⎩⎩
⎪⎩
9.已知,a b 满足方程组28
27a b a b +=⎧⎨
+=⎩
,则a b -的值为( )
A.-1
B.0
C.1
D.2 10、若3122
x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值。

11、用加减法解二元一次方程解方程组: (1)⎩⎨
⎧=+=-1
3
y x y x (2)⎩⎨
⎧=+=-8
312034y x y x
(3)⎩⎨⎧=+=-14
64534y x y x (4)⎩⎨
⎧=-=+1
2354y x y x
(5)⎩⎨⎧=+=+1
32645y x y x (6)⎩⎨
⎧=+=-17
32723y x y x
12、代入消元法解方程组:
(1)23
321
y x x y =-⎧⎨
+=⎩ (2)⎩⎨
⎧-=-=+4
23
57y x y x
(3) 23
3418
x y
x y ⎧=⎪
⎨⎪+=⎩ (4)56
3640
x y x y +=⎧⎨
--=⎩。

相关文档
最新文档