全国高考山东省数学(理)试卷及答案【精校版】
全国高考理科数学考试试卷(山东)参考答案

高考理科数学考试真题(山东卷)参考答案1.D 【解析】由已知得2,1a b ==,∴22(2)34a bi i i +=+=+(). 2.C 【解析】|1|213x x -<⇒-<<,∴(1,3)A =-,[1,4]B =。
∴[1,3)A B ⋂=.3.C 【解析】2222(log )10log 1log 1x x x ->⇒><-或,解得1202x x ><<或,故选C . 4.A 【解析】 “至少有一个实根”的反面为“没有实根”,故选A .5.D 【解析】由已知得x y >,此时22,x y 大小不定,排除A,B ;由正弦函数的性质,可知C 不成立;故选D .6.D 【解析】由34x x =得,0x =、2x =或2x =-(舍去),直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)(2)|44S x x dx x x =-=-=⎰. 7.C 【解析】第一组和第二组的频率之和为0.4,故样本容量为20500.4=,第三组的频率为0.36,故第三组的人数为500.3618⨯=,故第三组中有疗效的人数为18-6=12. 8.B 【解析】如图所示,方程()()f x g x =有两个不相等的实根等价于两个函数的图象有两个不同的交点,结合图象可知,当直线y kx =的斜率大于坐标原点与点(2,1)的连续的斜率,且小于直线1y x =-的斜率时符合题意,故选112k <<. 9.B 【解析】解法一 如图可知目标函数在(2,1)处取得最小值,故2a b +=224420a b ab +==,又224224ab a b a b =⨯⨯+≤, ∴()22222220445a b a b a b+++=+≤,所以224a b +≥,当且仅当2a b =时取得,即a b ==时等号成立. 解法二 如图上图可知目标函数在(2,1)处取得最小值,故2a b +=把2a b +=作平面直角坐标下aOb 中的直线,则22a b +的几何意义是直线2a b +=坐标原点距离的平方,显然22a b +的最小值是坐标原点到直线2a b +=方,即24=. 10.A 【解析】1C的离心率为a ,2C的离心率为a,=,得424a b =,即a =, ∴2C的渐近线的方程为y =,即0x =. 11.3【解析】214130,2,1x n -⨯+==≤;224230,3,2x n -⨯+==≤;234330,4,3x n -⨯+==≤;244430,5,4x n -⨯+>==,此时输出n 值,故输出n 的值为3.12.16【解析】∵cos AB AC AB AC A ⋅=⋅,∴由cos tan AB AC A A ⋅=,得23AB AC ⋅=,故ABC 的面积为11||||sin 266AB AC π=.13.14【解析】如图,设C 点到平面PAB 的距离为h ,三角形PAB 的面积为S ,则213V Sh =,1111132212E ADB V V S h Sh -==⨯⨯=,∴1214V V =. 14.2【解析】266123166()()rrr r r r rr b T C ax C a b xx---+==,令1230r -=,得3r =,故333620C a b =,∴221,22ab a b ab =+=≥,当且仅当1a b ==或1ab ==-时等号成立.15.)+∞【解析】函数()g x 的定义域为[1,2]-,根据已知得()()()2h xg x f x +=,所以()=2()()62h x f x g x x b -=+()()h x g x >恒成立,即62x b +,令3y x b =+,y =,则只要直线3y x b =+在半圆224(0)x y y +=≥2>,解得b >,故实数b的取值范围是)+∞. 16.【解析】(Ⅰ)已知()sin2cos2f x m x n x =⋅=+a b ,)(x f 过点)2,32(),3,12(-ππ∴()sincos1266f m n πππ=+= 234cos 34sin )32(-=+=πππn m f∴12122m n ⎧+=⎪⎪⎨⎪-=-⎪⎩解得⎩⎨⎧==13n m(Ⅱ)由(Ⅰ)知)62sin(22cos 2sin 3)(π+=+=x x x x f由题意知()()2sin(22)6g x f x x πϕϕ=+=++设()y g x =的图象上符合题意的最高点为0(,2)x由题意知2011x +=。
普通高等学校招生国统一考试数学理试题山东卷,含答案

2021年普通高等招生全国统一考试数学理试题〔卷,含答案〕 本套试卷分第一卷和第二卷两局部,一共4页.满分是150分.考试用时120分钟.在在考试完毕之后以后,必须将本套试卷和答题卡一起交回.考前须知:1.在答题之前,所有考生必须用直径0.5毫米黑色墨水签字笔将本人的姓名、准考证号、县区和科类填写上在答题卡上和试卷规定的位置上.2.第一卷每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目之答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第二卷必须用0.5毫米黑色签字笔答题,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来之答案,然后再写上新之答案;不能使用涂改液、胶带纸、修正带.不按以上要求答题之答案无效.4.填空题请直接填写上答案,解答题应写出文字说明、证明过程或者演算步骤. 参考公式: 锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 假如事件,A B 互斥,那么()()()P A B P A P B +=+;假如事件,A B HY ,那么()()()P A B P A P B ⋅=⋅.第I 卷〔一共60分〕一、选择题:本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.〔1〕假设复数x 满足(2)117z i i -=+〔i 为虚数单位〕,那么z 为〔A 〕35i + 〔B 〕35i - 〔C 〕35i -+ 〔D 〕35i --〔2〕全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,那么U C A B 为〔A 〕{}1,2,4 〔B 〕{}2,3,4 〔C 〕{}0,2,4 〔D 〕{}0,2,3,4 〔3〕设0a >且1a ≠,那么“函数()x f x a =在R 上是减函数 〞,是“函数3()(2)g x a x =-在R 上是增函数〞的〔A 〕充分不必要条件 〔B 〕必要不充分条件〔C 〕充分必要条件 〔D 〕既不充分也不必要条件〔4〕采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .那么抽到的人中,做问卷B 的人数为〔A 〕7 〔B 〕 9 〔C 〕 10 〔D 〕15 〔5〕变量,x y 满足约束条件222441x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩,那么目的函数3z x y =-的取值范围是〔A 〕3[,6]2- 〔B 〕3[,1]2-- 〔C 〕[1,6]- 〔D 〕3[6,]2- 〔6〕执行下面的程序图,假如输入4a =,那么输出的n 的值是〔A 〕2 〔B 〕3〔C 〕4 〔D 〕5〔7〕假设42ππθ⎡⎤∈⎢⎥⎣⎦,,37sin 2=8θ,那么sin θ= 〔A 〕35 〔B 〕45 〔C 〕74 〔D 〕34〔8〕定义在R 上的函数()f x 满足(6)()f x f x +=.当31x -≤<-时,2()(2)f x x =-+,当13x -≤<时,()f x x =。
普通高等学校招生全国统一考试数学理试题(山东卷)(含解析)

(山东卷)理科数学全解全析第I 卷一、选择题:本大题共12小题,每小题5分,共60分。
(1)满足M ⊆{}1234,,,a a a a 且{}{}12312,,,M a a a a a ⋂=的集合M 的个数是().1A ().2B ().3C ().4D2.设z 的共轭复数是z ,若4z z +=,8z z ⋅=,则zz等于 ().A i ().B i - ().1C ± ().D i ±【标准答案】:D 。
【试题分析】 可设2z bi =+,由8z z ⋅=得248, 2.b b +==±()2222.88i z z i z ±===±【高考考点】: 共轭复数的概念、复数的运算。
【易错提醒】: 可能在以下两个方面出错:一是不能依据共轭复数条件设2z bi =+简化运算;二是由248b +=只求得 2.b =【学科网备考提示】: 理解复数基本概念并进行复数代数形式的四则运算是复数内容的基本要求,另外待定系数法、分母实数化等解题技巧也要引起足够重视。
3函数ln cos ()22y x x ππ=-<<的图象是5.已知4cos()sin 365παα-+=7sin()6πα+的值是 3().5A -3().5B 4().5C - 4().5D 【标准答案】:C 。
【试题分析】:334cos()sin cos sin 36225παααα-+=+=,134cos 225αα+=, 7314sin()sin()cos .66225ππαααα⎛⎫+=-+=-+=- ⎪ ⎪⎝⎭【高考考点】: 三角函数变换与求值。
【易错提醒】: 不能由334cos()sin sin 3625παααα-+=+=得到134cos 225αα+=是思考受阻的重要体现。
【学科网备考提示】:三角变换与求值主要考查诱导公式、和差公式的熟练应用,其间会涉及一些计算技巧,如本题中的为需而变。
(word版)山东省高考理科数学试卷及答案【word版】,文档

2021 年高考山东卷理科数学真题及参考答案一.:本大共10小,每小5分,共50分。
在每小出的四个中,符合目要求的。
1.a,b R,i是虚数位,假设a i与2bi互共复数,〔a2bi〕〔A〕54i(B)54i(C)34i(D)34i 答案:D2.集合A{xx12},B{yy2x,x[0,2]},AB(A)[0,2](B)(1,3)(C)[1,3)(D)(1,4)答案:C3.函数f(x)1的定域(log2x)21(A )1(B)(2,)(C)1)(D)1) (0,)(0,)(2,(0,][2,222答案:C4.用反法明命“a,b R,方程x2ax b0至少有一个根〞要做的假是(A)方程x2ax b0没有根(B)方程x2ax b0至多有一个根(C)方程x2ax b0至多有两个根(D)方程x2ax b0恰好有两个根答案:A5.数x,y足a x a y(0a1,以下关系式恒成立的)是(A)1111(B)ln(x21)ln(y21)(C)sinx siny(D)x3y3x2y2答案:D直y4x与曲yx2在第一象限内成的封形的面A〕22〔B〕42〔C〕2〔D〕4答案:D7.了研究某厂的效,取假设干名志愿者行床,所有志愿者的舒数据〔位:kPa〕的分区[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的序分号第一,第二,⋯⋯,第五,右是根据数据制成的率分布直方,第一与第二共有20人,第三中没有效的有6人,第三中有效的人数频率/组距0121314151617舒张压/kPa 〔A〕6〔B〕8〔C〕12〔D〕18答案:C8.函数fx x21gxkx.假设方程f x gx有两个不相等的实根,那么实数k的取值范围是,11〔C〕〔1,2〕〔D〕〔2,〕〔A〕〔,〕〔〕0B〔,1〕22答案:B9.x,y满足的约束条件x-y-10,zaxby(a0,b0)在该约束条件下取得最小值2x-y-3当目标函数0,25时,a2b2的最小值为〔A〕5〔B〕4〔C〕5〔D〕2答案:B10.a0,b0,椭圆C的方程为x2y21,双曲线C的方程为x2y21,C与C的离心率之积为1a2b22a2b2123,那么C2的渐近线方程为2〔A〕x2y0〔B〕2x y0〔C〕x2y0〔D〕2xy0答案:A二.填空题:本大题共5小题,每题5分,共25分,答案须填在题中横线上。
2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)(解析版)

2019年山东省高考数学试卷(理科)(全国新课标Ⅰ)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N =( )A. {x|−4<x <3}B. {x|−4<x <−2}C. {x|−2<x <2}D. {x|2<x <3}2. 设复数z 满足|z -i |=1,z 在复平面内对应的点为(x ,y ),则( )A. (x +1)2+y 2=1B. (x −1)2+y 2=1C. x 2+(y −1)2=1D. x 2+(y +1)2=1 3. 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a4. 古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是√5−12(√5−12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是√5−12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190 cm5. 函数f (x )=sinx+xcosx+x 2在[-π,π]的图象大致为( )A.B.C.D.6. 我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A. 516 B. 1132 C. 2132 D. 1116 7. 已知非零向量a ⃗ ,b ⃗ 满足|a ⃗ |=2|b ⃗ |,且(a ⃗ -b ⃗ )⊥b ⃗ ,则a ⃗ 与b ⃗ 的夹角为( )A. π6B. π3C. 2π3D. 5π68. 如图是求12+12+12的程序框图,图中空白框中应填入()A. A =12+A B. A =2+1A C. A =11+2A D. A =1+12A9. 记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( ) A. a n =2n −5 B. a n =3n −10 C. S n =2n 2−8nD. S n =12n 2−2n10. 已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为()A.x 22+y 2=1B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=111. 关于函数f (x )=sin|x |+|sin x |,有下述四个结论:①f (x )是偶函数②f (x )在区间(π2,π)上单调递增③f (x )在[-π,π]上有4个零点④f (x )的最大值是2 其中所有正确结论的编号是A. ①②④B. ②④C. ①④D. ①③12. 已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为() A. 8√6π B. 4√6π C. 2√6π D. √6π 二、填空题(本大题共4小题,共20.0分)13. 曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.14. 记S n 为等比数列{a n }的前n 项和,若a 1=13,a 42=a 6,则S 5=________.15. 甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是______.16. 已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ •F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为______.三、解答题(本大题共7小题,共82.0分)17. △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若√2a +b =2c ,求sin C .18. 如图,直四棱柱ABCD -A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ; (2)求二面角A -MA 1-N 的正弦值.19. 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程;(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB |.20. 已知函数f (x )=sin x -ln (1+x ),f ′(x )为f (x )的导数.证明:(1)f ′(x )在区间(-1,π2)存在唯一极大值点; (2)f (x )有且仅有2个零点.21. 为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得-1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得-1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X . (1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i (i =0,1,…,8)表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则p 0=0,p 8=1,p i =ap i -1+bp i +cp i +1(i =1,2,…,7),其中a =P (X =-1),b =P (X =0),c =P (X =1).假设α=0.5,β=0.8.(i )证明:{p i +1-p i }(i =0,1,2,…,7)为等比数列; (ii )求p 4,并根据p 4的值解释这种试验方案的合理性.22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =1−t 21+t 2,y =4t1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+√3ρsinθ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.23.已知a,b,c为正数,且满足abc=1.证明:(1)1a +1b+1c≤a2+b2+c2;(2)(a+b)3+(b+c)3+(c+a)3≥24.答案和解析1.【答案】C【解析】解:∵M={x|-4<x<2},N={x|x2-x-6<0}={x|-2<x<3},∴M∩N={x|-2<x<2}.故选:C.利用一元二次不等式的解法和交集的运算即可得出.本题考查了一元二次不等式的解法和交集的运算,属基础题.2.【答案】C【解析】【分析】本题考查复数的模、复数的几何意义,正确理解复数的几何意义是解题关键,属基础题.由z在复平面内对应的点为(x,y),可得z=x+yi,然后根据|z-i|=1即可得解.【解答】解:∵z在复平面内对应的点为(x,y),∴z=x+yi,∴z-i=x+(y-1)i,∴|z-i|=,∴x2+(y-1)2=1,故选:C.3.【答案】B【解析】解:a=log20.2<log21=0,b=20.2>20=1,∵0<0.20.3<0.20=1,∴c=0.20.3∈(0,1),∴a<c<b,故选:B.由指数函数和对数函数的单调性易得log20.2<0,20.2>1,0<0.20.3<1,从而得出a,b,c的大小关系.本题考查了指数函数和对数函数的单调性,增函数和减函数的定义,属基础题.4.【答案】B【解析】解:头顶至脖子下端的长度为26cm,说明头顶到咽喉的长度小于26cm,由头顶至咽喉的长度与咽喉至肚脐的长度之比是≈0.618,可得咽喉至肚脐的长度小于≈42cm,由头顶至肚脐的长度与肚脐至足底的长度之比是,可得肚脐至足底的长度小于=110,即有该人的身高小于110+68=178cm,又肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于105×0.618≈65cm,即该人的身高大于65+105=170cm,故选:B.充分运用黄金分割比例,结合图形,计算可估计身高.本题考查简单的推理和估算,考查运算能力和推理能力,属于中档题.5.【答案】D【解析】解:∵f(x)=,x∈[-π,π],∴f(-x)==-=-f(x),∴f(x)为[-π,π]上的奇函数,因此排除A;又f ()=,因此排除B,C;故选:D.由f(x)的解析式知f(x)为奇函数可排除A,然后计算f(π),判断正负即可排除B,C.本题考查了函数的图象与性质,解题关键是奇偶性和特殊值,属基础题.6.【答案】A【解析】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.7.【答案】B【解析】解:∵(-)⊥,∴=,∴==,∵,∴.故选:B.由(-)⊥,可得,进一步得到,然后求出夹角即可.本题考查了平面向量的数量积和向量的夹角,属基础题.8.【答案】A【解析】解:模拟程序的运行,可得:A=,k=1;满足条件k≤2,执行循环体,A=,k=2;满足条件k≤2,执行循环体,A=,k=3;此时,不满足条件k≤2,退出循环,输出A的值为,观察A的取值规律可知图中空白框中应填入A=.故选:A.模拟程序的运行,由题意,依次写出每次得到的A的值,观察规律即可得解.本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.【答案】A【解析】【分析】根据题意,设等差数列{a n}的公差为d,则有,求出首项和公差,然后求出通项公式和前n项和即可.本题考查等差数列的通项公式以及前n项和公式,关键是求出等差数列的公差以及首项,属于基础题.【解答】解:设等差数列{a n}的公差为d,由S4=0,a5=5,得,∴,∴a n=2n-5,,故选:A.10.【答案】B【解析】解:∵|AF2|=2|BF2|,∴|AB|=3|BF2|,又|AB|=|BF1|,∴|BF1|=3|BF2|,又|BF1|+|BF2|=2a,∴|BF2|=,∴|AF2|=a,|BF1|=a,在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1=,根据cos∠AF2O+cos∠BF2F1=0,可得+=0,解得a2=3,∴a=.b2=a2-c2=3-1=2.所以椭圆C的方程为:+=1.故选:B.根据椭圆的定义以及余弦定理列方程可解得a=,b=,可得椭圆的方程.本题考查了椭圆的性质,属中档题.11.【答案】C【解析】解:f(-x)=sin|-x|+|sin(-x)|=sin|x|+|sinx|=f(x),则函数f(x)是偶函数,故①正确.当x∈(,π)时,sin|x|=sinx,|sinx|=sinx,则f(x)=sinx+sinx=2sinx为减函数,故②错误.当0≤x≤π时,f(x)=sin|x|+|sinx|=sinx+sinx=2sinx,由f(x)=0得2sinx=0,得x=0或x=π,由f(x)是偶函数,得在[-π,π)上还有一个零点x=-π,即函数f(x)在[-π,π]上有3个零点,故③错误.当sin|x|=1,|sinx|=1时,f(x)取得最大值2,故④正确,故正确的结论是①④,故选C.根据绝对值的应用,结合三角函数的图象和性质分别进行判断即可.本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键.12.【答案】D【解析】解:如图,由PA=PB=PC ,ABC是边长为2的正三角形可知,三棱锥P-ABC为正三棱锥,则顶点P在底面的射影O为底面三角形的中心.连接BO并延长,交AC于G,则AC⊥BG,又PO⊥AC,PO∩BG=O,可得AC⊥平面PBG,则PB⊥AC.∵E,F分别是PA,AB的中点,∴EF∥PB.又∠CEF=90°,即EF⊥CE,∴PB⊥CE,得PB⊥平面PAC,∴正三棱锥P-ABC的三条侧棱两两互相垂直.把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球,其直径为D=,半径为,则球O的体积为.故选D.由题意画出图形,证明三棱锥P-ABC为正三棱锥,且三条侧棱两两互相垂直,再由补形法求外接球球O的体积.本题考查多面体外接球体积的求法,考查空间想象能力与思维能力,考查计算能力,是中档题.13.【答案】y=3x【解析】【分析】本题考查了利用导数研究函数上某点的切线方程,切点处的导数值为斜率是解题关键,属基础题.对y=3(x2+x)e x求导,可将x=0代入导函数,求得斜率,即可得到切线方程.【解答】解:∵y=3(x2+x)e x,∴y'=3e x(x2+3x+1),∴当x=0时,y'=3,∴y=3(x2+x)e x在点(0,0)处的切线斜率k=3,∴切线方程为:y=3x.故答案为:y=3x.14.【答案】1213【解析】【分析】本题主要考查等比数列前n项和的计算,结合条件建立方程组求出q是解决本题的关键.根据等比数列的通项公式,建立方程求出q的值,结合等比数列的前n项和公式进行计算即可.【解答】解:在等比数列中,由a42=a6,得q6a12=q5a1>0,即q>0,q=3,则S5==,故答案为:. 15.【答案】0.18【解析】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.【答案】2【解析】解:如图,∵=,且•=0,∴OA⊥F1B,则F1B:y=,联立,解得B (,),则,,∴=4c2,整理得:b2=3a2,∴c2-a2=3a2,即4a2=c2,∴,e=.故答案为:2.由题意画出图形,结合已知可得F1B⊥OA,写出F1B的方程,与y=联立求得B点坐标,再由勾股定理求解.本题考查双曲线的简单性质,考查数形结合的解题思想方法,考查计算能力,是中档题.17.【答案】解:(1)∵△ABC的内角A,B,C的对边分别为a,b,c.设(sin B-sin C)2=sin2A-sin B sin C.则sin2B+sin2C-2sin B sin C=sin2A-sin B sin C,∴由正弦定理得:b2+c2-a2=bc,∴cos A =b2+c2−a22bc =bc2bc=12,∵0<A<π,∴A=π3.(2)∵√2a+b=2c,A=π3,∴由正弦定理得√2sinA+sinB=2sinC,∴√6 2+sin(2π3−C)=2sinC解得sin(C-π6)=√22,∴C-π6=π4,C=π4+π6,∴sin C=sin(π4+π6)=sinπ4cosπ6+cosπ4sinπ6=√22×√32+√22×12=√6+√24.【解析】(1)由正弦定理得:b2+c2-a2=bc,再由余弦定理能求出A.(2)由已知及正弦定理可得:sin(C-)=,可解得C的值,由两角和的正弦函数公式即可得解.本题考查了正弦定理、余弦定理、三角函数性质,考查了推理能力与计算能力,属于中档题.18.【答案】(1)证明:如图,过N作NH⊥AD,则NH∥AA1,且NH=12AA1,又MB∥AA1,MB=12AA1,∴四边形NMBH为平行四边形,则NM∥BH,由NH∥AA1,N为A1D中点,得H为AD中点,而E为BC中点,∴BE∥DH,BE=DH,则四边形BEDH为平行四边形,则BH∥DE,∴NM∥DE,∵NM⊄平面C1DE,DE⊂平面C1DE,∴MN∥平面C1DE;(2)解:以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,则N(√32,−12,2),M(√3,1,2),A1(√3,-1,4),NM⃗⃗⃗⃗⃗⃗⃗ =(√32,32,0),NA1⃗⃗⃗⃗⃗⃗⃗⃗ =(√32,−12,2),设平面A1MN的一个法向量为m⃗⃗⃗ =(x,y,z),由{m⃗⃗ ⋅NM⃗⃗⃗⃗⃗⃗⃗ =√32x+32y=0m⃗⃗ ⋅NA1⃗⃗⃗⃗⃗⃗⃗⃗ =√32x−12y+2z=0,取x=√3,得m⃗⃗⃗ =(√3,−1,−1),又平面MAA1的一个法向量为n⃗=(1,0,0),∴cos<m⃗⃗⃗ ,n⃗>=m⃗⃗⃗ ⋅n⃗⃗|m⃗⃗⃗ |⋅|n⃗⃗ |=√3√5=√155.∴二面角A-MA1-N的正弦值为√105.【解析】本题考查直线与平面平行的判定,考查空间想象能力与思维能力,训练了利用空间向量求解空间角,是中档题.(1)过N作NH⊥AD,证明NM∥BH,再证明BH∥DE,可得NM∥DE,再由线面平行的判定可得MN∥平面C1DE;(2)以D为坐标原点,以垂直于DC得直线为x轴,以DC所在直线为y轴,以DD1所在直线为z轴建立空间直角坐标系,分别求出平面A1MN与平面MAA1的一个法向量,由两法向量所成角的余弦值可得二面角A-MA1-N的正弦值.19.【答案】解:(1)设直线l的方程为y=32(x-t),将其代入抛物线y2=3x得:94x2-(92t+3)x+94t2=0,设A(x1,y1),B(x2,y2),则x1+x2=92t+394=2t+43,①,x1x2=t2②,由抛物线的定义可得:|AF|+|BF|=x1+x2+p=2t+43+32=4,解得t=712,直线l 的方程为y =32x -78.(2)若AP ⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,则y 1=-3y 2,∴32(x 1-t )=-3×32(x 2-t ),化简得x 1=-3x 2+4t ,③ 由①②③解得t =1,x 1=3,x 2=13, ∴|AB |=√1+94√(3+13)2−4=4√133. 【解析】(1)很具韦达定理以及抛物线的定义可得. (2)若=3,则y 1=-3y 2,⇒x 1=-3x 2+4t ,再结合韦达定理可解得t=1,x 1=3,x 2=,再用弦长公式可得.本题考查了抛物线的性质,属中档题.20.【答案】证明:(1)f (x )的定义域为(-1,+∞),f ′(x )=cos x −11+x ,f ″(x )=-sin x +1(1+x)2,令g (x )=-sin x +1(1+x)2,则g ′(x )=-cos x −2(1+x)3<0在(-1,π2)恒成立, ∴f ″(x )在(-1,π2)上为减函数,又∵f ″(0)=1,f ″(π2)=-1+1(1+π2)2<-1+1=0,由零点存在定理可知,函数f ″(x )在(-1,π2)上存在唯一的零点x 0,结合单调性可得,f ′(x )在(-1,x 0)上单调递增, 在(x 0,π2)上单调递减,可得f ′(x )在区间(-1,π2)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f ′(x )单调递增,f ′(x )<f ′(0)=0,f (x )单调递减; 当x ∈(0,x 0)时,f ′(x )单调递增,f ′(x )>f ′(0)=0,f (x )单调递增;由于f ′(x )在(x 0,π2)上单调递减,且f ′(x 0)>0,f ′(π2)=−11+π2<0,由零点存在定理可知,函数f ′(x )在(x 0,π2)上存在唯一零点x 1,结合单调性可知, 当x ∈(x 0,x 1)时,f ′(x )单调递减,f ′(x )>f ′(x 1)=0,f (x )单调递增; 当x ∈(x 1,π2)时,f ′(x )单调递减,f ′(x )<f ′(x 1)=0,f (x )单调递减. 当x ∈(π2,π)时,cos x <0,-11+x <0,于是f ′(x )=cos x -11+x <0,f (x )单调递减, 其中f (π2)=1-ln (1+π2)>1-ln (1+3.22)=1-ln2.6>1-ln e =0, f (π)=-ln (1+π)<-ln3<0. 于是可得下表:x (-1,0) 0 (0,x 1) x 1(x 1,π2) π2 (π2,π) π f ′(x ) - 0 + 0---- f (x )减函数0 增函数大于0 减函数大于0 减函数小于0结合单调性可知,函数f (x )在(-1,π2]上有且只有一个零点0, 由函数零点存在性定理可知,f (x )在(π2,π)上有且只有一个零点x 2,当x ∈[π,+∞)时,f (x )=sin x -ln (1+x )<1-ln (1+π)<1-ln3<0,因此函数f (x )在[π,+∞)上无零点. 综上,f (x )有且仅有2个零点. 【解析】(1)f (x )的定义域为(-1,+∞),求出原函数的导函数,进一步求导,得到f″(x )在(-1,)上为减函数,结合f″(0)=1,f″()=-1+<-1+1=0,由零点存在定理可知,函数f″(x )在(-1,)上存在唯一得零点x 0,结合单调性可得,f′(x )在(-1,x 0)上单调递增,在(x 0,)上单调递减,可得f′(x )在区间(-1,)存在唯一极大值点;(2)由(1)知,当x ∈(-1,0)时,f′(x )<0,f (x )单调递减;当x ∈(0,x 0)时,f′(x )>0,f (x )单调递增;由于f′(x )在(x 0,)上单调递减,且f′(x 0)>0,f′()<0,可得函数f′(x )在(x 0,)上存在唯一零点x 1,结合单调性可知,当x ∈(x 0,x 1)时,f (x )单调递增;当x ∈()时,f (x )单调递减.当x ∈(,π)时,f (x )单调递减,再由f ()>0,f (π)<0.然后列x ,f′(x )与f (x )的变化情况表得答案.本题考查利用导数求函数的极值,考查函数零点的判定,考查数学转化思想方法,考查函数与方程思想,考查逻辑思维能力与推理运算能力,难度较大. 21.【答案】(1)解:X 的所有可能取值为-1,0,1.P (X =-1)=(1-α)β,P (X =0)=αβ+(1-α)(1-β),P (X =1)=α(1-β), X -11P (1-α)β αβ+(1-α)(1-β) α(1-β)()()证明:∵,, ∴由(1)得,a =0.4,b =0.5,c =0.1.因此p i =0.4p i -1+0.5p i +0.1p i +1(i =1,2,…,7),故0.1(p i +1-p i )=0.4(p i -p i -1),即(p i +1-p i )=4(p i -p i -1),又∵p 1-p 0=p 1≠0,∴{p i +1-p i }(i =0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )解:由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0=p 1(1−48)1−4=48−13P 1,∵p 8=1,∴p 1=348−1,∴P 4=(p 4-p 3)+(p 3-p 2)+(p 2-p 1)+(p 1-p 0)+p 0=44−13p 1=1257.P 4表示最终认为甲药更有效的概率.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为P 4=1257≈0.0039,此时得出错误结论的概率非常小,说明这种试验方案合理. 【解析】(1)由题意可得X 的所有可能取值为-1,0,1,再由相互独立试验的概率求P (X=-1),P (X=0),P (X=1)的值,则X 的分布列可求;(2)(i )由α=0.5,β=0.8结合(1)求得a ,b ,c 的值,代入p i =ap i-1+bp i +cp i+1,得到(p i+1-p i )=4(p i -p i-1),由p 1-p 0=p 1≠0,可得{p i+1-p i }(i=0,1,2,…,7)为公比为4,首项为p 1的等比数列; (ii )由(i )可得,p 8=(p 8-p 7)+(p 7-p 6)+…+(p 1-p 0)+p 0,利用等比数列的前n 项和与p 8=1,得p 1=,进一步求得p 4=.P 4表示最终认为甲药更有效的概率,结合α=0.5,β=0.8,可得在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种试验方案合理.本题是函数与数列的综合题,主要考查数列和函数的应用,考查离散型随机变量的分布列,根据条件推出数列的递推关系是解决本题的关键.综合性较强,有一定的难度. 22.【答案】解:(1)由{x =1−t 21+t 2,y =4t 1+t 2(t 为参数),得{x =1−t 21+t 2y 2=2t1+t 2, 两式平方相加,得x 2+y 24=1(x ≠-1),∴C 的直角坐标方程为x 2+y 24=1(x ≠-1),由2ρcosθ+√3ρsinθ+11=0,得2x +√3y +11=0. 即直线l 的直角坐标方程为得2x +√3y +11=0;(2)设与直线2x +√3y +11=0平行的直线方程为2x +√3y +m =0, 联立{2x +√3y +m =04x 2+y 2−4=0,得16x 2+4mx +m 2-12=0. 由△=16m 2-64(m 2-12)=0,得m =±4. ∴当m =4时,直线2x +√3y +4=0与曲线C 的切点到直线2x +√3y +11=0的距离最小,为|11−4|√22+3=√7. 【解析】(1)把曲线C 的参数方程变形,平方相加可得普通方程,把x=ρcosθ,y=ρsinθ代入2ρcosθ+ρsinθ+11=0,可得直线l 的直角坐标方程; (2)写出与直线l 平行的直线方程为,与曲线C 联立,化为关于x 的一元二次方程,利用判别式大于0求得m ,转化为两平行线间的距离求C 上的点到l 距离的最小值. 本题考查间单曲线的极坐标方程,考查参数方程化普通方程,考查直线与椭圆位置关系的应用,训练了两平行线间的距离公式的应用,是中档题.23.【答案】证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1.要证(1)1a +1b +1c ≤a 2+b 2+c 2;因为abc =1. 就要证:abc a +abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2-2bc -2ac -2ab ≥0(a -b )2+(a -c )2+(b -c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a -b )2≥0;(a -c )2≥0;(b -c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a -b )2+(a -c )2+(b -c )2≥0得证. 故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立; 即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24; 当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证. 故得证. 【解析】(1)利用基本不等式和1的运用可证,(2)分析法和综合法的证明方法可证. 本题考查重要不等式和基本不等式的运用,分析法和综合法的证明方法.。
高考山东理科数学试题包括答案word解析版

2021年高考山东理科数学试题及答案(word解析版)2021年普通高等学校招生全国统一考试〔山东卷〕 数学〔理科〕 第一卷〔共50分〕一、选择题:本大题共10小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕【2021年山东,理1,5分】a,bR ,i 是虚数单位,2假设ai与2bi互为共轭复数,那么〔abi 〕 〔〕〔A 〕54i〔B 〕54i〔C 〕34i〔D 〕34i【答案】D互为共轭复数,,【解析】与2bi22 44ii 2aia2,b1abi2i 34i应选D .,,〔2〕【2021年山东,理2,5分】设集合{ 2x,[0,2]}A {xx12}Byyx那么AI B 〔〕〔A 〕[0,2]〔B 〕(1,3)〔C 〕[1,3)〔D 〕(1,4)【答案】C,,,, ,,,【解析】2xQx 122x121x3Qyx0,2y 1,4AI B1,3应选C .〔3〕【2021年山东,理3,5分】函数f(x)1的定义域(log 2 x) 21为〔 〕〔B 〕(2,)〔C 〕〔A〕(0,)1211(0,)U(2,)〔D〕(0,]U[2,)22【答案】C【解析】log2x10log2x1x1x2x或log2或01,应选C.222〔4〕【2021年山东,理4,5分】用反证法证明命题“设a,bR,那么方程x2axb0至少有一个实根〞时要做的假设是〔〕〔A〕方程x2axb0没有实根〔B〕方程x2axb0至多有一个实根〔C〕方程x2axb0至多有两个实根〔D〕方程x2axb0恰好有两个实根【答案】A【解析】反证法证明问题时,反设实际是命题的否认,∴用反证法证明命题“设,为实数,那么方程2ab x axb0至少有一个实根〞时,要做的假设是:方程x2axb0没有实根,应选A.5〕【2021年山东,理5,5分】实数x,y满足axay(0a1),那么以下关系式恒成立的是〔〕〔A〕2121〔B〕ln(x1)ln(y1)〔C〕sinxsiny22x1y1〔D〕x3y3【答案】D【解析】Qa x a y,0a1xy,排除A,B,对于C,sinx是周期函数,排除C,应选D.6〕【2021年山东,理6,5分】直线y4x与曲线yx3在第一象限内围成的封闭图形的面积为〔〕〔A〕2〔B〕2〔C〕24 2〔D〕4【答案】D【解析】Q4x x3,Q4x x3x4x2x2x2x0,解得频率/组距直线和曲线的交点为x0,x2,x2,30121314151617舒张压/kPa第一象限面24xx dx2x x844,故D.0321447〕【2021年山,理7,5分】了研究某厂的效,取假设干名志愿者行床,所有志愿者的舒数据〔位:kPa〕的分区[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的序分号第一,第二,⋯⋯,第五,右是根据数据制成的率分布直方,第一与第二共有20人,第三中没有效的有6人,第三中有效的人数〔〕〔A〕6〔B〕8〔C〕12〔D〕18【答案】C【解析】第一与第二率之和,2050,5018,18612,故C.8〕【2021年山,理8,5分】函数fxx21,gxkx.假设方程fxgx有两个不相等的根,数k的取范是〔〕11〔C〕〔A〕〔0,〕〔B〕〔,1〕22〔1,2〕〔D〕〔2,〕【答案】B【解析】画出fx的象最低点是2,1,gx kx原点和2,1斜率最小1,斜率最大gx的斜率与fx x1的斜2率一致,故B.〔9〕【2021年山,理9,5分】x,y足的束条件4x y10,当目标函数zaxbya0,b0在该约束条件下取2x y305时,a b的最小值为〔〕得最小值222〔A〕5〔B〕4〔C〕5〔D〕2【答案】B【解析】xy10求得交点为2,1,那么2a b25,即圆心0,0到直2x y30线2,应选B.2a b250的距离的平方252245〔10〕【2021年山东,理10,5分】a0,b0,椭圆C1的方程为x2y2,双曲线x2y2与的离心1C21C1C22222a b的方程为a b,率之积为3,那么C2的渐近线方程为〔〕2〔A〕x2y0〔B〕2xy0〔C〕x2y0 D〕2xy0【答案】A2c2a2b22c2a2b22a4b4344,b2,【解析】e1a2a2,e2a2a2,e1e2a44a4b a2应选A.II卷〔共100分〕二、填空题:本大题共5小题,每题5分11〕【2021年山东,理11,5分】执行下面的程序框图,假设输入的x的值为1,那么输出的n的值为.【答案】3【解析】根据判断条件x24x30,得1x3,输入x1,第一次判断后循环,xx12,n n11;第二次判断后循环,xx13,n n12;第三次判断后循环,xx14,n n13;5第四次判断不满足条件,退出循环,输出n 3.uuur uuur 〔12〕【2021年山东,理12,5分】在VABC中,ABACtanA,当A 时,VABC的面积为6【答案】16uuuruuur【解析】由条件可知ABAC cbcosA.tanA,2,11.SABC bcsinA,当Abc3266(13〕【2021年山东,理13,5分】三棱锥PABC中,D,E分别为PB,PC的中点,记三棱锥DABE的体积为V1,PABC的体积为V2,那么V1.V2【答案】14【解析】分别过E,C向平面做高h1,h2,由E为PC的中点得h11,h22由D为PB的中点得S ABD1S ABP,所以V1:V2323SABPh24.SABDh1111〔14〕【2021年山东,理14,5分】假设ax64项b的展开式中x3x的系数为20,那么a2b2的最小值为【答案】2b x)6【解析】将(ax2展开,得到Tr1C6ab20,得ab1,333所以a b2ab2.22高考山东理科数学试题包括答案word解析版.C6r a6r b r x123r,令12 3r 3,得r 3.由〔15〕【2021年山东,理15,5分】函数y f(x)(xR),对函数yg xx I,定义gx关于fx的“对称函数〞为函数,两个点,满足:对任意x IyhxxI yhx x,h x,x,gx关于点x,fx对称,假设hx是gx4x2关于fx3xb的“对称函数〞,且hx gx恒成立,那么实数b的取值范围是.6【答案】b210【解析】根据图像分析得,当f(x)3x b与g(x)4x2在第二象限相切时,b210,由h(x)g(x)恒成立得b210.三、解答题:本大题共6题,共75分.〔16〕【2021年山东,理16,12分】向量vm,cos2xvsin2x,n,a,b函数fv vx的图像过点,3和点2,2.xa b,且yf123〔1〕求m,n的值;〔2〕将y fx的图像向左平移0个单位后得到函数y g x的图像,假设y g x图像上各最高点到点0,3的距离的最小值为1,求y g x的单调递增区间.r rmsin2x ncos2x,f(x)过点(,3),(,2),解:〔1〕f(x)a b2123f()msinncos63,1262441m3n3,解得m3.f()msin ncos2,22333312n122〔2〕,左移后得到.f(x)3sin2x cos2x2sin(2x)f(x)g(x)2sin(2x2)解得[k2柱AB1171〕求证:C1M//平面A1ADD1;2〕假设CD1垂直于平面ABCD且CD1=3,求平面C1D1M和平面ABCD所成的角〔锐角〕的余弦值.解:〔1〕连接AD 1,1111为四棱柱,11,CD//AM,CD AM,QABCD ABCD CD//CDAM//C1D1,AM C1D1,AMC1D1为平行四边形,AD1//MC1,又QC1M 平面A1ADD1,AD1 平面A1ADD1, AD1//平面A1ADD1.〔2〕解法一:QAB//A1B1,A1B1//C1D1,面D1C1M与ABC1D1共面,作CN AB,连接D1N,那么D1NC即为所求二面角,在ABCD中,DC1,AB2,DAB60o CN3,2在Rt D1CN中,CD13,CN3,D1N15.22解法二:作CP AB于p点以C为原点,CD为x轴,CP为y轴,CD1为z轴建立空间坐标系,13,0),uuuuuruuuuur13C1(1,0,3),D1(0,0,3),M(,C1D1(1,0,0),D1M(,,3)2222设平面CD M的法向量为r,x103,n(x1,y1,z1)111x1y13z1022uur,n 1(0,2,1)显然平面ABCD 的法向量为uur,n 2(1,0,0)uuruur uur uurn 1 n 2 1 5 ,显然二面角为锐角,cosn 1,n 2n 1 n 2 5 5uur uur所以平面C 1D 1M 和平面ABCD 所成角的余弦值为5 ,5NC 33 5.cosD 1CN2D 1N15 15 52818〕【2021年山东,理18,12分】乒乓球台面被球网分成甲、乙两局部.如图,甲上有两个不相交的区域A,B,乙被划分为两个不相交的区域C,D.某次测试要求队员接到落CABD点在甲上的来球后向乙回球.规定:回球一次,落点在C上的概率为1,在D上的概率5为3.假设共有两次来球且落在A,B上各一次,小明的解 5解两次回球互不影响.求:解1〕小明两次回球的落点中恰有一次的落点在乙上的概率;解2〕两次回球结束后,小明得分之和的分布列与数学期望.解:〔1〕设恰有一次的落点在乙上这一事件为A,P(A)51143.656510〔2〕的可能取值为01,,2,3,4,6,P(0)111;P(1)11131;653035656P(2)131;355P(3)11112;P(4)131111;P(6)111.2565152535302510的分布列为:0123461112111P3065153010 E()011121324116191.306515301030〔19〕【2021年山东,理19,12分】等差数列{a n}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.〔1〕求数列{a n}的通项公式;〔2〕令bn(1)n14n,求数列{bn}的前n项和Tn.a n a n19得得解:〔1〕d2,S1a1,S22a1d,S44a16d,QS1,S2,成等比,S22S1S4,解得a11,a n2n1.〔2〕b n(1)n14n(1)n1(111),当n为偶数时,anan12n2n1T n11111LL(1111),(1)()()2n32n)(12n3355712n1T n1112n1,2n2n当n为奇数时,T n(11)(11)(11)L L(131)(111)335572n2n12n2n12n,n为偶数12n2,T n.T n12n12n12n12n2为奇数2n ,n 1(〔20〕【2021年山东,理20,12分】设函数fx(为常数,e 是自然对数的底数〕.(1〕当k0时,求函数fx的单调区间;(2〕假设函数fx在0,2内存在两个极值点,范围.xk(2elnx)〔k x2x求k的取值x 2解:〔1〕f'(x)ex x4令f x 时,f〔2〕令gx e xx1x kx)2xe2(x2)(e,当时,,x,k(x2x)x3(x0)k0kx0e kx00,那么x2.当x0,2时,fx单调递减;当x2,x单调递增.kx,那么gxe x k,e x,.',,kx lnkQg(0)1k0g(0)10g'(2)e2k0,g2e22k0k e2glnke lnk klnk0lnk1ke,2,综上:e的取值范围为〔e,e2〕.2〔21〕【2021年山东,理21,14分】抛物线C:y22px(p>0〕的焦点为,为上异于原点的任意一点,过点的FA CA直线l交于另一点B,交x轴的正半轴于点D,且有(FA FD,当点A的横坐标为3时,ADF为正三角形.(1〕求C的方程;(2〕假设直线l1//l,且l1和C有且只有一个公共点E.10〔ⅰ〕证明直线AE过定点,并求出定点坐标;〔ⅱ〕ABE的面积是否存在最小值?假设存在,请求出最小值;假设不存在,请说明理由.解:〔1〕由题意知F p,0.设Dt,0t0,那么FD的中点为p2t,0.因24为FA FD,由抛物线的定义知:p pp或t3〔舍32t2,解得t3去〕.由p2t3,解得p2.4所以抛物线C的方程为y24x.〔2〕〔ⅰ〕由〔1〕知F1,0.设Ax0,y0x0y00,DxD,0xD0,因为FA FD,那么xD1x01,由x D0得x D x02,故D x02,0.故直线l1和直线AB平行,设直线l1的方程为y y0x b,2代入抛物线方程得:y28y8b0,由题意y0y0 6432b2.设ExE,yE,y02y00,得b y04y0那么4,42时,yEy0y04y0y04 y0y Ey0.当y04xEx04y0xE2kAE22,y024可得直线AE的方程为:4y024x0,整理可得:y 4y0x1,yy02xx0,由y02y04y04(直线AE恒过点F1,0.(y024时,直线AE的方程为x1,过点F1,0.所以直线AE过定点F1,0.(ⅱ〕由〔ⅰ〕知直线AE过焦点F1,0,所以11x01.AEAFFEx012x0x0设直线AE的方程为x my 1,因为点Ax0,y0 在直线11AE 上,故mx0y01.设Bx 1,y 1,y0 0,由于y 0 0,可得直线AB 的方程为yy2xx2,代入抛物线方程得:x2x 0y 0y28y8 4x00.所以y0y 18,可求得y1y0 8,y0y0y04x 0 4.x 1x 0所以点B 到直线AE 的距离为:4x 0 4 my 081x0 y04x 0 11,d1m24x0x 0x 0111那么ABE 的面积S4x 0x 0216,当且仅当2x 0x 01x0,即x01时等号成立.x0所以 ABE 的面积的最小值为 16.12。
2019年山东省高考数学真题(理科)及答案

数学试卷绝密★启用并使用完毕前2019 年普通高等学校招生全国统一考试(山东卷 )理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分。
共 4 页,满分150 分。
考试用时150 分钟 .考试结束后,将本卷和答题卡一并交回。
注意事项:1. 答题前,考试务必用0.5 毫米黑色墨水签字笔将自己的姓名、座号、考生号、县区和科类在答题卡和试卷规定的位置上。
2. 第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第Ⅱ卷必须用 0.5 毫米黑色墨水签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案 ,解答题应写出文字说明证明过程或演算步骤 .参考公式 :如果事件 A , B 互斥,那么 P( A+B ) =P(A)+P(B) ;如果事件 A , B 独立,那么 P (AB ) =P(A)*P(B)第Ⅰ卷(共60分)一、选择题:本大题共 12 小题,每小题 5 分,满分 60 分. 在每小题给出的四个选项中,只有一项是符合题目要求的 .1z为()、复数 z 满足 (z 3)(2 i) 5(i 为虚数单位),则 z 的共轭复数( A ) 2+i(B ) 2-i( C) 5+i(D ) 5-i2、已知集合 A { 0,1,2} ,则集合B{ x y | x A, y A} 中元素的个数是()(A)1(B)3(C) 5(D)93、已知函数 f (x) 为奇函数,且当x0 时, f ( x)x21,则 f ( 1) =()x(A)-2(B)0(C)1(D)24、已知三棱柱ABC A1B1C1的侧棱与底面垂直,体积为9,底面是边长为 3 的正三角4形,若 P 为底面A1B1C1的中心,则 PA 与平面 ABC 所成角的大小为()5( B)( C)( D)( A )312465、若函数f (x)sin( 2x) 的图像沿x轴向左平移个单位,得到一个偶函数的图像,8则的一个可能取值为()3(A)(B)(C)0(D)444数学试卷2x y206、在平面直角坐标系xOy 中, M 为不等式组x 2 y10 ,所表示的区域上一动点,3x y80则直线 OM 斜率的最小值为A 2B 11D1 C2 37、给定两个命题p、q,若p 是 q 的必要而不充分条件,则p 是q 的(A )充分而不必要条件( B )必要而不充分条件(C)充要条件(D )既不充分也不必要条件8、函数y x cos x sin x 的图象大致为yyy yππππO xO x O x O x(A)(B)(C)(D)9、过点( 3, 1)作圆( x1) 2y21作圆的两条切线切点为A,B,则直线AB的方程(A )2xy30(B )(C)4xy30(D )2x y 304x y 3010、用 0,1,, 9十个数字可以组成有重复数字的三位数的个数为(A ) 243( B)252( C)261( D) 279C1 : y1x2 ( p 0)C2: x2y21C1 于11、抛物线2 p的焦点与双曲线3的右焦点的连线交第一象限的点 M ,若C1在点 M 处的切线平行于C2的一条渐近线,则p3323436(B)8( C)3( D)312、设正实数x, y, z满足x24y 2xy2123xy z,则当 z取最大值时,xyz的最大值为9(A )0(B)1(C)4(D)3二、填空题:本大题共 4 小题,每小题 4 分,共 16 分13、执行右面的程序框图,若输入的值为0.25,则输出的 n 的值为______________14、在区间3,3 上随机取一个数 x ,使得 x 1x 21 成立的概率为 ______________.15 、已知向量AB 与 AC 的夹角 120 0 ,且| AB |=3 ,|AC |=2 ,若AP ABAC,且 APBC ,则实数的值为 ____________.16、 定义“正对数 ” : lnx0,0 x 1ln x, x, 现有四个命题:1①若 a 0, b 0, l n a bb l n a;②若 a0, b0, ln abln a ln b;③若 a 0, b 0, l naln al n b;b④若 a 0, b0, ln a b ln a ln b+ ln 2;其中真命题有 ____________. (写出所有真命题的编号)三、解答题:本大题共6 小题,共 74 分。
普通高等学校招生全国统一考试数学理(山东卷,解析版)

2009年普通高等学校招生全国统一考试数学理(山东卷,解析版)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分150分,考试时间120分钟。
考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上.,并将准考证号条形码粘贴在答题卡上指定位置。
2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上; 如需改动,先画掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸,修正带,不按以上要求作答的答案无效。
4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.。
参考公式:柱体的体积公式V=Sh ,其中S 是柱体的底面积,h 是锥体的高。
锥体的体积公式V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A,B 互斥,那么P(A+B)=P(A)+P(B);R 如果事件A,B 独立,那么P(AB)=P(A)P(B). 事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概率:()(1)(0,1,2,,)k k n kn n P k C p p k n -=-=.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16AB =,则a 的值为( )A.0B.1C.2D.4【解析】:∵{}0,2,A a =,{}21,B a =,{}0,1,2,4,16A B =∴2164a a ⎧=⎨=⎩∴4a =,故选D.答案:D【命题立意】:本题考查了集合的并集运算,并用观察法得到相对应的元素,从而求得答案,本题属于容易题.2.复数31ii--等于( ). A .i 21+ B.12i - C.2i + D.2i -2. 【解析】: 223(3)(1)324221(1)(1)12i i i i i ii i i i i --++-+====+--+-,故选C. 答案:C【命题立意】:本题考查复数的除法运算,分子、分母需要同乘以分母的共轭复数,把分母变为实数,将除法转变为乘法进行运算. 3.将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ).A.cos 2y x =B.22cos y x = C.)42sin(1π++=x y D.22sin y x =3. 【解析】:将函数sin 2y x =的图象向左平移4π个单位,得到函数sin 2()4y x π=+即sin(2)cos 22y x x π=+=的图象,再向上平移1个单位,所得图象的函数解析式为21cos22sin y x x =+=,故选D.答案:D【命题立意】:本题考查三角函数的图象的平移和利用诱导公式及二倍角公式进行化简解析式的基本知识和基本技能,学会公式的变形.4. 一空间几何体的三视图如图所示,则该几何体的体积为( ).A.2π+4π+C. 23π+π 【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为213⨯=所以该几何体的体积为2π+. 答案:C【命题立意】:本题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地侧(左)视图正(主)视图俯视图计算出.几何体的体积.5. 已知α,β表示两个不同的平面,m 为平面α内的 一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件【解析】:由平面与平面垂直的判定定理知如果m 为平面α内的一条直线,m β⊥,则αβ⊥,反过来则不一定.所以“αβ⊥”是“m β⊥”的必要不充分条件.答案:B.【命题立意】:本题主要考查了立体几何中垂直关系的判定和充分必要条件的概念.6. 函数x xx xe e y e e--+=-的图像大致为( ).【解析】:函数有意义,需使0xxe e--≠,其定义域为{}0|≠x x ,排除C,D,又因为22212111x x x x x x x e e e y e e e e --++===+---,所以当0x >时函数为减函数,故选A.答案:A.【命题立意】:本题考查了函数的图象以及函数的定义域、值域、单调性等性质.本题的难点在于给出的函数比较复杂,需要对其先变形,再在定义域内对其进行考察其余的性质. 7.设P 是△ABC 所在平面内的一点,2BC BA BP +=,则( )DABC P第7题图A.0PA PB +=B.0PC PA +=C.0PB PC +=D.0PA PB PC ++= 【解析】:因为2BC BA BP +=,所以点P 为线段AC 的中点,所以应该选C 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考山东卷理科数学真题一.选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,选择符合题目要求的选项。
1.已知i R b a ,,∈是虚数单位,若i a -与bi +2互为 共轭复数,则=+2)(bi a(A )i 45- (B) i 45+ (C) i 43- (D) i 43+ 答案:D2.设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A I (A) [0,2] (B) (1,3) (C) [1,3) (D) (1,4) 答案:C)2[∞+, 4. 用反证法证明命题“设,,R b a ∈则方程02=++b ax x 至少 有一个实根”时要做的假设是(A)方程02=++b ax x 没有实根 (B)方程02=++b ax x 至多有一个实根 (C)方程02=++b ax x 至多有两个实根 (D)方程02=++b ax x 恰好有两个实根 答案:A5.已知实数y x ,满足)10(<<<a a a yx,则下列关系式恒成立的是(A)111122+>+y x (B) )1ln()1ln(22+>+y x (C) y x sin sin > (D) 33y x > 答案:D6.直线x y 4=与曲线2x y =在第一象限内围成的封闭图形的面积为(A )22(B )24(C )2(D )4答案:D7.为了研究某药厂的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,右图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为8.已知函数()12+-=x x f ,()kx x g =.若方程()()x g xf =有两 个不相等的实根,则实数k 的取值范围是(A )),(210(B )),(121(C )),(21(D )),(∞+2答案:B9.已知y x,满足的约束条件⎩⎨⎧≥≤0,3-y -2x 0,1-y -x 当目标函数0)b 0,by(a ax z >>+=在该约束条件下取得最小值52时,22a b +的最小值为(A )5(B )4(C )5(D )2 答案:B10.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-b y a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A )02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 答案:A二.填空题:本大题共5小题,每小题5分,共25分, 答案须填在题中横线上。
11.执行下面的程序框图,若输入的x 的值为1,则输出的n 的值为 。
答案:312.在ABC V 中,已知tan AB AC A ⋅=uu u r uuu r ,当6A π=时,ABC V 的面积为 。
答案:6113.三棱锥P ABC -中,,D E 分别为,PB PC 的中点, 记三棱锥D ABE -的体积为1V ,P ABC -的体积为2V ,则12V V = 。
答案:4114.若46b ax x ⎛⎫+ ⎪⎝⎭的展开式中3x 项的系数为20,则22a b +的最小值为 。
答案:215.已知函数()()y f x x R =∈,对函数()()y g x x I =∈,定义()g x 关于()f x 的“对称函数”为函数()()y h x x I =∈,()y h x =满足:对任意x I ∈,两个点()()()(),,,x h x x g x 关于点b 的“对称函数”,且解答应写出文字说明、 16.(本小题满分12分)已知向量()(),cos2,sin 2,a m x b x n ==v v ,函数()f x a b =⋅v v,且()y f x =的图像过点12π⎛⎝和点2,23π⎛⎫- ⎪⎝⎭. (I )求,m n 的值;(II )将()y f x =的图像向左平移()0ϕϕπ<<个单位后 得到函数()y g x =的图像,若 ()y g x =图像上各最高点到点()0,3的距离的最小值为1,求()y g x =的单调递增区间.解:(Ⅰ)已知x n x m x f 2cos 2sin )(+=⋅=,)(x f Θ过点)2,32(),3,12(-ππ36cos 6sin )12(=+=∴πππn m f234cos 34sin )32(-=+=πππn m f⎪⎪⎩⎪⎪⎨⎧-=--=+∴2212332321n m 解得⎩⎨⎧==13n m (Ⅱ))62sin(22cos 2sin 3)(π+=+=x x x x f)(x f 左移ϕ后得到)622sin(2)(πϕ++=x x g设)(x g 的对称轴为0x x =,1120=+=x d Θ解得00=x2)0(=∴g ,解得6πϕ=x x x x g 2cos 2)2sin(2)2sin(2)(=+=++=∴πππ如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,60,DAB ∠=o 22AB CD ==,M 是线段AB 的中点.(I )求证:111//C M A ADD 平面;B 1C 1D 1A 1DCBMA(II )若1CD 垂直于平面ABCD 且1CD ,求 平面11C D M 和平面ABCD 所成的角(锐角)的余弦值.解:(Ⅰ)连接1AD1111D C B A ABCD -Θ为四棱柱,11//D C CD ∴ 11D C CD =又M Θ为AB 的中点,1=∴AM AM CD //∴,AM CD =11//D C AM ∴,11D C AM = 11D AMC ∴为平行四边形 11//MC AD ∴又111ADD A M C 平面⊄Θ 111ADD A AD 平面⊂111//ADD A AD 平面∴(Ⅱ)方法一:11//B A AB Θ 1111//D C B A共面与面1111D ABC M C D ∴作AB CN ⊥,连接D 1则NC D 1∠即为所求二面角在ABCD 中,1=DC 在CN D Rt 1中,1CD 21方法二:作AB CP ⊥于p 点以C 为原点,CD 为x 轴,CP 为y 轴,1CD 为z 轴建立空间坐标系,)0,23,21(),3,0,0(),3,0,1(11M D C -∴)3,23,21(),0,0,1(111-==∴M D D C设平面M D C 11的法向量为),,(111z y x =⎪⎩⎪⎨⎧=-+=∴03232101111z y x x )1,2,0(1=∴n显然平面ABCD 的法向量为)0,0,1(2=n5551,cos 21==<∴n n 显然二面角为锐角,所以平面M D C 11和平面ABCD 所成角的余弦值为555515321523cos 11====∠∴N D NC CN D18.(本小题满分12分)乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球 后向乙回球.规定:回球一次,落点在C 上的概率为.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和ξ的分布列与数学期望解:(I )设恰有一次的落点在乙上这一事件为A10354615165)(=⨯+⨯=A P(II )643210,,,,,的可能取值为ξ1015121)6(,301151315321)4(15251615121)3(,515331)2(6153615131)1(,3015161)0(=⨯===⨯+⨯===⨯+⨯===⨯===⨯+⨯===⨯==ξξξξξξP P P P P P的分布列为ξ∴309110163011415235126113010)(=⨯+⨯+⨯+⨯+⨯+⨯=∴ξE 其数学期望为19.(本小题满分12分)已知等差数列}{n a 的公差为2,前n 项和为n S ,且1S ,2S ,4S 成等比数列。
n 项和n T 。
,6d +4122421,,S S S S S S =∴成等比Θ解得12,11-=∴=n a a n (II ))121121()1(4)1(111++--=-=-+-n n a a n b n n n n n)121121()121321()7151()5131()311(++---+-+-+++-+=n n n n T n n ΛΛ为偶数时,当1221211+=+-=∴n nn T n )121121()121321()7151()5131()311(++-+-+---+++-+=n n n n T n n ΛΛ为奇数时,当12221211++=++=∴n n n T n⎪⎪⎩⎪⎪⎨⎧+++=∴为奇数为偶数n n n n n nT n ,1222,12220.( 本小题满分13分)设函数())ln 2(2x xk x e x f x +-=(k 为常数, 2.71828e =L 是自然对数的底数)(I )当0k ≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围。
()()())。
的取值范围为(综上则)令(单调递增。
时,当单调递减;时,当则令时,当)解:(2,:1ln 0ln ln 2022,0)2(01)0(,01)0(ln ,)(2)(),2()()2,0(2,0)(0e 0,kx 0k )0())(2()12(2)(12ln 222''''x 3242'e e e ek k k k e k g e k k e g k e g g k g kx k e k e x g kx e x g x f x x f x x x f kx x x kx e x xx k x xe x e x f k x x x x x x >∴>∴<-=<∴>-=>-=>=<-===∴-=-=+∞∈∈∴==>-∴≤≤>--=+---⋅=Θ21.(本小题满分14分)已知抛物线)>0(2:2p px y C =的焦点为F ,A 为C 上异于原点的任意一点,过点A 的直线l 交于另一点B ,交x 轴的正半轴于点D ,且有|FA FD =, 当点A 的横坐标为3时,ADF V 为正三角形。