空调自动化控制原理.
空调自动化霜原理

空调自动化霜原理
空调自动化霜是指空调系统能够自动识别和去除空调蒸发器上的霜结。
霜结是由于空调蒸发器表面温度过低,空气中的水分在接触蒸发器时凝结而成的。
当霜结过多时,会影响空调系统的正常工作,降低空调的制冷效果。
为了解决这个问题,空调自动化霜控制系统被引入到空调系统中。
空调自动化霜原理基于以下几个方面:
1. 温度传感器:空调系统中有安装在蒸发器表面的温度传感器,用于检测蒸发器的表面温度。
当温度低于一定阈值时,说明蒸发器可能有霜结的情况发生。
2. 翅片震动:当温度传感器检测到蒸发器表面温度过低时,系统会通过控制蒸发器的翅片震动来打破霜结。
翅片震动会产生机械振动,使霜结松动并脱落。
3. 除霜周期:除霜周期是指系统在一定时间间隔里进行霜结的去除操作。
除霜周期的频率和时间长短可以根据环境条件和空调系统的需求进行调整。
4. 除霜方式:空调系统通常有两种主要的去除霜结的方式,一种是通过停止蒸发器的制冷操作,在这段时间内蒸发器会自然解冻;另一种是通过热气流的吹扫,将热空气引入到蒸发器表面,加速霜结的解冻。
通过以上原理和控制方式,空调自动化霜系统能够自动检测和
去除空调蒸发器上的霜结,保证空调系统的正常运行。
这种自动化的操作可以提高空调系统的工作效率,减少能耗,并延长空调的使用寿命。
空调自动化控制原理

空调自动化控制原理说明自动化系统是智能建筑的一个重要组成部分。
楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。
其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。
由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。
传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。
而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。
“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。
空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。
空调机组内有大功率的风机,但它的能耗很大。
在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。
以下将从控制策略角度对与监控系统相关的问题作简要讨论。
2 空调系统的基本结构及工作原理空调系统结构组成一般包括以下几部分[2] [3]:(1) 新风部分空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。
新风的导入口一般设在周围不受污染影响的地方。
这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。
(2) 空气的净化部分空调系统根据其用途不同,对空气的净化处理方式也不同。
因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。
空调温控工作原理

空调温控工作原理
空调温控工作原理是通过调节空调系统中的制冷剂的压力和流量来控制室内的温度。
具体原理如下:
1. 制冷循环:空调系统通过循环使用制冷剂实现室内空气的冷却。
制冷剂在室内蒸发器内吸收室内空气的热量,使室内空气温度降低,同时自身变为气体状态。
然后,制冷剂被压缩机压缩,升高压力和温度,进入冷凝器。
2. 冷凝过程:制冷剂在冷凝器中释放热量,使得其冷却并变回液态。
冷凝器与室外环境接触,通过散热器将热量传递给外部空气,使制冷剂的温度降低。
3. 温控原理:空调温控的关键是通过控制制冷剂压力和流量,从而调节室内空气的温度。
这可以通过控制压缩机的工作状态来实现。
当室内温度高于设定温度时,温控系统会向压缩机发送信号,启动压缩机工作,增加制冷剂的流量和压力,使得室内空气被冷却。
一旦室内温度达到设定温度,温控系统会停止向压缩机发送信号,使其停止工作,断开制冷剂的流量,从而停止冷却室内空气。
通过不断地反馈和调节制冷剂的压力和流量,空调系统可以实现室内空气的恒温控制,保持舒适的室内温度。
(暖通空调系统自动化)第一章暖通空调系统自动化概述

按被控对象的复杂程度分
1. 简单控制系统 简单控制系统往往只有一个控制回路,控制 规律也比较简单,例如风机盘管的控制,温控器 感知室内温度低于设定值时就把冷水阀关闭,高 于设定值(中间有回差)时就把温控阀打开。 2. 复杂控制系统 复杂控制系统是相对简单控制系统而言,如 组合式空气处理机组的控制。要想得到稳定的送 风温度和湿度就要控制好进入机组的冷水量、热 水量、蒸汽量等多个变量,以及它们之间的关系, 这就要有冷水控制回路、热水控制回路、蒸汽控 制回路等几个控制回路。
2. 能够准确、全面的提出暖通空调系统需要检测和控制的运行 参数和运行设备状态参数的类别、指标、数量和控制策略。并且以任 务书的形式进行表述和提交;
3. 能够进行简单暖通空调自动控制系统的设计,包括控制方案 的确定、控制设备的选型、控制系统的组态、图纸的绘制等;
4. 能够胜任暖通空调自动化系统现场设备安装、调试、验收等 环节的监理工作;
暖通空调自动化系统的组成
分散式中央空调自动化控制系统
第四节 暖通空调自动化系统实施步骤
实施过程四个阶段
暖通空调自动化系统实施过程框图
学习本课程以后应具备的 几项技术能力
1. 熟练掌握暖通空调系统动态运行的规律。如供热管网和冷水管 网水力运行工况、热力运行工况、动态运行工况下被控参数的变化规 律等内容;
按暖通空调系统的功能分 按有没有控制功能分 按被控对象的复杂程度分 按有没有数字控制分
按暖通空调系统的功能分
供热控制系统 空调控制系统 通风及防排烟控制系统 燃气输配控制系统等
按有没有控制功能分
1. 监测系统 这类系统只是对暖通空调系统运行的参数进 行采集、测量、传送和显示,并把这些数据提供 给有关人员,并不对运行参数进行控制,也叫做 只监不控。 2. 监控系统 这类系统除了对系统运行的参数进行采集、 测量、传送和显示外,还有专门的装置和设备以 及相应的方法对运行参数进行控制,也叫做又监 又控。
空调自动原理

空调自动原理空调自动原理是指空调系统能够通过一系列自动化的程序和传感器来实现对室内环境的自动调节,以达到舒适的温度和湿度。
空调自动原理的实现离不开现代科技的发展和智能化技术的应用,下面我们将详细介绍空调自动原理的工作原理和实现方式。
首先,空调自动原理的核心在于室内和室外的温度和湿度传感器。
室内的传感器可以实时监测室内的温度和湿度情况,而室外的传感器则可以监测室外的气温和湿度。
这些传感器将实时采集到的数据传输给空调系统的控制器,控制器通过对比设定的温度和湿度值,来判断当前的环境是否需要进行调节。
其次,空调自动原理还涉及到空调系统内部的自动化程序。
一般来说,空调系统会预先设定好一些温度和湿度的标准范围,当传感器监测到环境超出了这个范围时,控制器就会启动空调系统进行调节。
比如,在夏天,当室内温度超过了设定的值,空调系统就会自动启动制冷模式,通过调节制冷剂的流动来降低室内温度;而在冬天,当室内温度过低时,空调系统则会启动加热模式,通过加热器来提高室内温度。
此外,空调自动原理还包括了空调系统的智能化控制功能。
现代空调系统通常配备了智能控制面板或者连接手机App,用户可以通过这些控制方式来设定空调的工作模式、温度、风速等参数。
而空调系统也会根据用户的设定和实际环境情况进行智能调节,比如在用户离开房间后自动进入节能模式,或者在室内温度达到设定值后自动停止工作。
总的来说,空调自动原理通过传感器的实时监测、自动化程序的智能调节和用户设定的个性化控制,实现了对室内环境的自动调节。
这种智能化的空调系统不仅提高了使用的便利性,也能够更加高效地节约能源,为人们的生活带来了更多的舒适和便利。
通过对空调自动原理的介绍,我们可以更好地了解现代空调系统是如何通过科技手段来实现对室内环境的智能调节的。
随着科技的不断发展,相信空调自动原理会越来越智能化,为人们的生活带来更多的便利和舒适。
汽车自动空调构造原理与维修

—即卸压阀。 过热开关有两种,一种是装在压缩机缸盖上,作用结果是使电磁离合器电源中断,压缩
机停转。一种是装在蒸发器出口管路上,作用结果是制冷剂泄漏警报灯亮。这两种结构的目的 都是防止由于缺少制冷剂,造成压缩机因缺乏润滑油而过热损坏。 过热开关的结构见图6-36所示。当制冷剂温度升高到一定值时,膜片下的蒸气压力使膜片 上升,推动螺钉,带动动触点与定触点接触,过热开关接通。在过热开关后面串接一个过热时 间继电器。当过热状态是持续的而不是瞬时的情况下,制冷剂泄漏警报灯才会点亮。
霍尔式传感器当一个有电流通过的霍尔半导体片(臵于磁场方向和电流方向垂直的磁场中)
时,在霍尔半导体片与电流方向垂直的横向侧边上就会产生一个微量电压,此电压称为霍尔电 压。改变磁场强度即可改变霍尔电压的大小,磁场消失时霍尔电压为零。传感器转子由分电器 轴驱动,转子上有跟气缸数目相同的叶片。当叶片转离磁极和霍尔半导体片之间的气隙时,磁 力线被切断,霍尔电压下降为零。
5.压力检测控制
在空调制冷系统的高压区和低压区均安装有压力开关,分别称为高压开关和低压开关,用 来对系统内的压力进行检测控制。压力开关的作用原理是利用感受到的管路中制冷剂的压力使 膜片上移或下吸,从而推动动触点与定触点接触或分开,由此来控制被控电器的控制电流,达 到控制目的。压力开关的工作原理见图6-40 所示。 高压开关在正常高压下是闭和的, 如果压力超过一定高压值时它就断开。 压力下降到低于某一定值时高压开关 又闭和。高压开关不向空调ECU提供数 据,这个开关通常串联在压缩机离合 器回路中。象冷凝器风机电机损坏这 种情况,就可引起高压侧压力超过安 图6-40 压力开关的工作原理图 全限度。 关处于闭和状态。当压力降到一定值 时开关断开;并发出信号给空调ECU, 使其断开压缩机离合器电路,防止压 缩机在低压情况下运转。当低压侧压 力升高到某一定值时开关又闭合。超 低压情况的出现,可能是由于制冷剂 的损失引起低压侧压力非正常降低。
空调系统自动化原理

3、冷冻水循环泵、冷却水循环泵
冷冻水循环泵将从空调前端设备返回的冷冻水(一般为 12℃)加压送入冷冻机,在冷冻机内进行热交换、释 放热量、降低温度后离开冷冻机(一般为7℃ ),到达 空调前端设备进行热交换,实现降温调节,再循环返回 冷冻机。
2、水汽分压力pc:大小反映了水汽的多少,是空 气湿度的一个指标。
p pg pc
3、温度t或T:反映了空气分子热运动的剧烈程度, 表示空气冷热程度的指标。 T=273+t
空调系统自动化原理
4、湿度: (1)绝对湿度x:1m3湿空气中含有的水汽量(单位为
kg),与水汽分压力的关系 xpc/(RcT)
Rc是水汽的气体常数,等于461J/(kg.K)
(2)含湿量d:1kg空气含有的水汽量(单位为g)
(3)相对湿度Ψ:表示空气湿度接近饱和绝对湿度的程度, 饱和绝对湿度指空气中的水汽超过了最大限度,多余的水 汽开始发生凝结的水汽量。
5、露点温度t1:空气由某一温度降至另一适当温度时,其 相对湿度就达到100%,空气中的水汽便凝结成水--结 露,这个降低后的温度为露点温度。
选择根据:建筑物用途、负荷大小和变化情况、 制冷机特性、电源、热源和水源情况、初次建 设投资、运行费用、维护保养、环保和安全等 因素。
空调系统自动化原理
(1)压缩式制冷机: 原理: 制冷量:是制冷剂在蒸发器中进行相变时所吸收的汽化潜热。 以电为能源
(2)吸收式制冷机 以热为能源 制冷剂——溴化锂水溶液(水为制冷剂、溴化锂为吸收剂) 制冷范围不如压缩式。
统、空气--水系统 。
求
其他分类:定风量空调系统、变风量空调系统。
空调系统自动化原理
3.4.2、 空调系统的组成
中央空调智能控制系统

安全可靠
舒适环保
中央空调智能控制系统 是指通过智能化技术对 中央空调进行控制和管 理的系统,实现对空调 设备的高效、节能、安 全和舒适的使用。
通过传感器、控制器等 设备实现空调系统的自 动控制和调节。
根据室内外环境参数和 用户需求,智能调节空 调的运行状态,降低能 耗。
具备故障诊断和报警功 能,提高系统的安全性 和稳定性。
家庭环境案例
总结词:智能便捷
详细描述:家庭环境中,中央空调的使用越来越普遍 。通过智能控制系统,可以实现远程控制、语音控制 等功能,方便用户的使用。同时,智能控制系统还可 以根据室内外环境变化自动调节温度和湿度,提高居 住舒适度。例如,某家庭安装智能控制系统后,用户 可以通过手机随时随地控制空调运行,同时系统还能 自动检测室内空气质量,进行相应的调节。
节能控制
根据室内外环境参数和用户需 求,智能调节空调的运行状态, 降低能耗。
智能控制的优势
提高能效
智能控制系统能够根据实际需 求自动调节空调的运行状态, 减少不必要的能耗,降低运行
成本。
提高舒适度
通过智能化控制,能够更好地 满足用户对室内环境的需求, 提高居住和工作环境的舒适度 。
延长设备寿命
智能控制系统能够实时监测设 备的运行状态,及时发现并处 理故障,延长设备的使用寿命 。
提高管理效率
通过智能化管理,能够实现远 程监控和控制,方便对空调系
统的管理和维护。
02 中央空调智能控制系统的 工作原理
传感器的工作原理
01
02
03
温度传感器
温度传感器通过检测室内 外温度变化,将温度信号 转换为电信号,传输给控 制单元。
湿度传感器
湿度传感器通过检测空气 中的湿度,将湿度信号转 换为电信号,传输给控制 单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空调自动化控制原理说明自动化系统是智能建筑的一个重要组成部分。
楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。
其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。
由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。
传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。
而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。
“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。
空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。
空调机组内有大功率的风机,但它的能耗很大。
在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。
以下将从控制策略角度对与监控系统相关的问题作简要讨论。
2 空调系统的基本结构及工作原理空调系统结构组成一般包括以下几部分[2] [3]:(1) 新风部分空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。
新风的导入口一般设在周围不受污染影响的地方。
这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。
(2) 空气的净化部分空调系统根据其用途不同,对空气的净化处理方式也不同。
因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。
(3) 空气的热、湿处理部分对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。
在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。
设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。
三次空气加热器主要起调节空调房间内温度的作用,常用的热媒为热水或电加热。
在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。
(4) 空气的输送和分配、控制部分空调系统中的风机和送、回风管道称为空气的输送部分。
风管中的调节风阀、蝶阀、防火阀、启动阀及风口等称为空气的分配、控制部分。
根据空调系统中空气阻力的不同,设置风机的数量也不同,如果空调系统中设置一台风机,该风机既起送风作用,又起回风作用的称为单风机系统;如果空调系统中设置两台风机,一台为送风机,另一台为回风机,则称为双风机系统。
(5) 空调系统的冷、热源空调系统中所使用的冷源一般分为天然冷源和人工冷源。
天然冷源一般指地下深井水,人工冷源一般是指利用人工制冷方式来获得的,它包括蒸汽压缩式制冷、吸收式制冷以及蒸汽喷射式制冷等多种形式。
现代化的大型建筑中通常都采用集中式空调系统, 这种形式的结构示意图如图1所示。
图1 空调系统结构示意图其工作原理是当环境温度过高时,空调系统通过循环方式把室内的热量带走,以使室内温度维持于一定值。
当循环空气通过风机盘管时,高温空气经过冷却盘管的铝金属先进行热交换,盘管的铝片吸收了空气中的热量,使空气温度降低,然后再将冷冻后的循环空气送入室内。
冷却盘管的冷冻水由冷却机提供,冷却机由压缩机、冷凝器和蒸发器组成。
压缩机把制冷剂压缩,经压缩的制冷剂进入冷凝器,被冷却水冷却后,变成液体,析出的热量由冷却水带走,并在冷却塔里排入大气。
液体制冷剂由冷凝器进入蒸发器进行蒸发吸热,使冷冻水降温,然后冷冻水进入水冷风机盘管吸收空气中的热量,如此周而复始,循环不断,把室内热量带走。
当环境温度过低时,需要以热水进入风机盘管,和上述原理一样,空气加热后送入室内。
空气经过冷却后,有水分析出,空气相对湿度减少,变的干燥,所以需增加湿度,这就要加装加湿器,进行喷水或喷蒸汽,对空气进行加湿处理,用这样的湿空气去补充室内水汽量的不足。
3 中央空调自动控制系统3.1 中央空调自动控制的内容与被控参数中央空调系统由空气加热、冷却、加湿、去湿、空气净化、风量调节设备以及空调用冷、热源等设备组成。
这些设备的容量是设计容量,但在日常运行中的实际负荷在大部分时间里是部分负荷,不会达到设计容量。
所以,为了舒适和节能,必须对上述设备进行实时控制,使其实际输出量与实际负荷相适应。
目前,对其容量控制已实现不同程度的自动化,其内容也日渐丰富。
被控参数主要有空气的温度、湿度、压力(压差)以及空气清新度、气流方向等,在冷、热源方面主要是冷、热水温度,蒸汽压力。
有时还需要测量、控制供回水干管的压力差,测量供回水温度以及回水流量等。
在对这些参数进行控制的同时,还要对主要参数进行指示、记录、打印,并监测各机电设备的运行状态及事故状态、报警。
中央空调设备主要具有以下自控系统:风机盘管控制系统、新风机组控制系统、空调机组控制系统、冷冻站控制系统、热交换站控制系统以及有关给排水控制系统等。
3.2 中央空调自动控制的功能(1) 创造舒适宜人的生活与工作环境·对室内空气的温度、相对湿度、清新度等加以自动控制,保持空气的最佳品质;·具有防噪音措施(采用低噪音机器设备);·可以在建筑物自动化系统中开放背景轻音乐等。
通过中央空调自动控制系统,能够使人们生活、工作在这种环境中,心情舒畅,从而能大大提高工作效率。
而对工艺性空调而言,可提供生产工艺所需的空气的温度、湿度、洁净度的条件,从而保证产品的质量。
(2) 节约能源在建筑物的电器设备中,中央空调的能耗是最大的,因此需要对这类电器设备进行节能控制。
中央空调采用自动控制系统后,能够大大节约能源。
(3) 创造了安全可靠的生产条件自动监测与安全系统,使中央空调系统能够正常工作,在发现故障时能及时报警并进行事故处理。
3.3 中央空调自动控制系统的基本组成图2[4]为一室温的自动控制系统。
它是由恒温室、热水加热器、传感器、调节器、执行器机构和(调节阀)调节机构组成。
其中恒温室和热水加热器组成调节对象(简称对象),所谓调节对象是指被调参数按照给定的规律变化的房间、设备、器械、容器等。
图2所示的室温自动调节系统也可以用图3所示的方块图来表示。
室温就是室内要求的温度参数,在自动调节系统中称为被调参数(或被调量),用θa表示。
在室温调节系统中,被调参数就是对象的输出信号。
被调参数规定的数值称为给定值(或设定值),用θg表示。
室外温度的变化,室内热源的变化,加热器送风温度的变化,以及热水温度的变化等,都会使室内温度发生变化,从而室内温度的实际值与给定值之间产生偏差。
这些引起室内温度偏差的外界因素,在调节系统中称为干扰(或称为扰动),用f表示。
在该系统中,导致室温变化的另一个因素是加热器内热水流量的变化,这一变化往往是热水温度或热水流量的变化引起的,热水流量的变化是由于控制系统的执行机构—调节阀的开度变化所引起的,是自动调节系统用于补偿干扰的作用使被调量保持在给定值上的调节参数,或称调节量q。
调节量q和干扰f对对象的作用方向是相反的。
图2 室温自动调节系统示意图图3 室温自动调节系统的方块图4 中央空调系统控制中存在的问题4.1 被控对象的特点空调系统中的控制对象多属热工对象,从控制角度分析,具有以下特点[3]:(1) 多干扰性例如,通过窗户进来的太阳辐射热是时间的函数,受气象条件的影响;室外空气温度通过围护结构对室温产生影响;通过门、窗、建筑缝隙侵入的室外空气对室温产生影响;为了换气(或保持室内一定正压)所采用的新风,其温度变化对室温有直接影响。
此外,电加热器(空气加热器)电源电压的波动以及热水加热器热水压力、温度、蒸汽压力的波动等,都将影响室温。
如此多的干扰,使空调负荷在较大范围内变化,而它们进入系统的位置、形式、幅值大小和频繁程度等,均随建筑的构造(建筑热工性能)、用途的不同而异,更与空调技术本身有关。
在设计空调系统时应考虑到尽量减少干扰或采取抗干扰措施。
因此,可以说空调工程是建立在建筑热工、空调技术和自控技术基础上的一种综合工程技术。
(2) 多工况性空调技术中对空气的处理过程具有很强的季节性。
一年中,至少要分为冬季、过渡季和夏季。
近年来,由于集散型系统在空调系统中的应用,为多工况的空调应用创造了良好的条件。
由于空调运行制度的多样化,使运行管理和自动控制设备趋于复杂。
因此,要求操作人员必须严格按照包括节能技术措施在内的设计要求进行操作和维护,不得随意改变运行程序和拆改系统中的设备。
(3) 温、湿度相关性描述空气状态的两个主要参数为温度和湿度,它们并不是完全独立的两个变量。
当相对湿度发生变化时会引起加湿(或减湿)动作,其结果将引起室温波动;而室温变化时,使室内空气中水蒸气的饱和压力变化,在绝对含湿量不变的情况下,就直接改变了相对湿度(温度增高相对湿度减少,温度降低相对湿度增加)。
这种相对关联着的参数称为相关参数。
显然,在对温、湿度都有要求的空调系统中,组成自控系统时应充分注意这一特性。
4.2 控制中存在的主要问题目前中央空调系统主要采用的控制方式是PID控制,即采用测温元件(温感器)+PID温度调节器+电动二通调节阀的PID调节方式。
夏季调节表冷器冷水管上的电动调节阀,冬季调节加热器热水管上的电动调节阀,由调节阀的开度大小实现冷(热)水量的调节,达到温度控制的目的。
为方便管理,简化控制过程,把温度传感器设于空调机组的总回风管道中,由于回风温度与室温有所差别,其回风控制的温度设定值,在夏季应比要求的室温高(0.5~1.0)℃,在冬季应比要求的室温低(0.5~1.0)℃。
PID调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,将其运算结果用于控制输出。
现场监控站监测空调机组的工作状态对象有:过滤器阻塞(压力差),过滤器阻塞时报警,以了解过滤器是否需要更换;调节冷热水阀门的开度,以达到调节室内温度的目的;送风机与回风机启/停;调节新风、回风与排风阀的开度,改变新风、回风比例,在保证卫生度要求下降低能耗,以节约运行费用;检测回风机和送风机两侧的压差,以便得知风机的工作状态;检测新风、回风与送风的温度、湿度,由于回风能近似反映被调对象的平均状态,故以回风温湿度为控制参数。