时钟芯片DS1302的用法

合集下载

DS1302中文手册

DS1302中文手册

DS1302中文手册DS1302 是一款高性能、低功耗的实时时钟芯片,被广泛应用于各种需要准确计时的电子设备中。

一、DS1302 的基本特性1、实时时钟功能能够精确记录年、月、日、时、分、秒等时间信息。

2、低功耗设计在电池供电的情况下,仍能保持长时间的计时准确性。

3、数据存储具备 31 字节的非易失性静态 RAM,可用于存储一些关键数据。

4、简单的接口通过串行接口与微控制器进行通信,易于集成到系统中。

二、DS1302 的引脚功能1、 Vcc1 和 Vcc2Vcc1 是主电源引脚,Vcc2 是备用电源引脚。

当主电源正常供电时,芯片使用 Vcc1 供电;当主电源断电时,自动切换到 Vcc2(通常为电池)以保持时钟运行。

2、 GND接地引脚。

3、 CLK时钟输入引脚,用于同步数据传输。

4、 I/O数据输入/输出引脚。

5、 RST复位引脚,高电平有效。

三、DS1302 的通信协议DS1302 采用串行通信方式,通信数据以字节为单位进行传输。

1、起始位在每个字节传输开始时,RST 引脚被置为高电平,启动通信过程。

2、控制字节首先发送一个控制字节,用于指定后续操作是读操作还是写操作,以及要操作的寄存器地址。

3、数据字节根据控制字节的指示,接着传输数据字节。

4、停止位在传输完一个字节的数据后,将 RST 引脚置为低电平,结束本次通信。

四、DS1302 的寄存器1、时钟/日历寄存器包括年、月、日、时、分、秒等寄存器,用于存储时间信息。

2、控制寄存器用于设置时钟的工作模式,如是否开启振荡器、是否进行写保护等。

3、充电寄存器用于控制备用电源的充电特性。

4、 31 字节的 RAM 寄存器用于用户自定义数据存储。

五、DS1302 的初始化与设置在使用 DS1302 之前,需要进行初始化设置,包括设置初始时间、开启振荡器、关闭写保护等操作。

1、写入初始时间通过串行通信将准确的初始时间写入到相应的时钟/日历寄存器中。

2、开启振荡器将控制寄存器的相应位设置为 1,使振荡器开始工作。

实时时钟芯片DS1302的使用

实时时钟芯片DS1302的使用

DS1302时序All data transfers are initiated by driving the RST input high. The RST input serves two functions. First, RST turns on the control logic which allows access to the shift register for the address/command sequence. Second, the RST signal provides a method of terminating either single byte or multiple byte data transfer.所有的数据传输在RST置一时进行。

RST输入信号有两种功能:首先,RST接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST 提供终止单字节或多字节数据的传送手段。

A clock cycle is a sequence of a falling edge followed by a rising edge. For data inputs, data must be valid during the rising edge of the clock and data bits are output on the falling edge of clock. If the RST input is low all data transfer terminates and the I/O pin goes to a high impedance state.(如果RST置为低电平,则会终止此次数据传送,I/O引脚变为高阻态。

)At power–up, RST must be a logic 0 until VCC > 2.0 volts. Also SCLK must be at a logic 0when RST is driven to a logic 1 state.只有在SCLK为低电平时,才能将RST置为高电平。

DS1302时钟芯片简单操作及BCD相关注意事项

DS1302时钟芯片简单操作及BCD相关注意事项

DS1302 时钟芯片简单操作及BCD 相关注意事项
ds1302 是具有时钟功能的芯片,一旦启动,可以自动计时,内部含有年月日时分秒寄存器等。

先说下我这几天遇到的问题,其实归结起来满简单的一个问题,针对
ds1302 芯片的读写字节操作满简单的,见附表的datasheet,但这里要强调的是往ds1302 芯片写数据或者是读数据,在程序执行上一般会分别调用先后调用往ds1302 写一个字节或者读一个字节的方法(当然这两个方法得自己写)。

不过记得在调用这两个方法的过程中要保持CE(即芯片的置位端)持续为高电平,切不可写完一个字节就将置位端拉低,接着要写下一个字节又把置位端
拉高。

现在看看下面的代码:
sbit clk = P3;//时钟
sbit io = P3; //数据
sbit reset = P3 ;// DS1302 复位
/写一字节到ds1302
void write_byte(uchar dat)
{。

实时时钟电路DS1302芯片的原理及应用

实时时钟电路DS1302芯片的原理及应用

实时时钟电路DS1302芯片的原理及应用DS1302是一种实时时钟(RTC)电路芯片,由Dallas Semiconductor (现被Maxim Integrated收购)设计和制造。

它提供了一个准确的时间和日期计时功能,适用于许多应用,例如电子设备、仪器仪表、通讯设备和计算机系统等。

DS1302芯片的原理如下:1.时钟发生器:DS1302芯片内部集成了一个时钟发生器电路,它使用外部XTAL晶体和一个频率分频器来产生准确的时钟信号。

晶体的频率通常为32.768kHz,这是由于此频率具有较好的稳定性。

2.电源管理:DS1302芯片可以使用3V到5.5V的电源供电。

它内部具有电源管理电路,可以自动切换到低功耗模式以延长电池寿命。

3.时间计数器:DS1302芯片内部包含一个时间计数器,用于计算并保存当前时间、日期和星期。

它采用24小时制,并提供了BCD编码的小时、分钟、秒、日、月和年信息。

4.控制和数据接口:DS1302芯片使用串行接口与外部器件进行通信,如微控制器或外部检测电路。

控制和数据信息通过三根线SCLK(串行时钟)、I/O(串行数据输入/输出)和CE(片选)进行传输。

5.电源备份:为了确保即使在电源中断的情况下仍能保持时间数据,DS1302芯片通过附带的外部电池来提供电源备份功能。

当主电源中断时,芯片会自动切换到电池供电模式,并将时间数据存储在内部RAM中。

DS1302芯片的应用包括但不限于以下几个方面:1.时钟和日历显示:DS1302芯片可以直接连接到LCD显示屏、LED显示器或数码管等设备,用于显示当前时间和日期。

2.定时控制:DS1302芯片可以用作定时器或闹钟,在特定的时间触发一些事件。

例如,可以使用它作为控制家庭设备的定时开关。

3.数据记录:由于DS1302芯片具有时间计数功能,它可以用于记录事件的时间戳,如数据采集、操作记录或系统状态记录。

4.电源失效保护:DS1302芯片的电源备份功能可确保即使在电源中断的情况下,时间数据也能被保存,以避免系统重新启动后时间重置的问题。

实时时钟电路DS1302芯片的原理及应用

实时时钟电路DS1302芯片的原理及应用

实时时钟电路DS1302芯片的原理及应用DS1302芯片是一种低功耗的实时时钟(RTC)电路。

它包含了一个真正的时钟/日历芯片和31个静态RAM存储单元,用于存储时钟和日期信息。

DS1302芯片的工作电压范围为2.0V至5.5V,并且具有极低的功耗,非常适合于移动电子设备和电池供电的应用。

DS1302芯片的原理如下:1.时钟发生器:DS1302芯片内部具有一个实时时钟发生器,它通过晶振和电容电路生成稳定的振荡信号,用于计时。

2.时钟/计时电路:DS1302芯片内部的时钟/计时电路可以精确地计算并保持当前的时间和日期。

它具有秒、分钟、小时、日期、月份、星期和年份等不同的计时单元。

3.RAM存储单元:DS1302芯片包含31个静态RAM存储单元,用于存储时钟和日期信息。

这些存储单元可以通过SPI接口进行读写操作,并且在断电情况下也能够保持数据。

4.控制接口:DS1302芯片通过3线接口与微控制器通信,包括一个时钟线、一个数据线和一个使能线。

这种接口使得与微控制器的通信非常简单,并且能够高效地读写时钟和日期信息以及控制芯片的其他功能。

DS1302芯片的应用如下:1.实时时钟:DS1302芯片可以用作电子设备中的实时时钟。

例如,它可以用于计算机、嵌入式系统、电子游戏等设备中,以提供准确的时间和日期信息。

2.定时器:DS1302芯片的计时功能可以用于设计各种定时器应用。

例如,它可以用于计时器、倒计时器、定时开关等应用中,以实现定时功能。

3.时钟显示:DS1302芯片可以与显示模块结合使用,用于显示当前的时间和日期。

例如,它可以用于数字钟、计时器、时钟频率计等应用中。

4.能量管理:由于DS1302芯片具有低功耗特性,因此它可以用于电池供电的设备中,以实现节能的能量管理策略。

例如,它可以用于手持设备、无线传感器网络等应用中,以延长电池寿命。

综上所述,DS1302芯片是一种低功耗的实时时钟电路,具有精确计时、可靠存储和简单接口等优点,适用于计时、显示和能量管理等各种应用中。

DS1302芯片的使用

DS1302芯片的使用

DS1302 芯片的使用
引脚功能及结构
DS1302 的引脚排列,其中Vcc1 为后备电源,VCC2 为主电源。

在主电源关闭的情况下,也能保持时钟的连续运行。

DS1302 由Vcc1 或Vcc2 两者中的
较大者供电。

当Vcc2 大于Vcc1+0.2V 时,Vcc2 给DS1302 供电。

当Vcc2 小于Vcc1 时,DS1302 由Vcc1 供电。

X1 和X2 是振荡源,外接32.768kHz 晶振。

RST 是复位/片选线,通过把RST 输入驱动置高电平来启动所有的数据
传送。

RST 输入有两种功能:首先,RST 接通控制逻辑,允许地址/命令序列送入移位寄存器;其次,RST 提供终止单字节或多字节数据的传送手段。

当RST 为高电平时,所有的数据传送被初始化,允许对DS1302 进行操作。

如果在传送过程中RST 置为低电平,则会终止此次数据传送,I/O 引脚变为高
阻态。

上电运行时,在Vcc>2.0V 之前,RST 必须保持低电平。

只有在SCLK 为低电平时,才能将RST 置为高电平。

I/O 为串行数据输入输出端(双向),后面有详细说明。

SCLK 为时钟输入端。

DS1302 的控制字节
DS1302 的控制字如图2 所示。

控制字节的最高有效位(位7)必须是逻辑1,如果它为0,则不能把数据写入DS1302 中,位6 如果为0,则表示存取
日历时钟数据,为1 表示存取RAM 数据;位5 至位1 指示操作单元的地址;最低有效位(位0)如为0 表示要进行写操作,为1 表示进行读操作,控制字节总是从最低位开始输出。

DS1302实时时钟原理与应用

DS1302实时时钟原理与应用

DS1302实时时钟原理与应用
1.原理:
DS1302实时时钟通过一个简单的三线接口与微控制器相连,这三根
线分别是:数据线、时钟线和复位线。

通过这三根线,微控制器可以向
DS1302写入和读取时钟和日期信息。

具体的通信协议可以通过发送特定
的命令字节来实现。

当写入数据时,数据线的电平可以提供有效数据,而
时钟线的上升沿控制数据的传输。

当读取数据时,数据线的电平会反映
DS1302存储器中的信息。

2.应用:
a.数字时钟和日期显示器:DS1302实时时钟可以用来驱动数字时钟
和日期显示器,供人们查看当前时间和日期。

b.考勤系统:DS1302实时时钟可以用来记录员工的考勤信息,如签
到和签退时间。

c.定时器:DS1302实时时钟可以用来控制各种定时器,如定时开关、定时器插座等。

d.定时报警器:使用DS1302实时时钟可以实现定时报警功能,如定
时提醒服药、定时关机等。

e.温度和湿度监测:结合温湿度传感器,DS1302实时时钟可以用来
记录环境的温度和湿度信息,并提供时间戳。

f.数据日志记录器:DS1302实时时钟可以用来记录各种传感器的数据,并提供时间戳,以便后续分析和处理。

总之,DS1302实时时钟是一种非常实用的集成电路,具有精确和可靠的时间计量功能。

它可以广泛应用于各种需要时间记录和计量的电子设备和系统中。

通过合理的设计和应用,我们可以充分发挥DS1302实时时钟的功能,提高系统的可靠性和稳定性。

超详细的ds1302使用说明及其例程

超详细的ds1302使用说明及其例程
允许写保护允许写保护十六进制转十禁止写保秒位初始分钟初始化51单片机综合学习系统之单片机综合学习系统之ds1302时钟应用篇时钟应用篇电子制作电子制作2008年需引用请注明出处需引用请注明出处年10月月站长原创如站长原创如大家好通过以前的学习我们已经对51单片机综合学习系统的使用方法及学习方式有所了解与熟悉学会了使用ad模数转换的基本知识体会到了综合学习系统的易用性与易学性这一期我们将一起学习ds1302时钟的基本原理与应用实例
DS1302时钟芯片简介
DS1302是 DALLAS 公司推出的涓流充电时钟芯片,内含一个实时时钟/日历和31字节静 态 RAM,可以通过串行接口与单片机进行通信。实时时钟/日历电路提供秒、分、时、日、 星期、月、年的信息,每个月的天数和闰年的天数可自动调整,时钟操作可通过 AM/PM 标 志位决定采用24或12小时时间格式。DS1302与单片机之间能简单地采用同步串行的方式进 行通信,仅需三根 I/O 线:复位(RST)、I/O 数据线、串行时钟(SCLK)。时钟/RAM 的读 /写数据以一字节或多达31字节的字符组方式通信。DS1302工作时功耗很低,保持数据和时 钟信息时,功耗小于1mW。
Write1302 (WRITE_PROTECT,0x80); 允许写保护
}
//十六进制转十
//禁止写保 //秒位初始 //分钟初始化
// //
51单片机综合学习系统之 DS1302时钟应用篇 《电子制作》2008年10月 站长原创,如 需引用请注明出处
大家好,通过以前的学习,我们已经对51单片机综合学习系统的使用方法及学习方式有 所了解与熟悉,学会了使用 AD 模数转换的基本知识,体会到了综合学习系统的易用性与易 学性,这一期我们将一起学习 DS1302时钟的基本原理与应用实例。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机玩到此时,很想玩TFT真彩屏,但如果不玩一玩汉显字符液晶屏,就总觉得少了些什么,说实话,我对时钟制作并不很感兴趣,因为家里走针的、蹦字的计时器、定时器大小有七八个,还不算手机和电脑的时钟,而要想玩汉显屏,则做时钟算是最合适的了,也难怪杜洋老师会在这上下功夫,毕竟没有那家公司会让咱初学者去搞工控或商品。

前些时,在网上淘了一只LCD-12864模块,已经点亮并通过了简单的测试,准备做杜洋的时钟,准备技术资料时,在网上找到了一篇关于时钟芯片DS1302的应用文章,觉得不错,转帖于此以资共享。

时钟芯片DS1302可靠起振的方法
作者:不详出处:不详
DS1302是Dallas公司生产的一种实时时钟芯片。

它通过串行方式与单片机进行数据传送,能够向单片机提供包括秒、分、时、日、月、年等在内的实时时间信息,并可对月末日期、闰年天数自动进行调整;它还拥有用于主电源和备份电源的双电源引脚,在主电源关闭的情况下,也能保持时钟的连续运行。

另外,它还能提供31字节的用于高速数据暂存的RAM。

鉴于上述特点,DS1302已在许多单片机系统中得到应用,为系统提供所需的实时时钟信息。

一、 DS1302的主要特性
1. 引脚排列
图1 DS1302引脚排列图(见附图)
DS1302的引脚排列如图1所示,各引脚的功能如下:
X1,X2——32768Hz晶振引脚端; RST——复位端; I/O——数据输入/输出端;
SCLK——串行时钟端; GND——地; VCC2,VCC1——主电源与后备电源引脚端。

2. 主要功能: DS1302时钟芯片内主要包括移位寄存器、控制逻辑电路、振荡器、实时时钟电路以及用于高速暂存的31字节RAM。

DS1302与单片机系统的数据传送依靠RST,I/O,SCLK三根端线即可完成。

其工作过程可概括为:首先系统RST引脚驱动至高电平,然后在作用于SCLK时钟脉冲的作用下,通过I/O引脚向DS1302输入地址/命令字节,随后再在SCLK时钟脉冲的配合下,从I/O引脚写入或读出相应的数据字节。

因此,其与单片机之间的数据传送是十分容易实现的。

二、时钟的产生及存在的问题
(1) 在实际使用中,我们发现DS1302的工作情况不够稳定,主要表现在实时时间的传送有时会出现误差,有时甚至整个芯片停止工作。

我们对DS1302的工作电路进行了分析,其与单片机系统的连接如图2所示。

从图中可以看出,DS1302的外部电路十分简单,惟一外接的元件是32768Hz 的晶振。

通过实验我们发现:当外接晶振电路振荡时,DS1302计时正确;当外接晶振电路停振时,DS1302计时停止。

因此,我们认为32768Hz晶振是造成DS1302工作不稳定的主要原因。

图2 DS1302与单片机系统的连接图(见附图)
(2) DS1302时钟的产生基于外接的晶体振荡器,振荡器的频率为32768Hz。

该晶振通过引脚X1、X2直接连接至DS1302,即DS1302是依靠外部晶振与其内部的电容配合来产生时钟脉冲的。

由于DS1302在芯片本身已经集成了6pF的电容,所以,为了获得稳定可靠的时钟,必须选用具有6pF负载电容的晶振。

然而,许多人在选用晶振时仅仅注意了晶振的额定频率值,而忽视了晶振的负载电容大小,甚至连许多经销商也不能提供所售晶振的负载电容。

所以即使在使用中选用了符合32768Hz的晶振,但如果该晶振的负载电容与DS1302提供的6pF不一致时,就会影响晶振的起振或导致振荡频率的偏移,出现上述在应用中的问题。

三、利用辅助电容实现负载匹配
(1)当所选的晶振负载电容不是6pF时,可以采用增加辅助电容的方法提高或降低DS1302振荡器的电容性负载,使之与晶体所需的电容值匹配。

如果已知晶体的负载电容为CI,若CI<6pF,则可以增加一个并联电容CS以产生所需的总负载电容CI,即CI=6pF+CS;若CI>6pF,则可以在晶体的一端增加一个串联电容CS,以产生所需的负载电容CI,即1/CI=1/6pF+1/CS,通过计算即可得出应增加的辅助电容大小。

辅助电容的接法如图3所示。

图3 CS连接电路图(见附图)
(2)在使用前对晶体的负载电容并不知道的情况下,通过测定晶体振荡频率的方法可以确定该晶体的负载电容。

对于晶体振荡器来说,其振荡频率与负载电容之间的关系是确定的。

以本文讨论的DS1302使用的32768Hz晶振为例:当它工作于所要求的负载电容时,能较准确地产生32768Hz的频率;当它的负载电容小于6pF时,其振荡频率会正向偏移;当它的负载电容大于6pF 时,其振荡频率就会负向偏移。

因此,对于未知负载电容的晶体应首先采用实验的方法,在其两端加入辅助电容使晶体起振,然后用频率计测出振荡频率。

若测得频率大于32768Hz,说明负载电容偏小;若测得频率小于32768Hz,说明负载电容偏大。

对辅助电容逐步调整,最终使振荡频率尽可能接近32768Hz,则此时晶体端所接负载电容的总和就是适合该晶体的负载电容。

附图:。

相关文档
最新文档