数字信号载波调制实验
2PSK数字信号的调制与解调-分享版

信息对抗大作业一、实验目的。
使用 MATLAB构成一个加性高斯白噪声情况下的2psk 调制解系统,仿真分析使用信道编码纠错和不使用信道编码时,不同信道噪声比情况下的系统误码率。
二、实验原理。
数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。
为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。
这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。
数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理;②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。
这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK)基本的调制方式。
图 1相应的信号波形的示例101数字调相:如果两个频率相同的载波同时开始振荡,这两个频率同时达到正最大值,同时达到零值,同时达到负最大值,它们应处于" 同相 " 状态;如果其中一个开始得迟了一点,就可能不相同了。
如果一个达到正最大值时,另一个达到负最大值,则称为" 反相 " 。
一般把信号振荡一次(一周)作为360 度。
如果一个波比另一个波相差半个周期,我们说两个波的相位差180 度,也就是反相。
当传输数字信号时, "1" 码控制发 0 度相位, "0" 码控制发 180 度相位。
载波的初始相位就有了移动,也就带上了信息。
相移键控是利用载波的相位变化来传递数字信息,而振幅和频率保持不变。
在2PSK 中,通常用初始相位0 和π分别表示二进制“1”和“ 0”。
因此, 2PSK信号的时域表达式为(t)=Acos t+)其中,表示第 n 个符号的绝对相位:=因此,上式可以改写为图 22PSK信号波形解调原理2PSK信号的解调方法是相干解调法。
通原实验4-数字调制PSK实验

常认为增加一倍;所以DPSK解调大多采用差厚分德相博干学接收追。求卓越
1.8 2DPSK信号解调
B.相干解调-码变换法电路工作原理
以数字序列 =[101001]为例
发送数据 0 1 0 1 0 0 1
2DPSK
0
载波
这就避免了2PSK中的倒π现象发生,为此得到了广泛的工程应用。 相乘输出
低通输出 由以上分析可知,2DPSK与2PSK的波形不同,他们的同一相位
厚德博学 追求卓越
三、实验应知知识
1.数字移相键控PSK调制的基本原理
数字相位调制又称移相键控,简记PSK,二 进制移相键控记作2PSK。它是利用载波相位 的变化来传送数字信息的。
通常有两种类型:
(1)绝对相移(2PSK或BPSK)
(2)相对相移(差分相移/2DPSK 或DBPSK)
厚德博学 追求卓越
1、2DPSK与2PSK信号有相同的功率谱
2、2DPSK与2PSK信号带宽相同,是基带信号带宽Bs的两倍, 即
3、2DPSK与2PSK信号频带利用率也相同,为
B 2DP SB K 2PS K 厚2德fs博学 追求卓越
1.8 2DPSK信号解调
差分相干解调和相干解调-码变换法,后者又称为极性比较-码 变换法。
Ø切忌无目的地拨弄仪器面板上的开关和按钮。
Ø仪器设备出现问题,请向老师寻求帮助,请勿随便调换配件。 Ø注意仪表允许安全电压(或电流),切勿超过!
当被测量的大小无法估计时,应从仪表的最大量程开始测试,然后逐 渐减小量程。
厚德博学 追求卓越
四、实验内容与步骤
实验用数字调制与解调电路模块的基本组成:
PSK调制解调单元模块电路
通信原理实验
FSK调制解调实验报告

FSK调制解调实验报告实验报告:FSK调制解调实验一、实验目的FSK调制解调是数字通信中常用的调制解调方式之一,通过本次实验,我们学习FSK调制解调的原理、实现方法和实验技巧,理解其在数字通信中的应用。
同时,通过实验验证FSK调制解调的正确性和稳定性,并掌握实验数据的分析和处理方法。
二、实验原理FSK调制在信号传输中广泛应用,其原理是将数字信号调制成两个不同的频率信号,通常用0和1两个数字分别对应两个不同的频率。
在调制端,通过将0和1信号分别转换成相应的频率信号,并通过切换不同的载波波形来实现不同频率信号的调制。
在解调端,通过将接收到的调制信号分别和两个对应的参考频率信号进行相关运算,从而还原出原始的0和1信号。
实验所需材料:1.FSK调制解调器2.函数发生器3.示波器4.电缆和连接线实验步骤:1.将函数发生器的输出信号接入FSK调制器的MOD输入端,调整函数发生器的频率和幅度,使其适配FSK调制器的输入端。
2.调整FSK调制器的MOD输入切换开关,选择合适的调制波形(常用的有正弦波和方波两种)。
3.通过示波器观察和记录已调制的FSK信号波形。
4.将已调制的信号通过电缆传输到解调器端。
5.调整解调器的参考频率和解调器的解调方式。
6.通过示波器观察和记录解调器输出的数字信号波形。
7.将解调输出与调制前的原始信号进行比较,验证FSK调制解调的正确性。
三、实验结果和数据分析根据实验步骤的指导,我们依次完成了FSK调制解调的实验,在观察示波器上的波形时,我们发现调制波形的频率随着输入数据的0和1的变化而变化,已达到我们的预期效果。
在解调端,我们观察到解调输出的数字信号与调制前的原始信号一致,由此可验证FSK调制解调的正确性。
对于实验数据的分析和处理,我们应注意以下几点:1.频率的选择:合适的调制频率和解调频率能够保证调制解调的稳定和正确性,应根据具体情况进行选择。
2.调制波形的选择:正弦波和方波是常见的调制波形,两者各有优缺点,可根据实际需要进行选择。
BPSK(DPSK)调制解调实验指导书

电子科技大学通信学院《二相BPSK(DPSK)调制解调实验指导书》二相BPSK(DPSK)调制解调实验班级学生学号教师二相BPSK(DPSK)调制解调实验指导书二相BPSK(DPSK)调制解调实验一、实验目的1、掌握二相BPSK(DPSK)调制解调的工作原理。
2、掌握二相绝对码与相对码的变换方法。
3、熟悉BPSK(DPSK)调制解调过程中各个环节的输入与输出波形。
4、了解载波同步锁相环的原理与构成,观察锁相环各部分工作波形。
5、了解码间串扰现象产生的原因与解决方法,能够从时域和频域上分析经过升余弦滚降滤波器前后的信号。
6、掌握Matlab软件的基本使用方法,学会Simulink环境的基本操作与应用。
二、实验原理数字信号载波调制有三种基本的调制方式:幅移键控(ASK),频移键控(FSK)和相移键控(PSK)。
它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。
PSK调制在数字通信系统中是一种极重要的调制方式,它的抗干扰噪声性能及通频带的利用率均优于ASK幅移键控和FSK频移键控。
由于PSK调制具有恒包络特性,频带利用率比FSK高,并在相同的信噪比条件下误码率比FSK低。
同时PSK调制的实现也比较简单。
因此,PSK技术在中、高数据传输中得到了十分广泛的应用。
BPSK是利用载波相位的变化来传递数字信息,而振幅和频率保持不变。
在BPSK中,通常用初始相位0和π分别表示二进制“1”和“0”。
其调制原理框图如图1所示,解调原理框图如图2所示。
图1 BPSK的模拟调制方式由于在BPSK 信号的载波恢复过程中存在着载波相位0 和180 的不确定性反向,所以在实际的BPSK 通信系统设计中,往往采用差分编解码的方法克服这个问题。
差分编解码是利用前后信号相位的跳变来承载信息码元,不再是以载波的绝对相位传输码元信息。
差分编解码的原理可用下式描述。
1n n n d b d -=⊕ 1ˆˆˆn n n b d d -=⊕ 其中第一个公式为差分编码原理,第二个公式为差分解码原理。
数字调制实验报告

基本原理
本实验用到数字信源模块和数字调制模块。信源模块向调制模块提供数字基带信号(NRZ码)和位同步信号BS(已在实验电路板上连通,不必手工接线)。调制模块将输入的绝对码AK(NRZ码)变为相对码BK、用键控法产生2ASK、2FSK、2DPSK信号。调制模块内部只用+5V电压。
2PSK信号的相位与信息代码的关系是:前后码元相异时,2PSK信号相位变化180,相同时2PSK信号相位不变,可简称为“异变同不变”。2DPSK信号的相位与信息代码的关系是:码元为“1”时,2DPSK信号的相位变化180。码元为“0”时,2DPSK信号的相位不变,可简称为“1变0不变”。
二、实验过程记录:
武夷学院实验报告
课程名称:_______________
项目名称:_______________
姓名:______专业:_______ 班级:________学号:____同组成员_______
一、实验准备:
实验目的
1、掌握绝对码、相对码概念及它们之间的变换关系。
2、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。
数字调制单元的原理方框图如图2-1所示,电原理图如图2-2所示(见附录)。
将晶振信号进行2分频、滤波后,得到2ASK的载频2.2165MHZ。放大器的发射极和集电极输出两个频率相等、相位相反的信号,这两个信号就是2PSK、2DPSK的两个载波,2FSK信号的两个载波频率分别为晶振频率的1/2和1/4,也是通过分频和滤波得到的。
4、示波器CH1接AK、CH2依次接2FSK和2ASK;观察这两个信号与AK的关系(注意“1”码与“0”码对应的2FSK信号幅度可能不相等,这对传输信息是没有影响的)。
matlab载波调制的数字传输实验报告

matlab载波调制的数字传输实验报告数字信号处理是现代通信系统中不可缺少的一部分。
载波调制是数字信号处理中非常重要的技术之一,它可以将数字信号从低频范围转移到高频范围,从而使信号可以在空气中传输。
MATLAB是一种常用的数字信号处理工具,它可以方便地进行载波调制实验。
本文将介绍在MATLAB中进行载波调制的数字传输实验。
首先,需要生成一个数字信号。
在MATLAB中,可以使用sinc函数生成一个基带信号,如下所示:```fs = 1000;t = -1:1/fs:1;x = sinc(2*pi*50*t);```这里的fs是采样频率,t是时间向量,x是生成的基带信号。
接下来,需要进行载波调制。
常用的载波调制包括正弦调制(AM)和相位调制(FM)。
在本实验中,我们将使用相位调制。
生成载波信号的代码如下所示:```fc = 100;carrier = sin(2*pi*fc*t);```这里的fc是载波频率,carrier是生成的载波信号。
接下来,需要将基带信号调制到载波信号上。
在相位调制中,可以使用MATLAB中的cumsum 函数实现。
代码如下所示:```delta_f = 150;phi = cumsum(x.*delta_f/fs);modulated = cos(2*pi*fc*t + phi);```这里的delta_f是相位调制指数,phi是相位偏移量,modulated是调制后的信号。
最后,可以利用MATLAB中的fft函数进行频域分析,并可视化结果。
代码如下所示:```X = fft(x);M = abs(X);f = linspace(-fs/2,fs/2,length(X));plot(f,M);```通过此实验,可以了解数字信号的基本特性和载波调制的原理。
在MATLAB中进行数字信号处理可以提高信号处理的效率和方便性。
psk调制及解调实验报告

psk调制及解调实验报告PSK调制及解调实验报告引言调制和解调是无线通信中的重要环节,它们能够将信息信号转化为适合传输的信号,并在接收端恢复出原始信息。
本实验旨在通过实际操作,探究PSK调制和解调的原理和实现方法。
一、实验目的本实验的主要目的是掌握PSK调制和解调的原理,实践PSK调制解调的基本方法,并通过实验结果验证理论分析。
二、实验原理1. PSK调制PSK(Phase Shift Keying)调制是一种基于相位变化的数字调制技术。
在PSK调制中,将不同的离散信息码映射到不同的相位,从而实现信息的传输。
常见的PSK调制方式有BPSK(二进制相移键控)、QPSK(四进制相移键控)等。
2. PSK解调PSK解调是将接收到的PSK信号恢复为原始信息信号的过程。
解调器通过检测相位的变化,将相位差映射回相应的信息码。
三、实验器材1. 信号发生器2. 功率放大器3. 混频器4. 示波器5. 电脑四、实验步骤1. 准备工作连接信号发生器、功率放大器和混频器,设置合适的频率和功率。
将混频器的输出连接至示波器,用于观察调制后的信号。
2. BPSK调制实验设置信号发生器输出为二进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
3. BPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为二进制序列。
观察解调后的信号波形并记录。
4. QPSK调制实验设置信号发生器输出为四进制序列,将序列与载波进行相位调制。
观察调制后的信号波形并记录。
5. QPSK解调实验将调制后的信号输入到解调器中,通过相位差检测将信号恢复为四进制序列。
观察解调后的信号波形并记录。
六、实验结果与分析通过实验观察和记录,可以得到调制和解调后的信号波形。
根据波形的相位变化,可以判断调制和解调是否成功。
在BPSK调制实验中,观察到信号波形只有两个相位,对应二进制序列的两个状态。
解调实验中,通过相位差检测可以准确地恢复出原始的二进制序列。
实验二数字的调制实验

实验二数字调制实验一、实验目的1.掌握绝对码、相对码概念及它们之间的编译码规则。
2.掌握用键控法产生2ASK、2FSK、2PSK、2DPSK信号的方法。
3.掌握相对码与2DPSK、绝对码与2PSK信号波形之间的对应关系。
4.了解2ASK、2FSK、2PSK、2DPSK信号的频谱与数字基带信号频谱之间的关系。
二、实验内容1.用示波器观察绝对码波形、相对码波形。
2.用示波器观察2ASK、2FSK、2PSK、2DPSK信号波形。
3.用频谱仪观察数字基带信号频谱及2ASK、2FSK、2DPSK信号的频谱。
三、基本原理本实验使用数字信源模块和数字调制模块。
1.数字信源本模块是整个实验系统的发送端,其原理方框图如图1-1所示。
本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。
帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。
此NRZ信号为集中插入帧同步码时分复用信号。
发光二极管亮状态表示1码,熄状态表示0码。
本模块有以下测试点及输入输出点:∙ CLK 晶振信号测试点∙ BS-OUT 信源位同步信号输出点/测试点∙ FS 信源帧同步信号输出点/测试点∙ NRZ-OUT NRZ信号输出点/测试点图1-3为数字信源模块的电原理图,图1-1中各单元与图1-3中的元器件对应关系如下:∙晶振CRY:晶体;U1:反相器74LS04∙分频器U2:计数器74LS161;U3:计数器74LS193;U4:计数器74LS160∙并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应∙八选一U5、U6、U7:8位数据选择器74LS151∙三选一U8:8位数据选择器74S151∙倒相器U20:非门74LS04∙抽样U9:D触发器74HC74图1-1 数字信源方框图图1-2 帧结构下面对分频器,八选一及三选一等单元作进一步说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号载波调制实验指导书数字信号载波调制实验一、实验目的1、运用MATLAB 软件工具仿真数字信号的载波传输.研究数字信号载波调制ASK 、FSK 、PSK 在不同调制参数下的信号变化及频谱。
2,研究频移键控的两种解调方式;相干解调与非相干解调。
3、了解高斯白噪声方差对系统的影响。
4、了解伪随机序列的产生,扰码及解扰工作原理。
二、实验原理数字信号载波调制有三种基本的调制方式:幅度键控(ASK ),频移键控(FSK )和相移键控(PSK )。
它们分别是用数字基带信号控制高频载波的参数如振幅、频率和相位,得到数字带通信号。
在接收端运用相干或非相干解调方式,进行解调,还原为原数字基带信号。
在幅度键控中,载波幅度是随着调制信号而变化的。
最简单的形式是载波在 二进制调制信号1或0的控制下通或断,这种二进制幅度键控方式称为通—断键控(00K )。
二进制幅度键控信号的频谱宽度是二进制基带信号的两倍。
在二进制频移键控中,载波频率随着调制信号1或0而变,1对应于载波频率f 1,0对应于载波频率f 2,二进制频移键控己调信号可以看作是两个不同载频的幅度键控已调信号之和。
它的频带宽度是两倍基带信号带宽(B )与21||f f -之和。
在二进制相移键控中,载波的相位随调制信号1或0而改变,通常用相位0°和180°来分别表示1或0,二进制相移键控的功率谱与通一断键控的相同,只是少了一个离散的载频分量。
m 序列是最常用的一种伪随机序列,是由带线性反馈的移位寄存器所产生的序列。
它具有最长周期。
由n 级移位寄存器产生的m 序列,其周期为21,n m -序列有很强的规律性及其伪随机性。
因此,在通信工程上得到广泛应用,在本实验中用于扰码和解扰。
扰码原理是以线性反馈移位寄存器理论作为基础的。
在数字基带信号传输中,将二进制数字信息先作“随机化”处理,变为伪随机序列,从而限制连“0”或连“l”码的长度,以保证位定时信息恢复的质量,这种“随机化”处理称为“扰码”。
在接收端解除这种“扰乱”的过程称为“解扰”。
当输入二进信息码为全0码时,扰码器实际上就是一个m序列伪随机码发生器。
三、实验系统组成本实验是运用MATLAB软件的集成开发工具SIMULIK来实现对频移键控FSK、相移键控PSK、幅度键控ASK、m序列发生器,扰码器与解扰器等各个实验系统的仿真,每个子实验系统都是由各种模块组成的,实验者可以在系统上进行不同参数的设置或更改.可进行FSK、PSK、ASK各种调制波形及频谱研究;了解不同的解调方式;了解高斯白噪声对系统的影响;进行扰码与解扰研究。
实验系统组成:本实验类型为:Digital Signal System具体实验栏有:Basic Source(sim)基本信源m-sequence scramble and Deseramble(sim)m序列扰码与解扰2ASK modulation and demodulation(sim)2ASK调制与解调2PSK modulation and demodulation(sim)2PSK调制与解调2FSK modulation and coherent 2FSK调制与相干解调demodulation(sim)2FSK modulation and no.coherent 2FSK调制与非相干解调demodulation(sim)2FSK through channel(sim)2FSK通过信道四、实验内容及步骤1、开机进入Windows桌面。
2、双击桌面上的MATLAB快捷图标,进入命令窗。
3、键入:C102,进入仿真实验界面。
4、选择Digital Signal System实验类型,这时在具体实验项目栏中列出该实验所包含的具体七项实验。
5、选择2ASK实验,再按下RUN—按钮,即进入该实验框图界面。
选择Simulation菜单下的Start即可开始该实验的仿真运行。
a. 从Scope1观察调制信号与已调信号的对比波形。
b. 从Scope2和Scope3分别观察2ASK解词信号通过包络检波和低通滤波器的波形。
c. 从Scope4观察2ASK调制信号与解调信号的对比波形。
d. 从FFT Scope观察2ASK频谱。
e. 改变载波频率参数,使其不为基带信号的整倍数,然后再进行仿真运行,观察Scope1,与未改变参数前有什么不同。
操作:双击载波模块,获得载波参数对话框图,将频率参数进行更改后,再单击“Apply”按钮,确认后,再单击“Close”退出对话框,修改参数完毕。
*f. 双击低通滤波器模块,获得参数对话框。
试改变{晒滤波器的截止频率参数,使截止频率比原来的参数增大或减小,然后再进行仿真运行。
看看解调波形有什么变化?实验记录:1)回答ASK实验系统由哪些模块所组成。
采用哪种类型的解调器。
2)记录2ASK已调信号的时域波形及频谱图。
6、选择2PSK实验,—再按下RUN 2PSK—按钮,进入该实验框图界面。
选择Simulation菜单下的Start即可开始该实验的仿真运行。
a. 从Scopel观察调制信号与己调信号的对比波形。
b. 从Scope2观察调制信号与解调信号的对比波形。
c. 从FFT Scopel、FFTScope2、FFTScope3可分别观察调制信号、PSK已调信号、PSK解调信号的频谱。
d. 将手动开关打向m sequence,Bp改变调制信号,再观察各Scope波形及FFTScope频谱与10序列作为调制号有什么不同。
操作:单击开关位置,出现四方黑点后,再单击菜单上的Edit。
选择Look Under Mask。
再双击开关所要打向的位置。
实验记录:1)记录2PSK已调信号的时域波形及频谱图。
2)回答2PSK实验系统由哪些模块所组成。
7、选择2FSK调制与相干解调实验,再按下RUN 2FSK—按钮,进入该实验框图界面,并进行仿真运行。
a. 从Scope1观察调制信号与已调信号的对比波形。
b. 从Scope2观察调制信号与解调信号的对比波形。
c. 从Scope3观察载波波形。
d. 从FFTScopel观察已调信号的频谱图.e. 双击载波模块,获得参数设置对话框,了解f1和f2的频率参数后,试改变f1和f2的频率参数值,再进行仿真运行。
观察FFTScopel频谱,与原频谱进行比较,有何不同?*f. 将手动开关打向m sequence,即改变调制信号,再观察各Scope波形及FFTScope频谱。
实验记录:1)记录已调信号的时域波形及频谱图。
2)回答FSK实验系统由哪些模块所组成。
8、选择2FSK调制与非相干解调实验,再按下RUN按钮,进入该实验框图界面,并进行仿真运行。
a. 从Scopel观察调制信号与已调信号的对比波形。
b. 从Scope2观察调信号与解调信号的对比波形。
c. 从FFTScope观察已调波频谱。
d. 了解实验系统各主要模块的参数设置情况,试改变带通滤波器BPF1和BPF2的高低截止频率参数,再进行仿真运行,看看解调情况有何不同。
实验记录:注意该实验系统组成,及其特性参数的设置情况。
9、选择2FSK through channel实验,再按下RUN—按钮,进入该实验界面,并进行仿真运行。
a. 从Scopel观察调制信号与已调信号的对比波形。
b. 从Scope2观察已调信号与已调信号通过信道后的对比波形。
3. 从Scope3观察调制信号与相干解调波。
d. 从Scope4观察调制信号与非相干解调波。
e. 双击高斯信道模块,获得参数设置对话框,试改变信道方差,由来的0.1改变为l或0.01再进行仿真运行,观察各Scope波形情况。
*10、选择m Scramble and descramble实验,再按下RUN—按钮;进入该实验框图界面。
a. 从Scope2观察扰码信号。
b. 从Scope3观察经过处理的扰码信号。
c. 从Scope1观察原信号与解扰信号。
d. 了解扰码器与解扰器的电路组成及其原理。
操作:单击扰码器或解扰器模块,选择菜单栏Edit的Look Under Mask即可得到扰码或解码的电路图。
*11、选择Soure实验,再按下RUN—按钮,即进入该实验框图界面。
a. 从Scopel可获得0序列信号。
b. 从Scope2可获得1序列信号。
c. 从Scope3可获得10序列信号。
d. 从Scope4可获得m序列信号。
e. 从Scope5可获得m序列信号。
五、实验及报告要求1、熟悉了解实验系统的各模块组成框图及功能。
2、了解各个子系统的基本参数设置。
3、整理记录实验所要求记录的实验波形及频谱图。
4、回答思考题。
5、打*号的题为选作题。
六、思考题1、从你所观察到的以10序列作为调制信号的ASK、PSK、FSK频谱图,在理论上你能得到什么结论?2、试回答在FSK调制解调实验中,改变信道高斯噪声方差对调制解调的影响。
3、在PSK调制解调实验中。
是否观察到用10序列作为调制信号时,调制信号频谱与解调信号频谱有何不同?为什么?。