薄膜发电技术到底是什么

合集下载

薄膜发电原理

薄膜发电原理

薄膜发电原理
薄膜发电是一种利用薄膜材料进行能量转换的技术,其中包括光伏薄膜发电和热电薄膜发电两种方式。

光伏薄膜发电是指利用光敏材料吸收光能并产生电能的过程。

通常情况下,光伏薄膜发电使用的材料是硅、铟镓锗等半导体材料。

这些材料具有特殊的能带结构,当光子通过材料时,会激发材料中的电子,使其从价带跃迁到导带,从而产生电能。

通过将光伏材料制成薄膜,可以增加光电转换效率,并方便将光伏电池用于各种场景,如建筑物外墙、太阳能充电器等。

热电薄膜发电是指利用热差效应将热能转化为电能的过程。

热电薄膜发电采用的材料通常是具有热导电性和电导电性的半导体材料,如硒化铋、硒化铋碲等。

当薄膜材料的一侧受热,另一侧保持冷却状态时,因温度差异使材料内部电荷产生浓度梯度,从而形成电势差。

通过引入金属电极,可以将电势差转化为电流,达到发电的目的。

热电薄膜发电因其灵活性强、体积小、可曲折等特点,在一些热能利用场景中具有潜在的应用价值。

综上所述,薄膜发电利用薄膜材料的特殊性质,将光能或热能转化为电能。

这种技术具有能量转换效率高、成本低、适用性广等优点,被广泛应用于能源领域的研究与开发。

汉能薄膜发电原理

汉能薄膜发电原理

汉能薄膜发电原理
汉能薄膜发电(Hanergy Thin-film Power)是一种利用薄膜太阳能电池技术进行光伏发电的电力生产方法。

薄膜发电原理的核心是通过利用能量转换材料将太阳光转换为电能。

薄膜太阳能电池是一种基于硅材料的绿色能源技术,其薄薄的结构与传统的硅太阳能电池不同。

在薄膜太阳能电池中,使用的是一层或多层半导体薄膜材料,比如铜铟镓硒(CIGS)或硅薄膜。

这些材料能够吸收太阳光并将其转换为电能。

具体地讲,在汉能薄膜发电中,薄膜太阳能电池通常由以下几个关键组件构成:
1. 背电极:提供电子传递的通道;
2. 半导体薄膜:承载光电转换过程的关键部分;
3. 透明导电膜:用于收集电子并输送至外部电路;
4. 顶电极:帮助完成电子流的通道。

当太阳光照射到薄膜太阳能电池上时,其中的光子会被材料吸收,并激发出电子。

这些激发的电子会在材料中形成电子-空穴对,并通过内部电场的驱动进行分离。

分离后的电子将通过透明导电膜流向外部电路,从而产生电流。

而空穴则通过背电极回到薄膜太阳能电池内部。

这样,通过将太阳光直接转化为电能,汉能薄膜发电实现了可持续的能源生产。

薄膜太阳能电池具有柔性、轻薄和成本低廉
等特点,可以应用于各种领域,包括建筑一体化、户外设备和便携式电源等。

汉能李河君“薄膜发电”如何制造首富

汉能李河君“薄膜发电”如何制造首富
尽管李河君对此只是淡淡回应,“我不知道哪来的,大家不用太当真”。而有意无意间,“首富”身份还是为其一直振臂高呼的“薄膜发电”,做了次效果极佳的“广告”。
越来越多的寻常百姓由此认识了光伏,知晓一种被统称为“薄膜”,具有轻柔特质的可发电组件,能够应用在建筑上、汽车上、帐篷上、手机上,甚至是服装上,为人们提供可移动的清洁能源。
对此,南开大学孙云教授在接受记者采访时以铜铟镓硒(CIGS,一种薄膜技术)为例介绍,“从技术成熟度和生产成本上看,CIGS的产业化前景十分明朗,且其很多优势(轻柔等)是晶硅所不具备的。不过,考虑原材料的储量和成本(主要以铟与硅对比),以及光伏要成为替代性能源的远景目标,CIGS替代晶硅并不现实,但即便如此,我认为,未来CIGS的全球市场规模也能够达到80吉瓦-100吉瓦”。
不过,想要实现李河君的薄膜梦,汉能薄膜发电还有不少功课要做。
日前,在回应媒体有关关联交易的质疑时,汉能薄膜发电首席执行官代明芳表态,“汉能薄膜今年第三方业务的前景非常乐观。我们将进一步努力,拓展全球薄膜太阳能的下游市场,并在下游业务中从第三方客户那里探索新的收入来源”。
孙云向记者透露,目前,汉能已于其在广东省河源市的生产基地安装了一条Miasol规模为100兆瓦的CIGS生产线。
汉能承诺探索更多第三方业务
几乎与孙云教授的看法一致,上述科研人士向记者表示,“薄膜项下细分的技术路线还有很多,哪个最终能成功走向产业化并引领光伏技术升级换代,我不确定,但目前来看,CIGS的确最有希望。若能够实现0.4美元/瓦-0.45美元/瓦的生产成本,哪怕较此略高,凭借轻柔的特质,CIGS便能拥有较晶硅更广的应用前景”。
虽然CIGS的生产成本目前尚无法估算,但根据CIGS生产设备制造商——德国MNNZ公布的预测性数据,“CIGS的生产成本可低至0.4美元/瓦-0.45美元/瓦,也就是说其售价可以与多晶硅持平,或较多晶硅略高。”上述科研人员介绍,“同时,CIGS与晶硅一样,衰减极少;能耗回报率(生产能耗回收期)甚至比晶硅更低(晶硅为2年,CIGS为1.5年)。”

太阳能发电技术分类

太阳能发电技术分类

太阳能发电技术分类以太阳能发电技术分类为题,我们来探讨一下太阳能发电的几种技术。

一、光伏发电技术光伏发电是利用太阳能将光能直接转化为电能的技术。

主要通过光伏电池板来实现,光伏电池板是由多个光伏电池组成的,这些电池能够将太阳光转化为直流电能。

光伏发电技术具有环保、可再生、长寿命等优点,适用于各种规模的发电需求。

二、太阳热发电技术太阳热发电是利用太阳能将光能转化为热能,再将热能转化为电能的技术。

该技术主要通过太阳能热发电系统来实现,包括太阳能反射器、热能储存器、蒸汽发生器等设备。

太阳热发电技术具有高效利用太阳能、可持续发展的优势,适用于大规模的发电需求。

三、太阳能光热联合发电技术太阳能光热联合发电技术是将光伏发电技术和太阳热发电技术相结合的一种发电方式。

该技术利用光伏发电系统产生的电能和太阳热发电系统产生的热能来发电,提高了能源利用效率。

太阳能光热联合发电技术适用于多种发电规模,可根据实际需求进行灵活应用。

四、光热光伏发电技术光热光伏发电技术是将光伏发电技术和太阳热发电技术相结合的一种新型发电方式。

该技术利用光伏电池板吸收太阳光产生的热能,通过热管将热能导出,再利用导热油或蒸汽产生电能。

光热光伏发电技术能够提高太阳能的利用效率,适用于各种规模的发电需求。

五、太阳能储能技术太阳能储能技术是将太阳能转化为电能后进行储存,以供不同时间段使用的技术。

太阳能储能技术主要包括电池储能、氢能储能和热能储能等方式。

通过太阳能储能技术,可以实现太阳能的平稳供应和可持续利用。

六、薄膜太阳能发电技术薄膜太阳能发电技术是利用薄膜光伏电池将太阳能转化为电能的一种技术。

相比于传统的硅基太阳能电池板,薄膜太阳能电池板更轻薄灵活,具有更高的透明度和更低的成本。

薄膜太阳能发电技术适用于各种场景,如建筑物外墙、玻璃幕墙等。

七、太阳能热水技术太阳能热水技术是利用太阳能将光能转化为热能,用于供暖和热水的技术。

太阳能热水技术主要通过太阳能集热器将太阳能转化为热能,再通过水循环系统将热能传递给热水设备。

薄膜技术的发展和应用

薄膜技术的发展和应用

薄膜技术的发展和应用随着科技的不断进步,薄膜技术也得到了广泛应用和发展。

本文将就薄膜技术的发展和应用进行介绍。

一、薄膜技术的定义和分类薄膜技术是指将材料以极薄的层数覆盖在基材表面上的技术。

薄膜技术因其独特的性质,在电子、医疗、能源、光电和材料领域都有广泛的应用。

薄膜技术按照制备工艺可分为物理气相沉积法、化学气相沉积法、溅射法、离子束沉积法和溶液法等。

其中,物理气相沉积法和化学气相沉积法是基于气相反应制备薄膜,而溅射法和离子束沉积法则是基于固态反应制备薄膜。

二、薄膜技术的应用1、电子领域薄膜技术在电子领域有着广泛的应用,如显示器件中的膜电极和透光薄膜,硅上集成电路中的金属线薄膜和凸点薄膜,以及太阳能电池中的透明导电膜等。

通过不同种类的薄膜组合,可以制造出光电显示器件、光二极管、半导体器件等。

2、医疗领域薄膜技术在医疗领域也有广泛的应用,如人造器官表面的生物相容性薄膜、药物释放薄膜、医用传感器薄膜、隔离膜和过滤膜等。

这些薄膜可以帮助医学界实现更好的医学检测和治疗。

3、能源领域薄膜技术在能源领域也发挥了重要的作用,如太阳能电池和燃料电池中的薄膜。

通过合适的制备工艺可以制造出透明导电膜、锂离子电池隔膜、固体氧化物燃料电池氧离子传输膜等薄膜材料。

4、光电领域光电领域是薄膜技术应用较早的领域之一,尤其是光学涂层和抗反射膜方面的应用。

薄膜技术不仅可以增强光学元件的透过率和强度,还可以制造仿生光学器件等。

5、材料领域薄膜技术还可以制造出纳米微观结构,实现材料性质的精细控制,如金属膜的纳米微结构、高分子复合薄膜、磁性薄膜等,这些材料在生产制造、传感器等领域有广泛的应用。

三、薄膜技术未来的发展趋势随着技术的不断更新,薄膜技术也在不断地发展和创新。

未来薄膜技术的发展趋势将主要集中在以下几个方面:1、多层薄膜技术的发展多层薄膜技术是目前的一个研究热点,它可以实现对于薄膜性质的控制和变化。

通过不同比例的堆叠和改变各种材料的结构和性质,可以制备出更加精细的薄膜材料。

薄膜电池工艺流程

薄膜电池工艺流程

薄膜电池工艺流程薄膜电池是一种将太阳能转化为电能的装置,它由多个薄膜层叠加而成。

以下是薄膜电池的工艺流程:首先,准备基板。

基板可以是玻璃、塑料或金属等材料,它需要具备光透性和良好的导电性。

基板被清洁干净,并通过蒸发或溅射技术在表面涂覆一层导电薄膜,比如透明导电氧化锡或导电聚合物。

然后,制备光敏层。

光敏层通常由半导体材料制成,比如硼化铝、聚合物或有机染料。

这些材料能够吸收光子能量并将其转化为电能。

光敏层通过溶液旋涂或真空蒸发等方法覆盖在导电薄膜上。

制备过程需要控制涂布速度和温度以确保均匀覆盖。

接下来是光电转换层的制备。

光电转换层由不同材料制成,旨在将光敏层吸收的能量转化为电能。

常见的光电转换层材料包括硒化铟、硒化镉和硫化锌等。

这些材料通过溅射或蒸发在光敏层上形成薄膜。

然后是背电极的制备。

背电极常使用金属材料制成,比如铝或银。

背电极通过溅射或蒸发方法覆盖在光电转换层上,形成一个电子的收集层。

接下来是封装过程。

这个过程旨在保护薄膜电池并提供稳定的工作环境。

薄膜电池通常被封装在透明的聚合物材料中,如聚甲基丙烯酸甲酯。

这种材料具有良好的光透性和耐候性。

最后,进行测试和质检。

每个制造的薄膜电池都需要经过一系列的测试和质量控制来确保其性能稳定和可靠。

常见的测试项目包括光电转换效率、开路电压、短路电流和稳定性等。

以上是薄膜电池的大致工艺流程。

随着技术的不断发展,薄膜电池制造工艺也在不断改进。

希望通过不断创新和优化,薄膜电池能够更加高效、环保地转化太阳能。

薄膜技术在光伏发电中的应用

薄膜技术在光伏发电中的应用

薄膜技术在光伏发电中的应用随着科学技术的不断进步,薄膜技术在各个领域中都得到了广泛的应用,其中在光伏发电领域中,薄膜技术的应用也越来越受到重视。

薄膜技术的出现为光伏发电带来了许多优势,今天我们就来探讨一下薄膜技术在光伏发电中的应用。

首先,薄膜技术可以提高光伏发电的效率。

在传统的光伏发电中,硅太阳能电池是最常见的类型,但是硅太阳能电池相对较厚,而且生产成本较高。

而薄膜太阳能电池采用了薄膜技术,薄膜太阳能电池的厚度可以控制在几个微米到几十个微米之间,大大降低了生产成本。

与此同时,薄膜太阳能电池对光的吸收率也更高,能够将更多的太阳能转化为电能,提高了光伏发电的效率。

其次,薄膜技术还可以提高光伏发电的稳定性。

在光伏发电过程中,杂质的存在会影响电池的性能并导致电池老化。

传统的硅太阳能电池对杂质的抗干扰能力相对较弱,容易受到外界因素的干扰。

而薄膜太阳能电池采用了薄膜技术,能够在电池表面形成一层保护膜,阻挡有害物质的渗透,增加了电池的稳定性和耐久性。

此外,薄膜技术还可以为光伏发电提供更多的应用场景。

传统的硅太阳能电池在应用中受到一些限制,例如不透明性、重量等问题,不能灵活地应用在建筑物外墙和屋顶等场景中。

而薄膜太阳能电池由于轻薄柔韧的特性,可以更方便地与建筑物相结合,实现太阳能光伏材料在建筑外观上的美观性和一体化。

除了在光伏发电领域中的应用,薄膜技术还可以在其他领域发挥重要作用。

例如,薄膜技术可以应用于光学器件中,制备出具有特殊光学性能的薄膜材料,用于激光器、平板显示器等设备中。

另外,薄膜技术还可以应用于电子器件的制备中,通过在基底上沉积薄膜材料,制成电子元件如晶体管、二极管等。

综上所述,薄膜技术在光伏发电中的应用具有很大的潜力。

通过薄膜技术,能够提高光伏发电的效率和稳定性,同时也为光伏发电提供更多的应用场景。

在未来的发展中,相信薄膜技术会继续发展壮大,为光伏发电的推广和应用做出更多的贡献。

薄膜太阳能电池的研究及应用

薄膜太阳能电池的研究及应用

薄膜太阳能电池的研究及应用薄膜太阳能电池是应用广泛的一种太阳能技术,在太阳能发电领域中扮演重要的角色。

如今,在探寻清洁能源的道路上,人们越来越依赖于太阳能发电,薄膜太阳能电池也被认为是一个不错的选择。

一、薄膜太阳能电池的发展历史薄膜太阳能电池最早的研究可以追溯到上世纪50年代末期。

当时美国贝尔实验室发现,硫化镉薄膜对太阳光具有吸收和转化的作用。

进入70年代以后,太阳能技术逐渐得到普及,薄膜太阳能电池因其体积小、重量轻、柔性较强等优势越来越受到人们的关注。

二、薄膜太阳能电池的特点和优势薄膜太阳能电池是一种光电转换器件,与厚薄片太阳能电池相比,其主要优势在于:1、轻薄柔性:薄膜太阳能电池采用薄膜太阳能电池基底,柔性好,可以应用于机器人、电子标签、可穿戴设备等电子产品领域,也可以应用到建筑物的窗户或外墙上。

2、高效:薄膜太阳能电池可以将太阳能转化为电能,具有高效能转换的特点。

目前市面上的薄膜太阳能电池转换效率达到了10%以上。

3、成本低:由于薄膜太阳能电池具有材料低成本、制造过程简单等特点,制造成本比厚薄片太阳能电池更加优势。

三、薄膜太阳能电池的分类按材料分类,薄膜太阳能电池通常分为以下几类:1、薄膜硅(a-Si)太阳能电池:a-Si 是一种非晶硅材料,采用PECVD等技术在薄膜太阳能电池基底上进行压电转换来将太阳光转化为电能。

2、铜铟镓硒(CIGS)太阳能电池:CIGS 太阳能电池是一种沙莓氏结构的太阳能电池,它的薄膜基底通常是玻璃或不锈钢。

CIGS 太阳能电池的效率高,稳定性好,但是制造工艺相对较为复杂。

3、有机薄膜太阳能电池:有机太阳能电池以有机半导体材料为基础,常见的有机材料有聚合物、酞菁类化合物等。

四、薄膜太阳能电池的应用前景随着全球清洁能源政策和市场的逐渐发展,薄膜太阳能电池在设备制造、能源存储、封装材料、航空航天、汽车行业等领域都有广泛的应用前景。

例如,在建筑领域中,薄膜太阳能电池可用于建筑材料和各种透明材料,如窗户、隔热材料等,以及在大型建筑物如桥梁、道路等地方进行公共区域照明和提供城市光源等多项应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汉能薄膜发电股价日前突然跳崖式直线下跌,跌幅达到了46.95%。

曾经一度超越王健林、马云,成为中国新首富的,汉能薄膜发电创始人李河君身家瞬间蒸发了1167亿港元。

伴随着汉能薄膜发电股价的“一泻千里”,各种猜测也是不绝于耳,但目前尚无定论。

与此同时,汉能薄膜发电所涉猎的领域也引起了外界的关注。

什么是薄膜发电技术?
要搞清楚这个概念,首先需要了解一下光伏发电技术。

将太阳能直接转换为电能的技术就是光伏发电技术,是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。

光伏发电技术的关键元件是太阳能电池,目前主要应用于光伏发电的电池都是基于半导体技术。

其中又可以细分为两种,一种是较为传统较为成熟的晶硅电池,另一种就是新一代的薄膜电池。

传统的晶硅电池是以高纯的晶硅棒为原料制成太阳能电池,目前运用得非常广泛成熟,其构造和生产工艺已经定型,产品已经广泛应用于空间和地面。

薄膜电池属于非晶硅结构,其与晶硅电池最大的不同在于其厚度,不到1μm,连晶硅电池厚度的1/100都不到,从而大大降低了制造成本。

非晶硅结构的太阳能电池又有制造温度很低(-200°C)、易于实现大面积铺展、以及弱光性好等优点,这使其在薄膜电池中占据首要地位。

虽然薄膜电池优点众多,缺点也很明显,那就是光电转化效率低,要转化出等量的电能所需要的薄膜电池面积巨大,没地方铺。

此外,薄膜电池还存在稳定性差的劣势,其能量转换效率随着辐照时间的延长而变化,直到数百或数千小时候才能稳定。

目前,这两个缺点是薄膜电池广泛应用的最大阻碍。

薄膜发电技术在国际上地位的如何?
根据FraunhoferISE的光伏发电技术报告调查,2013年光伏电池的市场占比中,薄膜电池占到了9%,另外91%全是晶硅电池。

去年5月份日本产业技术综合研究所宣布,其研发的有机薄膜太阳能电池的光电转换效率提高了一倍多,研究人员表示,通过进一步的研究,有望开发出转换率达20%、可投入实际使用的有机薄膜电池。

由于在转换率上有了大的突破,薄膜太阳能电池或许将进一步蚕食晶硅太阳能电池的市场份额。

国际上还有哪些更先进的发电技术?
更为先进的光伏发电技术可称之为第三代光伏发电技术,其核心是引入了现代光学技术,与此前一二代的半导体技术有本质上的不同。

通过采用聚光,将光的强度进行提升从而换取发电效率的提升。

目前单晶硅电池的转
化率已经达到了25%,而通过聚光可以用一块单晶硅电池片发出“多倍”的电量。

但是第三代光伏技术目前离产业化还很远。

技术不成熟是一方面,另一方面是目前一
二代的光伏发电技术占压倒性主导作用,第三代光伏技术的发展在受重视程度上还有所欠缺。

相关文档
最新文档