最新九年级数学上册第一次月考试卷分析
2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷+答案解析

2023-2024学年河南省郑州实验中学九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列方程是一元二次方程的是()A. B.C. D.、b、c为常数2.若关于x的一元二次方程的一个根为0,则m的值为()A. B.0 C.2 D.或23.输一组数,按下程序进行计,输出结果表:/空格x206207208/空出析格中的据,估计方程一个数解x的大致范围为()A.B.C.D.4.关于x的方程为常数的根的情况,下列结论中正确的是()A.两个正根B.两个负根C.一个正根,一个负根D.无实数根5.有一个人患流感,经过两轮传染后共有81个人患流感,每轮传染中平均一个人传染几个人?设每轮传染中平均一个人传染x个人,可列方程为()A. B.C. D.6.如图,四边形ABCD是平行四边形,下列说法能判定四边形ABCD是菱形的是()A. B.C. D.7.如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路图中阴影部分,余下部分种植草坪,要使草坪的面积为540平方米,设道路的宽x米,则可列方程为()A. B.C. D.8.如图,矩形ABCD的对角线AC,BD交于点O,,,过点O作,交AD于点E,过点E作,垂足为F,则的值为()A. B. C. D.9.如图,点E、F、G、H分别是四边形ABCD边AB、BC、CD、DA的中点,则下列说法:①若,则四边形EFGH为矩形;②若,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;其中正确的个数是()A.0B.1C.2D.310.如图,菱形ABCD中,点E、F分别在边BC、CD上,且若,则的面积为()A.B.C.D.二、填空题:本题共5小题,每小题3分,共15分。
11.已知m是关于x的方程的一个根,则______.12.若关于x的一元二次方程有实数根,则实数k的取值范围是______.13.如图,已知菱形ABCD的对角线AC,BD的长分别是4cm,6cm,,垂足为E,则AE的长是______14.如图,矩形ABCD中,对角线AC、BD交于点O,点E是BC上一点,且,,则______.15.如图,在菱形ABCD中,,G为AD中点,点E在BC延长线上,F、H分别为CE、GE中点,,,则______.三、解答题:本题共8小题,共64分。
2024-2025学年初中九年级数学上册第一次月考模拟卷含答案解析

重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b23.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:35.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.729.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是.12.(4分)一个多边形的内角和是720°,这个多边形的边数是.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于.15.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.重庆市南开中学2024-2025学年九年级上学期数学9月第一次考试模拟试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列社交软件的标志中,是中心对称图形的是()A.B.C.D.【解答】解:中心对称图形,即把一个图形绕一个点旋转180°后能和原来的图形重合,A、C、D都不符合;是中心对称图形的只有B.故选:B.2.(4分)下列计算正确的是()A.a2•a3=a6B.a+2a2=3a3C.(﹣3ab)2•2ab2=﹣18a3b4D.6ab3÷(﹣2ab)=﹣3b2【解答】解:a2•a3=a5,故A错误,不符合题意;a与2a2不能合并,故B错误,不符合题意;(﹣3ab)2•2ab2=18a3b4,故C错误,不符合题意;6ab3÷(﹣2ab)=﹣3b2,故D正确,符合题意;故选:D.3.(4分)如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,下列比值中等于sin A的是()A.B.C.D.【解答】解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=.故选:B.4.(4分)如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,点A在线段OA′上.若OA:AA′=1:2,则△ABC和△A′B′C′的周长之比为()A.1:2B.1:4C.4:9D.1:3【解答】解:∵OA:AA′=1:2,∴OA:OA′=1:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=1:3,∴△ABC和△A′B′C′的周长之比为1:3,故选:D.5.(4分)下列命题中,不一定是真命题的是()A.平行四边形的两条对角线长度相等B.菱形的两条对角线互相垂直C.矩形的两条对角线长度相等且互相平分D.正方形的两条对角线长度相等,并且互相垂直平分【解答】解:A、平行四边形的两条对角线长度不一定相等,故本选项命题不一定是真命题,符合题意;B、菱形的两条对角线互相垂直,是真命题,不符合题意;C、矩形的两条对角线长度相等且互相平分,是真命题,不符合题意;D、正方形的两条对角线长度相等,并且互相垂直平分,是真命题,不符合题意;故选:A.6.(4分)某公司上半年生产甲、乙两种型号的无人机若干架,已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是()A.B.C.D.【解答】解:设甲种型号无人机x架,乙种型号无人机y架,根据题意可列出的方程组是:.故选:D.7.(4分)估算的值()A.在3和4之间B.在4和5之间C.在2和3之间D.在5和6之间【解答】解:∵25<31<36,∴5<<6,∴3<﹣2<4.故选:A.8.(4分)下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为()A.50B.60C.64D.72【解答】解:观察图形发现第一个图形有8个正方形,第二个图形有8+7=15个正方形,第三个图形有8+7×2=22个正方形,…第n个图形有8+7(n﹣1)=7n+1个正方形,当n=9时,7n+1=7×9+1=64个正方形.故选:C.9.(4分)已知四边形ABCD和DEFG都是正方形,点F在线段AB上,连接AE、BD,BD交FG于点H.若∠AEF=α,则∠BHF=()A.2αB.45°+αC.22.5°+αD.90°﹣α【解答】解:过点E作EM⊥AB于点M,作EN⊥AD,交DA的延长线于N,设EF与AD交于T,如图所示:则∠N=∠EMB=∠EMA=90°,∵四边形ABCD和DEFG都是正方形,∴∠BEF=∠BAD=∠EFG=∠ADC=∠EDG=90°,DE=EF,∴∠N=∠EMA=∠MAN=90°,∴四边形AMEN为矩形,∴∠1+∠DTE=90°,∠2+∠FTA=90°,∵∠DTE=∠FTA,∴∠1=∠2,在△DME和△FNE中,,∴△DME≌△FNE(AAS),∴EM=EN,∴矩形AMEN为正方形,∴AE平分∠DAN,∴∠EAD=45°,∴∠EAF=∠BAD+∠EAD=90°+45°=135°,∴∠2=180°﹣∠EAF﹣AEF=180°﹣135°﹣α=45°﹣α,∴∠1=∠2=45°﹣α,∵BD是正方形ABCD的对角线,∴∠ADB=45°,∴∠EDH=∠1+∠ADB=45°﹣α+45°=90°﹣α,∴∠HDG=∠EDG﹣∠EDH=90°﹣(90°﹣α)=α,∴∠BHF=∠DHG=90°﹣∠HDG=90°﹣α.故选:D.10.(4分)在多项式a+b﹣c﹣d﹣e中,除首尾项a、﹣e外,其余各项都可去掉,去掉项的前面部分和其后面部分都加上绝对值,并用减号连接,则称此为“消减操作”.每种“消减操作”可以去掉的项数分别为一项,两项,三项.“消减操作”只针对多项式a+b﹣c﹣d﹣e进行.例如:+b“消减操作”为|a|﹣|﹣c﹣d﹣e|,﹣c与﹣d同时“消减操作”为|a+b|﹣|﹣e|,…,下列说法:①存在对两种不同的“消减操作”后的式子作差,结果不含与e相关的项;②若每种操作只去掉一项,则对三种不同“消减操作”的结果进行去绝对值,共有8种不同的结果;③若可以去掉的三项+b,﹣c,﹣d满足:(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=42,则2b+c﹣d的最大值为14.其中正确的个数是()A.0个B.1个C.2个D.3个【解答】解:①﹣d“闪减操作”后的式子|a+b﹣c|﹣|﹣e|,﹣c﹣d“闪减操作”后的式子|a+b|﹣|﹣e|对这两个式子作差,得(|a+b﹣c|﹣|﹣e|)﹣(|a+b|﹣|﹣e)=|a+b﹣c|﹣|﹣e|﹣|a+b|+|﹣e|=|a+b﹣c|﹣|a+b|,结果不含与e相关的项,∴①正确;②若每种操作只闪退一项,则分三种情况:+b闪减操作”后的结果|a|﹣|﹣c﹣d﹣e|,当a≥0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=a+c+d+e,当a≥0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=a﹣c﹣d﹣e,当a≤0,﹣c﹣d﹣e≥0时,|a|﹣|﹣c﹣d﹣e|=﹣a+c+d+e,当a≤0,﹣c﹣d﹣e≤0时,|a|﹣|﹣c﹣d﹣e|=﹣a﹣c﹣d﹣e,﹣c“闪减操作”后的结果|a+b|﹣|﹣d﹣e|,当a+b≥0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=a+b+d+e,当a+b≥0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|=a+b﹣d﹣e,当a+b≤0,﹣d﹣e≥0时,|a+b|﹣|﹣d﹣e|=﹣a﹣b+d+e,当a+b≤0,﹣d﹣e≤0时,|a+b|﹣|﹣d﹣e|﹣a﹣b﹣d﹣e,﹣d“闪减操作”后的结果|a+b﹣c|﹣|﹣e|,当a+b﹣d≥0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=a+b﹣c+e,当a+b﹣d≥0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=a+b﹣c﹣e,当a+b﹣d≤0,﹣e≥0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c+e,当a+b﹣d≤0,﹣e≤0时,|a+b﹣c|﹣|﹣e|=﹣a﹣b+c﹣e,共有12种不同的结果,∴②错误;③∵|+b|+|+b+2|=|b﹣0|+|b﹣(﹣2)|,在数轴上表示点b与0和﹣2的距离之和,∴当距离取最小值0﹣(﹣2)=2时,b的最小值为﹣2,同理|﹣c+1|+|﹣c+4|=|1﹣c|+|4﹣c|,在数轴上表示点c与1和4的距离之和,∴当距离取最小值4﹣1=3时,c的最小值为1,|﹣d+1|+|﹣d﹣6|=|1﹣d|+|﹣6﹣d|,在数轴上表示点d与1和﹣6的距离之和,∴当距离取最小值1﹣(﹣6)=7时,d的最小值为﹣6,∴当|+b|+|+b+2|,|﹣c+1|+|﹣c+4|,|﹣d+1|+|﹣d﹣6|都取最小值时,(|+b|+|+b+2|)(|﹣c+1|+|﹣c+4|)(|﹣d+1|+|﹣d﹣6|)=2×3×7=42,∴③正确,故选:C.二.填空题(共8小题,满分32分,每小题4分)11.(4分)已知,△ABC中,∠A是锐角,sin A=,则∠A的度数是30° .【解答】解:∵∠A是锐角,sin A=,∴∠A=30°,故答案为:30°.12.(4分)一个多边形的内角和是720°,这个多边形的边数是6.【解答】解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.13.(4分)如图,分别过矩形ABCD的顶点A、D作直线l1、l2,使l1∥l2,l2与边BC交于点P,若∠1=38°,则∠BPD的度数为142° .【解答】解:∵l1∥l2,∠1=38°,∴∠ADP=∠1=38°,∵四边形ABCD为矩形,∴AD//BC,∴∠BPD+∠ADP=180°,∴∠BPD=180°﹣38°=142°.故答案为:142°.14.(4分)已知a、b是一元二次方程x2﹣x﹣1=0的两个根,则代数式3a2+2b2﹣3a﹣2b的值等于5.【解答】解:根据题意得a2﹣a=1,b2﹣b=1,所以3a2+2b2﹣3a﹣2b=3a2﹣3a+2b2﹣2b=3(a2﹣a)+2(b2﹣b)=3+2=5.故填515.(4分)如图,点B在x的正半轴上,且BA⊥OB于点B,将线段BA绕点B逆时针旋转60°到BB′的位置,且点B′的坐标为(1,).若反比例函数y=(x>0)的图象经过A点,则k=8.【解答】解:如图,过点B′作B′D⊥x轴于点D,∵BA⊥OB于点B,∴∠ABD=90°.∵线段BA绕点B逆时针旋转60°到BB′的位置,∴∠ABB′=60°,∴∠B′BD=90°﹣60°=30°.∵点B′的坐标为(1,),∴OD=1,B′D=,∴BB′=2B′D=2,BD==3,∴OB=1+3=4,AB=BB′=2,∴A(4,2),∴k=4×2=8.故答案为:8.16.(4分)若关于x的一元一次不等式组有且只有2个整数解,且关于y的分式方程的解为正数,则所有满足条件的整数a的值之和为8.【解答】解:,解得:,∵不等式组有且只有2个整数解,∴,解得2<a≤5.5,解分式方程得y=2a﹣5,∵y的值解为正数,∵2a﹣5>0,且2a﹣5≠3,∵a>2.5且a≠4,∴满足条件的整数a的值有3和5,∴3+5=8.故答案为:8.17.(4分)如图,点E在矩形ABCD的边CD上,将△ADE沿AE翻折,点D恰好落在边BC的点F处,如果BC =10,,那么EC=3.【解答】解:∵四边形ABCD是矩形,∴AD=BC=10,∠B=∠C=∠D=90°,由折叠的性质可得AF=AD=10,∠AFE=∠D=90°,在Rt△ABF中,,∴,∴CF=BC﹣BF=4,在Rt△ABF,由勾股定理得,∴,∵∠BAF+∠BF A=90°=∠BF A+∠CFE,∴∠BAF=∠CFE,∴在Rt△EFC中,,∴,故答案为:3.18.(4分)一个四位自然数,若满足千位数字与十位数字的差比百位数字与个位数字的差多1,则称这样的四位数为“多一数”,如:9675,9﹣7=6﹣5+1,9765是“多一数”;又如:6973,∵6﹣7≠9﹣3+1,∴6973不是“多一数”.现有一个“多一数”M,千位数字为a,百位数字为b,十位数字为c,个位数字为d(1≤c≤a≤9,0≤d≤b≤9),将M的千位数字与十位数字交换,百位数字与个位数字交换,得到新的四位数N,若,F(M)能被6整除,则a﹣c=5;规定,若G(M)为完全平方数,则满足条件的“多一数”M中,最大值与最小值的差是2222.【解答】解:根据题意可知0≤a﹣c≤8,a﹣c=b﹣d+1.M=1000a+100b+10c+d,N=1000c+100d+10a+b.=,=,=10(a﹣c)+b﹣d=10(a﹣c)+a﹣c﹣1,=11(a﹣c)﹣1,∵F(M)能被6整除,∴a﹣c=5.∵c≥1,∴a≥6.当a=6时,c=1.∵a﹣c=b﹣d+1,∴d=b﹣4.∴,∵G(M)为完全平方数,∴b=3.∴d=﹣1(舍去).同理,当a=7时,c=2,M=7420;当a=8时,c=3,M=8531;当a=9时,c=4,M=9642;∴满足条件的“多一数”M中,最大值与最小值的差=9642﹣7420=2222.故答案为:5;2222.三.解答题(共8小题,满分78分)19.(8分)计算:(1)因式分解:9(x+y)2﹣25(x﹣y)2;(2)计算:.【解答】解:(1)9(x+y)2﹣25(x﹣y)2=(3x+3y+5x﹣5y)(3x+3y﹣5x+5y)=﹣4(4x﹣y)(x﹣4y);(2)=1﹣•=1﹣==﹣.20.(10分)解方程:(1)x2﹣2x﹣2=0;(2).【解答】解:(1)x2﹣2x﹣2=0,移项得x2﹣2x=2,配方得x2﹣2x+1=2+1,即(x+1)2=3,开方得,解得;;(2),去分母,得m﹣4+m+2=0,解得m=1,经检验,m=1是原方程的根.21.(10分)在第18章学习了三角形的中位线定理后,小明对这一知识进行了拓展性研究.他发现,连接梯形两腰中点的线段也具有类似的性质.探究过程如下:(1)用直尺和圆规,作线段CD的垂直平分线,垂足为点F,连接EF,连接AF并延长AF交线段BC的延长线于点M(只保留作图痕迹);(2)已知:在四边形ABCD中,AD∥BC,E为AB中点,F为CD中点,连接EF.猜想:EF∥AD∥BC,且.证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.请你根据该探究过程完成下面命题:连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.【解答】(1)解:如图所示..(2)证明:∵F是CD中点,∴DF=CF.∵AD∥BC,∴∠DAF=∠CMF.在△ADF和△MCF中,,∴△ADF≌△MCF(AAS).∴AF=FM,AD=CM.∵在△ABM中,E是AB中点,F是AM中点,∴EF∥BM且.∵BM=BC+CM,∴BM=BC+AD.∴.∵EF∥BM,AD∥BC,∴EF∥AD∥BC.连接梯形两腰中点的线段平行于两底并且等于两底边之和的一半.故答案为:DF=CF;∠AFD=∠MFC;;等于两底边之和的一半.22.(10分)重庆市自发布“重庆市长江10年禁鱼通告”后,忠县内的黄钦水库自然生态养殖鱼在市场上热销,并被誉为“清凉五月天,黄钦自有贤”的美誉.2024年五一假期依依同学旅游到此,并购买了若干桂花鱼和大罗非,她发现用840元买的桂花鱼的数量比用同样价钱买大罗非的数量多20斤,且大罗非的单价是桂花鱼的1.5倍.(1)求桂花鱼、大罗非两种鱼的单价分别为多少元;(2)两种鱼在得到一致好评后,依依决定再次购买这两种鱼作为“伴手礼”.由于商家对老顾客让利,其中桂花鱼按照原单价购买,大罗非的单价每斤降低m(m>0)元,则购买的数量会比第一次购买大罗非的数量增加2m斤,第二次一共购买80斤鱼共用了1340元.求m的值.【解答】解:(1)设桂花鱼的单价是x元,则大罗非的单价是1.5x元,根据题意得:﹣=20,解得:x=14,经检验,x=14是所列方程的解,且符合题意,∴1.5x=1.5×14=21(元).答:桂花鱼的单价是14元,大罗非的单价是21元;(2)第一次购买大罗非的数量是840÷21=40(斤).根据题意得:14(80﹣40﹣2m)+(21﹣m)(40+2m)=1340,整理得:m2+13m﹣30=0,解得:m1=2,m2=﹣15(不符合题意,舍去).答:m的值为2.23.(10分)如图矩形ABCD中,AB=4,BC=6,点F为BC边上的三等分点(CF<BF),动点P从点A出发,沿折线A→D→C运动,到C点停止运动.点P的运动速度为每秒2个单位长度,设点P运动时间为x秒,△APF 的面积为y1.(1)请直接写出y1关于x的函数解析式,并注明自变量x的取值范围;(2)若函数,请在平面直角坐标系中画出函数y1,y2的图象,并写出函数y1的一条性质;(3)结合函数图象,直接写出当y1≤y2时x的取值范围(保留一位小数,误差不超过0.2).【解答】解:(1)当0≤x≤3时,y1==4x,当3<x≤5时,y1=﹣×6×(2x﹣6)﹣=﹣4x+24,∴y1=;(2)函数y1,y2的图象如图:函数y1的性质:当0≤x≤3时,y随x的增大而增大,当3<x≤5时,y随x的增大而减小;(3)由两个函数图像可知,当y1≤y2时x的取值范围为0<x≤2.1或x=5.24.(10分)已知图1是某超市购物车,图2是超市购物车的侧面示意图,现已测得支架AC=72cm,BC=54cm,两轮轮轴的距离AB=90cm(购物车车轮半径忽略不计),DG、EH均与地面平行.(参考数据:)(1)猜想两支架AC与BC的位置关系并说明理由;(2)若FG的长度为80cm,∠EHG=60°,求购物车把手F到AB的距离.(结果精确到0.1)【解答】解:(1)AC⊥BC,理由如下:∵AC=72cm,BC=54cm,AB=90cm,∴AC2+BC2=722+542=8100,AB2=8100,∴AC2+BC2=AB2,∴∠ACB=90°,∴AC⊥BC.(2)过F作FN⊥AB交AB延长线于N,过C作CM⊥AB于M,延长DG交FN于K,∵EH∥DG∥AB,∴GK⊥FN,∴四边形MNKC是矩形,∴NK=CM,∵△ABC的面积=AB•CM=AC•BC,∴90CM=72×54,∴CM=43.2(cm),∴NK=CM=43.2(cm),∵EH∥DG,∴∠FGK=∠EHG=60°,∴sin∠FGK=sin60°==,∵FG=80cm,∴FK=40≈69.28(cm),∴FN=FK+NK=69.28+43.2≈112.5(cm).∴购物车把手F到AB的距离约是112.5cm.25.(10分)如图,直线与双曲线交于A,B两点,点A的坐标为(m,﹣3),点C是双曲线第一象限分支上的一点,连接BC并延长交x轴于点D,且BC=2CD.(1)求k的值并直接写出点B的坐标;(2)点M、N是y轴上的动点(M在N上方)且满足MN=1,连接MB,NC,求MB+MN+NC的最小值;(3)点P是双曲线上一个动点,是否存在点P,使得∠ODP=∠DOB,若存在,请直接写出所有符合条件的P 点的横坐标.【解答】解:(1)根据题意可知点A(m,﹣3)在直线和双曲线的图象上,∴,解得m=﹣2,∴点A的坐标为(﹣2,﹣3),代入双曲线得:k=(﹣2)×(﹣3)=6,由图象可知点B与点A关于原点对称,∴B(2,3);(2)过点B、C分别作x轴的垂线,垂足分别为E、F,作点B关于y轴的对称点点B',并向下平移一个单位记为B'',连接B''C,则BE∥CF,B'B''=1,∴△DCF∽△DBE,∴,∵BC=2CD,B(2,3),B'(﹣2,3),B''(﹣2,2),∴,BE=3,∴CF=1,即点C的纵坐标为1,∵点C在反比例函数的图象上,∴C(6,1),B''C=,∴MB+MN+NC的最小值即为B'B''+B''C=1+;(3)当∠ODP=∠DOB时,当DP在x轴下方时,DP∥AB,设直线BC的解析式为y=kx+b,由(2)可知:B(2,3),C(6,1),∴解得,∴,当y=0时,,解得x=8,∴D(8,0),∵DP∥AB,直线AB的解析式为,∴设直线DE的解析式为,把D(8,0)代入得:12+m=0,∴m=﹣12,∴,由P是直线DE与反比例函数的交点可得:,解得,此时点P在第三象限,符合题意,当DP在x轴上方时,则与下方的DP关于x轴对称,可得直线DP的解析式为:,再解方程组得,此时点P在第一象限,两个都符合题意,∴点P的横坐标为:..26.(10分)在△ABC中,AB=AC,∠B=30°,过A作AD⊥BC于点D.(1)如图1,过D作DE⊥AB于点E,连接CE,若AE=2,求线段CE的长;(2)如图2,H为平面内一点,连接AH、CH,在△AGH中,AG=AH,∠GAH=120°,延长AG与CB交于点F,过点H作HP∥AF交BC于点P,若C、H、G在一条直线上,求证:BF=CP;(3)如图3,M为AD上一点,连接BM,N为BM上一点,若,,∠BAN﹣∠CBN=30°,连接CN,请直接写出线段CN的长.【解答】解:(1)∵∠B=30°,AD⊥BC,∴∠BAD=60°,∴AD=2AE=4,∴AB=2AD=8,BD=AD=4,∴BE=AB﹣AE=6,过E作EF⊥BC于F,如图1,∴EF=BE=3,BF=BE=3,∵AB=AC,∴BD=CD,∴CF=2BD﹣BF=8﹣3=5,∴CE==2,(2)证明:∵∠ABC=30°,AB=AC,∴∠BAC=120°,又∵∠GAH=120°,∴∠F AB=∠CAH,∵AH=AG,∴∠AHG=30°=∠ABC,∴∠ABF=∠AHC,∴△ABF∽△AHC,∴=,∵PH∥FG,∴△CHP∽△CGF,∴=,又∵△ABC∽△AGH,∴=,∴=,∴=,∵=,∴==+1=+1=,∴CP=FB;(3)延长BM交AC于F,延长AN到E,使NE=BN,连接BE,如图3:∵∠BAN﹣∠CBN=30°,∴∠BAN=∠CBN+30°,∴∠BNE=∠BAN+∠ABN=∠CBN+∠ABN+30°=60°,∵NE=BN,∴△BEN是等边三角形,∴∠E=60°,∵∠ANB=180°﹣∠BNE=120°=∠BAC,∴△ABN∽△FBA,∴==,∠BAE=∠AFB,∴△ANF∽△BEA,∴==,∴FN===,∴BF=FN+BN=,∴AB2=BN•BF=5+,过F作FG⊥BC于F,过N作NH⊥BC于H,∵∠ACB=30°,∴FG=FC=(AB﹣AF)=AB,CG=AB,∴BG=BC﹣CG=AB﹣AB=AB,∵NH∥CF,∴===,∴NH=AB,BH=AB,∴CH=BC﹣BH=AB,∴CN2=CH2+NH2=9,∴CN=3.。
人教版数学九年级上册第一次月考数学试卷带答案解析

人教版数学九年级上册第一次月考试题一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠02.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.14.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y25.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x26.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2 8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为,与x轴的交点的坐标为,.13.请写出符合以下三个条件的一个函数的解析式,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题16.(12分)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.17.(8分)用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.18.(8分)已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.19.(8分)二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.20.(8分)已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.21.(9分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?22.(8分)已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?23.(14分)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.参考答案与试题解析一、选择题:(本大题共8个小题,每小题3分,共24分)每小题只有一个答案是正确的,请将正确答案的代号填入下列对应题号内.1.已知二次函数y=mx2+x﹣1的图象与x轴有两个交点,则m的取值范围是()A.m>﹣B.m≥﹣C.m>﹣且m≠0D.m≥﹣且m≠0【考点】抛物线与x轴的交点.【分析】根据二次函数y=mx2+x﹣1的图象与x轴有两个交点,可得△=12﹣4m×(﹣1)>0且m≠0.【解答】解:∵原函数是二次函数,∴m≠0.∵二次函数y=mx2+x﹣1的图象与x轴有两个交点,则△=b2﹣4ac>0,△=12﹣4m×(﹣1)>0,∴m>﹣.综上所述,m的取值范围是:m>﹣且m≠0,故选C.【点评】本题考查了抛物线与x轴的交点,关键是熟记当△=b2﹣4ac>0时图象与x轴有两个交点;当△=b2﹣4ac=0时图象与x轴有一个交点;当△=b2﹣4ac<0时图象与x轴没有交点.2.已知抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),则该二次函数的对称轴为()A.x=﹣1B.x=1C.x=2D.y轴【考点】抛物线与x轴的交点.【分析】根据抛物线的对称性得到点A和点B是抛物线上的对称点,所以点A和点B的对称轴即为抛物线的对称轴.【解答】解:∵抛物线y=ax2+bx+c与x轴交点为A(﹣2,0),B(6,0),∴该二次函数的对称轴为直线x=2.故选C.【点评】本题考查了抛物线与x轴的交点:从二次函数的交点式y=a(x﹣x1)(x﹣x2)(a,b,c是常数,a≠0)中可直接得到抛物线与x轴的交点坐标(x1,0),(x2,0).解决本题的关键是掌握抛物线的对称性.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下结论:①因为a>0,所以函数y有最大值;②该函数的图象关于直线x=﹣1对称;③当x=﹣2时,函数y的值等于0;④当x=﹣3或x=1时,函数y的值都等于0.其中正确结论的个数是()A.4B.3C.2D.1【考点】二次函数的性质.【分析】观察图象即可判断.①开口向上,应有最小值;②根据抛物线与x轴的交点坐标来确定抛物线的对称轴方程;③x=﹣2时,对应的图象上的点在x轴下方,所以函数值小于0;④图象与x轴交于﹣3和1,所以当x=﹣3或x=1时,函数y的值都等于0.【解答】解:由图象知:①函数有最小值;错误.②该函数的图象关于直线x=﹣1对称;正确.③当x=﹣2时,函数y的值小于0;错误.④当x=﹣3或x=1时,函数y的值都等于0.正确.故正确的有两个,选C.【点评】此题考查了根据函数图象解答问题,体现了数形结合的数学思想方法.4.若二次函数y=x2﹣6x+c的图象过A(﹣1,y1),B(3,y2),C(3+,y3),则y1,y2,y3的大小关系是()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.y3>y1>y2【考点】二次函数图象上点的坐标特征.【分析】根据二次函数的性质结合二次函数的解析式即可得出y1>y3>y2,此题得解.【解答】解:二次函数y=x2﹣6x+c的对称轴为x=3,∵a=1>0,∴当x=3时,y值最小,即y2最小.∵|﹣1﹣3|=4,|3+﹣3|=,4>,∴点y1>y3.∴y1>y3>y2.故选B.【点评】本题考查了二次函数的性质,根据二次函数的性质确定A、B、C三点纵坐标的大小是解题的关键.5.图(1)是一个横断面为抛物线形状的拱桥,当水面在l时,拱顶(拱桥洞的最高点)离水面2m,水面宽4m.如图(2)建立平面直角坐标系,则抛物线的关系式是()A.y=﹣2x2B.y=2x2C.y=﹣x2D.y=x2【考点】根据实际问题列二次函数关系式.【分析】由图中可以看出,所求抛物线的顶点在原点,对称轴为y轴,可设此函数解析式为:y=ax2,利用待定系数法求解.【解答】解:设此函数解析式为:y=ax2,a≠0;那么(2,﹣2)应在此函数解析式上.则﹣2=4a即得a=﹣,那么y=﹣x2.故选:C.【点评】根据题意得到函数解析式的表示方法是解决本题的关键,关键在于找到在此函数解析式上的点.6.二次函数y=﹣(x﹣1)2+3的图象的顶点坐标是()A.(﹣1,3)B.(1,3)C.(﹣1,﹣3)D.(1,﹣3)【考点】二次函数的性质.【分析】根据二次函数的顶点式一般形式的特点,可直接写出顶点坐标.【解答】解:二次函数y=﹣(x﹣1)2+3为顶点式,其顶点坐标为(1,3).故选B.【点评】主要考查了求抛物线的顶点坐标的方法.7.已知函数y=2x2的图象是抛物线,现在同一坐标系中,将该抛物线分别向上、向左平移2个单位,那么所得到的新抛物线的解析式是()A.y=2(x+2)2+2B.y=2(x+2)2﹣2C.y=2(x﹣2)2﹣2D.y=2(x﹣2)2+2【考点】二次函数图象与几何变换.【分析】直接利用平移规律(左加右减,上加下减)求新抛物线的解析式.【解答】解:抛物线y=2x2向上、向左平移2个单位后的解析式为:y=2(x+2)2+2.故选:A.【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.8.抛物线C1:y=x2+1与抛物线C2关于x轴对称,则抛物线C2的解析式为()A.y=﹣x2B.y=﹣x2+1C.y=x2﹣1D.y=﹣x2﹣1【考点】二次函数图象与几何变换.【分析】画出图形后可根据开口方向决定二次项系数的符号,开口度是二次项系数的绝对值;与y轴的交点为抛物线的常数项进行解答.【解答】解:关于x轴对称的两个函数解析式的开口方向改变,开口度不变,二次项的系数互为相反数;对与y轴的交点互为相反数,那么常数项互为相反数,故选D.【点评】根据画图可得到抛物线关于x轴对称的特点:二次项系数,一次项系数,常数项均互为相反数.二、填空题(本大题共7个小题,每小题3分,共21分)9.若把函数y=x2﹣2x﹣3化为y=(x﹣m)2+k的形式,其中m,k为常数,则m+k=﹣3.【考点】二次函数的三种形式.【分析】利用配方法操作整理,然后根据对应系数相等求出m、k,再相加即可.【解答】解:y=x2﹣2x﹣3,=(x2﹣2x+1)﹣1﹣3,=(x﹣1)2﹣4,所以,m=1,k=﹣4,所以,m+k=1+(﹣4)=﹣3.故答案为:﹣3.【点评】本题考查了二次函数的三种形式,熟练掌握配方法的操作是解题的关键.10.已知二次函数y=﹣x2+4x+m的部分图象如图,则关于x的一元二次方程﹣x2+4x+m=0的解是x1=﹣1,x2=5.【考点】抛物线与x轴的交点.【分析】由二次函数y=﹣x2+4x+m的部分图象可以得到抛物线的对称轴和抛物线与x轴的一个交点坐标,然后可以求出另一个交点坐标,再利用抛物线与x轴交点的横坐标与相应的一元二次方程的根的关系即可得到关于x的一元二次方程﹣x2+4x+m=0的解.【解答】解:根据图示知,二次函数y=﹣x2+4x+m的对称轴为x=2,与x轴的一个交点为(5,0),根据抛物线的对称性知,抛物线与x轴的另一个交点横坐标与点(5,0)关于对称轴对称,即x=﹣1,则另一交点坐标为(﹣1,0)则当x=﹣1或x=5时,函数值y=0,即﹣x2+4x+m=0,故关于x的一元二次方程﹣x2+4x+m=0的解为x1=﹣1,x2=5.故答案是:x1=﹣1,x2=5.【点评】本题考查了抛物线与x轴的交点.解答此题需要具有一定的读图的能力.11.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表可知,下列说法中正确的是.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=;④在对称轴左侧,y随x增大而增大.【考点】抛物线与x轴的交点;二次函数的性质;二次函数的最值.【分析】根据表中数据和抛物线的对称性,可得到抛物线的开口向下,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);因此可得抛物线的对称轴是直线x=3﹣=,再根据抛物线的性质即可进行判断.【解答】解:根据图表,当x=﹣2,y=0,根据抛物线的对称性,当x=3时,y=0,即抛物线与x轴的交点为(﹣2,0)和(3,0);∴抛物线的对称轴是直线x=3﹣=,根据表中数据得到抛物线的开口向下,∴当x=时,函数有最大值,而不是x=0,或1对应的函数值6,并且在直线x=的左侧,y随x增大而增大.所以①③④正确,②错.故答案为:①③④.【点评】本题考查了抛物线y=ax2+bx+c的性质:抛物线是轴对称图形,它与x轴的两个交点是对称点,对称轴与抛物线的交点为抛物线的顶点;a<0时,函数有最大值,在对称轴左侧,y随x增大而增大.12.函数y=2x2﹣3x+1与y轴的交点坐标为(0,1),与x轴的交点的坐标为(,0),(1,0).【考点】抛物线与x轴的交点.【分析】函数y=2x2﹣3x+1与y轴的交点坐标,即为x=0时,y的值.当x=0,y=1.故与y 轴的交点坐标为(0,1);x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根为x1=,x2=1,与x轴的交点的坐标为(,0),(1,0).【解答】解:把x=0代入函数可得y=1,故y轴的交点坐标为(0,1),把y=0代入函数可得x=或1,故与x轴的交点的坐标为(,0),(1,0).【点评】解答此题要明白函数y=2x2﹣3x+1与y轴的交点坐标即为x=0时y的值;x轴的交点的坐标为y=0时方程2x2﹣3x+1=0的两个根.13.请写出符合以下三个条件的一个函数的解析式y=﹣x+2,①过点(3,1);②当x>0时,y随x的增大而减小;③当自变量的值为2时,函数值小于2.【考点】二次函数的性质;一次函数的性质.【分析】由题意设出函数的一般解析式,再根据①②③的条件确定函数的解析式.【解答】解:设函数的解析式为:y=kx+b,∵函数过点(3,1),∴3k+b=1…①∵当x>0时,y随x的增大而减小,∴k<0…②,又∵当自变量的值为2时,函数值小于2,当x=2时,函数y=2k+b<2…③由①②③知可以令b=2,可得k=﹣,此时2k+b=﹣+2<2,∴函数的解析式为:y=﹣x+2.答案为y=﹣x+2.【点评】此题是一道开放性题,主要考查一次函数的基本性质,函数的增减性及用待定系数法来确定函数的解析式.14.抛物线y=﹣x2+bx+c的图象如图所示,则此抛物线的解析式为y=﹣x2+2x+3.【考点】待定系数法求二次函数解析式.【分析】此图象告诉:函数的对称轴为x=1,且过点(3,0);用待定系数法求b,c的值即可.【解答】解:据题意得解得∴此抛物线的解析式为y=﹣x2+2x+3.【点评】本题考查了用待定系数法求函数解析式的方法,同时还考查了方程组的解法,考查了数形结合思想.15.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是①③.(只要求填写正确命题的序号)【考点】二次函数图象与系数的关系;二次函数图象上点的坐标特征;抛物线与x轴的交点.【分析】由图象可知过(1,0),代入得到a+b+c=0;根据﹣=﹣1,推出b=2a;根据图象关于对称轴对称,得出与X轴的交点是(﹣3,0),(1,0);由a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,根据结论判断即可.【解答】解:由图象可知:过(1,0),代入得:a+b+c=0,∴①正确;﹣=﹣1,∴b=2a,∴②错误;根据图象关于对称轴x=﹣1对称,与X轴的交点是(﹣3,0),(1,0),∴③正确;∵b=2a>0,∴﹣b<0,∵a+b+c=0,∴c=﹣a﹣b,∴a﹣2b+c=a﹣2b﹣a﹣b=﹣3b<0,∴④错误.故答案为:①③.【点评】本题主要考查对二次函数与X轴的交点,二次函数图象上点的坐标特征,二次函数图象与系数的关系等知识点的理解和掌握,能根据图象确定系数的正负是解此题的关键.三、解答题16.(12分)(2016秋•南昌校级月考)解方程①x2﹣3x+2=0②4x2﹣8x﹣7=﹣11③5x﹣2x2=0④x2+6x﹣1=0.【考点】解一元二次方程-因式分解法;解一元二次方程-直接开平方法.【分析】①因式分解法求解可得;②整理成一般式后,因式分解法求解可得;③因式分解法求解可得;④公式法求解可得.【解答】解:①(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得:x=1或x=2;②原方程整理可得:x2﹣2x+1=0,∴(x﹣1)2=0,解得:x=1;③x(5﹣2x)=0,∴x=0或5﹣2x=0,解得x=0或x=;④∵a=1,b=6,c=﹣1,∴△=36+4=40>0,∴x==﹣3.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.用配方法将二次函数化成y=a(x﹣h)2+k的形式,并写出顶点坐标和对称轴①y=2x2+6x﹣12②y=﹣0.5x2﹣3x+3.【考点】二次函数的三种形式.【分析】①②利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑成完全平方式,可把一般式转化为顶点式,从而得出顶点坐标和对称轴.【解答】解:①y=2x2+6x﹣12=2(x+)2﹣,则该抛物线的顶点坐标是(﹣,﹣),对称轴是x=﹣;②y=﹣0.5x2﹣3x+3=﹣(x+3)2+,则该抛物线的顶点坐标是(﹣3,),对称轴是x=﹣3.【点评】此题考查了二次函数表达式的一般式与顶点式的转换,并要求熟练掌握顶点公式和对称轴公式.18.已知二次函数y=2x2﹣4x﹣6.(1)用配方法将y=2x2﹣4x﹣6化成y=a(x﹣h)2+k的形式;(2)在平面直角坐标系中,画出这个二次函数的图象;(3)当x取何值时,y随x的增大而减少?(4)当x取何值是,y=0,y>0,y<0,(5)当0<x<4时,求y的取值范围;(6)求函数图象与两坐标轴交点所围成的三角形的面积.【考点】二次函数的三种形式;二次函数的图象;二次函数的性质.【分析】(1)直接利用配方法得出函数顶点式即可;(2)利用顶点式得出顶点坐标,进而得出函数与坐标轴交点进而画出函数图象;(3)利用函数顶点式得出对称轴进而得出答案;(4)利用函数图象得出答案即可;(5)利用x=1以及x=4是求出函数值进而得出答案;(6)利用函数图象得出三角形面积即可.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8;(2)当y=0,则0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,故图象与x轴交点坐标为:(﹣1,0),(3,0),当x=0,y=﹣6,故图象与y轴交点坐标为:(0,﹣6),如图所示:;(3)当x<1时,y随x的增大而减少;(4)当x=1或﹣3时,y=0,当x<﹣1或x>3时,y>0,当﹣1<x<3时;y<0;(5)当0<x<4时,x=1时,y=﹣8,x=4时,y=10,故y的取值范围是:﹣8≤y<10;(6)如图所示:函数图象与两坐标轴交点所围成的三角形的面积为:×4×6=12.【点评】此题主要考查了配方法求函数顶点坐标以及利用图象判断函数值以及三角形面积求法,正确画出函数图象是解题关键.19.二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.(1)根据图象确定a、b、c的符号,并说明理由;(2)如果点A的坐标为(0,﹣3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.【考点】二次函数综合题;解三元一次方程组;待定系数法求二次函数解析式.【分析】(1)根据开口方向可确定a的符号,由对称轴的符号,a的符号,结合起来可确定b的符号,看抛物线与y轴的交点可确定c的符号;(2)已知OA=3,解直角△OAB、△OAC可得B、C的坐标,设抛物线解析式的交点式,把A、B、C代入即可求解析式.【解答】解:(1)∵抛物线开口向上∴a>0又∵对称轴在y轴的左侧∴<0,∴b>0又∵抛物线交y轴的负半轴∴c<0(2)连接AB,AC∵在Rt△AOB中,∠ABO=45°∴∠OAB=45°,∴OB=OA∴B(﹣3,0)又∵在Rt△ACO中,∠ACO=60°∴OC=OAcot=60°=∴C(,0)设二次函数的解析式为y=ax2+bx+c(a≠0)由题意:∴所求二次函数的解析式为y=x2+(﹣1)x﹣3.【点评】本题考查了点的坐标求法,正确设抛物线解析式,求二次函数解析式的方法,需要学生熟练掌握.20.已知抛物线C1:y=x2﹣2(m+2)x+m2﹣10的顶点A到y轴的距离为3.(1)求顶点A的坐标及m的值;=6,求点B的坐(2)若抛物线与x轴交于C、D两点.点B在抛物线C1上,且S△BCD标.【考点】抛物线与x轴的交点.【分析】(1)根据顶点A到y轴的距离为3,说明顶点A的横坐标为3或﹣3,根据公式﹣代入列式,求出m的值,分别代入解析式中,求出对应的顶点坐标A;也可以直接配方求得;(2)先计算抛物线与x轴的交点坐标,发现当m=﹣5时不符合题意,因此根据m=1时,对应的抛物线计算CD的长,求出点B的坐标.【解答】解:(1)由题意得:﹣=3或﹣3,∴m+2=3或m+2=﹣3,∴m=1或﹣5,当m=1时,抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18,∴顶点A的坐标为(3,﹣18);当m=﹣5时,抛物线C1:y=x2+6x+15=(x+3)2+6,∴顶点A的坐标为(﹣3,6);(2)设B(a,b),当抛物线C1:y=x2﹣6x﹣9=(x﹣3)2﹣18时,当y=0时,(x﹣3)2﹣18=0,x1=3+3,x2=3﹣3,∴CD=3+3+3﹣3=6,=6,∵S△BCD∴CD•|b|=6,∴×6•|b|=6,∴b=±2,当b=2时,x2﹣6x﹣9=2,解得:x=3±2,当b=﹣2时,x2﹣6x﹣9=﹣2,解得:x=7或﹣1,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2),当抛物线C1:y=x2+6x+15=(x+3)2+6时,当y=0时,(x+3)2+6=0,此方程无实数解,所以此时抛物线与x轴无交点,不符合题意,∴B(3+2,2)或(3﹣2,2)或(7,﹣2)或(﹣1,﹣2).【点评】本题是二次函数性质的应用,考查了抛物线与x轴的交点及顶点坐标,对于利用三角形面积求点的坐标问题,解题思路为:设出该点的坐标,根据面积列方程,求出未知数的值,再代入解析式中求另一坐标即可;同时要注意数形结合的思想的应用.21.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【考点】二次函数的应用.【分析】(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,元,∴当x=60时,P最大值=8000即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,﹣20×58+1600=440,∴当x=58时,y最小值=即超市每天至少销售粽子440盒.【点评】本题考查的是二次函数与一次函数在实际生活中的应用,主要利用了利润=1盒粽子所获得的利润×销售量,求函数的最值时,注意自变量的取值范围.22.已知函数y=ax2+60x,在x>20时,y随x增大而减小,求:(1)a的取值范围;(2)若该函数为飞机着陆后滑行距离y(m)与滑行时间x(s)之间的函数关系,已知函数的对称轴为直线x=20,请写出自变量滑行时间的取值范围,并求出飞机着陆后需滑行多少米才能停下来?【考点】二次函数的应用.【分析】(1)根据二次函数性质可知该抛物线的对称轴x=﹣≤20,得出关于a的不等式,解之即可;(2)根据对称轴求出a,即可得二次函数解析式,将其配方成顶点式,根据函数取得最大值时即飞机滑行停止滑行,据此解答即可.【解答】解:(1)∵函数y=ax2+60x,在x>20时,y随x增大而减小,∴a<0且﹣≤20,解得:a≤﹣;(2)根据题意得:﹣=20,解得a=﹣,∴y=﹣x2+60x=﹣(x﹣20)2+600,则自变量x的范围为0≤x≤20,且飞机着陆后需滑行600米才能停下来.【点评】本题主要考查二次函数的应用,熟练掌握二次函数的性质及顶点在具体问题中的实际意义是解题的关键.23.(14分)(2016秋•南昌校级月考)如图1,抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,与x轴交于另一点B.(1)求抛物线的解析式;(2)如图2,点P为第一象限抛物线上一点,满足到线段CB距离最大,求点P坐标;(3)如图3,若抛物线的对称轴EF(E为抛物线顶点)与线段BC相交于点F,M为线段BC上的任意一点,过点M作MN∥EF交抛物线于点N,以E,F,M,N为顶点的四边形能否为平行四边形?若能,求点N的坐标;若不能,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线y=ax2+bx﹣4a经过A(﹣1,0)、C(0,4)两点,列出a和b 的二元一次方程组,求出a和b的值,进而求出点B的坐标,即可求出直线BC的解析式;(2)过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);=PQ•OB列出S关于x的二次函数,利用函数的性质求出面积求出PQ的长,利用S△PCB的最大值,进而求出点P的坐标;(3)首先求出EF的长,设N(x,﹣x2+3x+4),则M(x,﹣x+4),利用平行四边形对边平行且相等列出x的一元二次方程,解方程求出x的值即可.【解答】解:(1)由题意得,解得.∴抛物线的解析式:y=﹣x2+3x+4.(2)由B(4,0)、C(0,4)可知,直线BC:y=﹣x+4;如图1,过点P作PQ∥y轴,交直线BC于Q,设P(x,﹣x2+3x+4),则Q(x,﹣x+4);∴PQ=(﹣x2+3x+4)﹣(﹣x+4)=﹣x2+4x;S△PCB=PQ•OB=×(﹣x2+4x)×4=﹣2(x﹣2)2+8;∴当P(2,6)时,△PCB的面积最大;(3)存在.抛物线y=﹣x2+3x+4的顶点坐标E(,),直线BC:y=﹣x+4;当x=时,F(,),∴EF=.如图2,过点M作MN∥EF,交直线BC于M,设N(x,﹣x2+3x+4),则M(x,﹣x+4);∴MN=|(﹣x2+3x+4)﹣(﹣x+4)|=|﹣x2+4x|;当EF与NM平行且相等时,四边形EFMN是平行四边形,∴|﹣x2+4x|=;由﹣x2+4x=时,解得x1=,x2=(不合题意,舍去).当x=时,y=﹣()2+3×+4=,∴N1(,).当﹣x2+4x=﹣时,解得x=,当x=时,y=,∴N2(,),当x=时,y=,∴N3(,),综上所述,点N坐标为(,)或(,)或(,).【点评】本题主要考查了二次函数综合题,此题涉及到待定系数法求函数解析式,二次函数的性质、三角形面积的计算、平行四边形的判定等知识,解答(2)问关键是用x表示出PQ 的长,解答(3)问关键是求出EF的长,利用平行四边形对边平行且相等进行解答,此题有一定的难度.。
九年级数学第一次月考试卷分析【含答案】

九年级数学第一次月考试卷分析【含答案】专业课原理概述部分一、选择题1. 下列哪个数是负数?()(1分)A. -5B. 3C. 0D. 22. 下列哪个数是偶数?()(1分)A. 21B. 4C. 9D. 173. 下列哪个数是无理数?()(1分)A. √9B. √16C. √3D. √254. 下列哪个数是整数?()(1分)A. 1.5B. -2.3C. 3/2D. -55. 下列哪个数是质数?()(1分)A. 27B. 29C. 35D. 49二、判断题1. 2是偶数。
()(1分)2. -3是正数。
()(1分)3. 0是有理数。
()(1分)4. √2是无理数。
()(1分)5. 1/2是整数。
()(1分)三、填空题1. -3的相反数是______。
()(1分)2. 8的平方根是______。
()(1分)3. 27的立方根是______。
()(1分)4. 5和7的最小公倍数是______。
()(1分)5. 15和20的最大公约数是______。
()(1分)四、简答题1. 请解释有理数的定义。
()(2分)2. 请解释无理数的定义。
()(2分)3. 请解释整数的定义。
()(2分)4. 请解释质数的定义。
()(2分)5. 请解释偶数的定义。
()(2分)五、应用题1. 计算下列各式的值:√9 + √16 √25。
()(2分)2. 计算下列各式的值:3^2 2^2。
()(2分)3. 计算下列各式的值:4!。
()(2分)4. 计算下列各式的值:5! 3!。
()(2分)5. 计算下列各式的值:6 + 1/2 + 2/3 + 3/4 + 4/5。
()(2分)六、分析题1. 请分析下列各式的类型:√9, √16, √3, √25。
()(5分)2. 请分析下列各式的类型:3.14, 2.5, 1.2, 0.3333。
()(5分)七、实践操作题1. 请用直尺和圆规作出一个边长为5cm的正方形。
()(5分)2. 请用直尺和圆规作出一个半径为3cm的圆。
九年级数学第一次月考试卷分析

九年级数学第一次月考试卷分析从九年级(3)班试卷卷面答题情况分析:本次质量检测及格率330%,优秀率9%,平均成绩73.47分,最高成绩143分,最低成绩19分,在一定程度上反映了学生对数学学科知识掌握情况。
一、试题结构及特点本次试題其特点就是考察了学生基础知识和基本技能的掌握情况。
全卷共五个大题,共150分,。
第一大题选择題40分,第二大题填空题24分,第三大题解答题24分。
第四大题解答题40分, 第五大题解答题22分.涉及知识点及题型有:一元二次方程的概念及它的解法、一元二次方程的应用等。
形式灵活多样,很多题目具有启发学生思考的价值。
有些题目出的巧妙。
比如:第一大题的1题、2题、3题、4题就是考查了基本的数学知识点,第二大题的16题属于开放性试题;第四大题的21题灵活地考查了学生观察和思考能力;二、主要失分及原因分析1.选择题前3道题目属于基础题,用于检验学生掌握基础知识的情况,得分率一般较高,但是第3题相对错误率高一点,原因是学生对于概念的模糊。
第6题是考察学生对的一元二次方程简单计算以及三角形三边关系,学生往往不容易想到突破口,故错误率较高。
第4、5、9、10题考查了学生对一元二次方程的根的理解以及对根的判别情況。
2.填空题填空题共计6道,所学章节内容全部包含在内。
第1小题考查了解一元二次方程的得分率十分高,第2、3題考查一元二次方程的一般形式及根的概念的了解,第5题是考查学生对一元二次方程根与系数的关系的掌握情况。
第6题具有开放性、探索性,有利于考查不同层次的学生的分析、探求、解决问题的能力。
3.解答题(1)解方程很好的考查了学生对解方程的掌握情况。
大多数学生使用自己熟悉的方法(配方法、公式法)来解,所以解方程的得分是很高的。
但是其中不乏粗心的学生。
(2)列方程解应用题只有一部分学生会分析问题,找等量关系列方程解决实际问题.本大题的得分率较低,还需加强这方面的解题训练.三、存在的问题:1、基础知识掌握的不扎实,有好多知识在课堂上讲过多遍,但仍然出错。
人教版2024-2025学年九年级数学上册第一次月考(第二十一章至第二十三章)(解析版)

九年级上册数学第一次月考(考试范围:第二十一章至第二十三章)一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的.1. 在下面用数学家名字命名图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查中心对称图形与轴对称图形的识别,轴对称图形指的是延某条直线折叠,两边的图形能够完全重合;将图形旋转180°,能够与原图形重合的图形叫做中心对称图形,掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义逐一判断即可.【详解】解:AB .不是中心对称图形,是轴对称图形,不符合题意;C .既不是中心对称图形,也不是轴对称图形,不符合题意;D .既是中心对称图形,又是轴对称图形,符合题意;故选:D .2. 方程23x x =的解为( )A. 120x x == B. 123x x == C. 123x x ==− D. 10x =,23x =【答案】D【解析】 【分析】本题考查了因式分解法解一元二次方程,根据因式分解法计算即可得出答案.【详解】解:∵23x x =,∴230x x −=,的∴()30x x −=, ∴0x =或30x −=,解得:10x =,23x =,故选:D .3. 抛物线 ()2213y x =−−向左平移2个单位,再向上平移5个单位,所得的抛物线的解析式为( )A. ()2212y x =++B. ()2212y x =−+C. ()2212y x =+−D. ()2212y x =−− 【答案】A【解析】【分析】根据函数图像平移法则“左加右减、上加下减”,将题中文字描述转化为数学符号即可解决问题.【详解】∵抛物线()2213y x =−−向左平移2个单位,再向上平移5个单位,∴所得的抛物线的解析式为()221235y x =−+−+,即()2212y x =++故选:A【点睛】熟练掌握函数图像平移法则“左加右减、上加下减”是解决问题的关键.4. 用配方法解一元二次方程2870x x −+=,方程可变形为( )A. 2(4)9x +=B. 2(4)9x −=C. 2(8)16x −=D. 2(8)57x +=【答案】B【解析】【分析】先将常数项移到等号的右边,在方程两边加上一次项系数一半平方,将方程左边配成一个完全平方式即可.【详解】解:x 2-8x +7=0,x 2-8x =-7,x 2-8x +16=-7+16,(x -4)2=9.故选:B .【点睛】本题考查了运用配方法解一元二次方程,解答时熟练掌握配方法的步骤是关键.5. 如图,将OAB ∆绕O 点逆时针旋转60 得到OCD ∆,若4OA =,35AOB ∠= ,则下列结论不一定正确的是( )A. 60BDO ∠=°B. 25BOC ∠=°C. 4OC =D. //CD OA【答案】D【解析】 【分析】由题意△OAB 绕O 点逆时针旋转60°得到△OCD 知∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,可判断C 正确;由△AOC 、△BOD 是等边三角形可判断A 选项;由∠AOB=35°,∠AOC=60°可判断B 选项,据此可得答案.【详解】∵△OAB 绕O 点逆时针旋转60°得到△OCD ,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO ,故C 选项正确;则△AOC 、△BOD 是等边三角形,∴∠BDO=60°,故A 选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B 选项正确;故选:D .【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质. 6. 已知二次函数y =ax 2+bx +c 的图象如图所示,那么下列结论中正确的是( )A. ac >0B. b >0C. a +c <0D. a +b +c =0【答案】D【解析】 【分析】根据二次函数的图象与性质即可求出答案.【详解】A.由图象可知:a <0,c >0,∴ac <0,故A 错误;B.由对称轴可知:x =2b a −<0, ∴b <0,故B 错误;C.由对称轴可知:x =2b a −=﹣1, ∴b =2a ,∵x =1时,y =0,∴a +b +c =0,∴c =﹣3a ,∴a +c =a ﹣3a =﹣2a >0,故C 错误;故选D .【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型. 7. 已知关于x 的一元二次方程x 2+(2m +1)x +m ﹣1=0的两个根分别是x 1,x 2,且满足x 12+x 22=3,则m 的值是( )A. 0B. ﹣2C. 0 或﹣12D. ﹣2或0【答案】C【解析】 【分析】根据根与系数的关系得到()1221x x m ++=-,121x x m =-,再由()22212121223x x x x x x ++=-=,然后整体代入即可得到关于m 方程,解方程即可得到m 的值.【详解】解:∵方程()22110x m x m +++-=的两个根分别是x 1,x 2,∴()1212211x x m x x m ++=-,=-, ∵22123x x +=,即()2121223x x x x +-=, ∴()()221213m m +---=, 解得m =0或m =﹣12, ∵方程()22110x m x m +++-=的两个根, ∴()()222141450m m m ∆++≥=--=, ∴m 为任意实数,方程均有实数根,当m =0, 5∆=>0;当 m =﹣12,6∆=>0 ∴m =0或m =﹣12均符合题意. 故选:C . 【点睛】本题考查根与系数的关系,将根与系数的关系与代数式变形相结合是解题的关键.8. 如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用抛物线2142y x x =−刻画,斜坡可以用直线12y x =刻画.下列结论错误的是( )A. 小球落地点与点O 的水平距离为7mB. 当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3mC. 小球与点O 的水平距离超过4m 时呈下降趋势D. 小球与斜坡的距离的最大值为49m 8【答案】B【解析】【分析】本题考查了二次函数的性质,令211422x x x −=,解得10x =,27x =,即可判断A ;把7.5y =代入2142y x x =−得2147.52x x −=,求解即可判断B ;将抛物线解析式化为顶点式即可判断C ;设抛物线上一点A 的坐标为21,42a a a−,作AB x ⊥轴交直线12y x =于B ,则1,2B a a ,表示出AB ,结合二次函数的性质即可判断D ,熟练掌握二次函数的性质是解此题的关键. 【详解】解:令211422x x x −=,解得10x =,27x =, ∴小球落地点与点O 的水平距离为7m ,故A 正确,不符合题意; 把7.5y =代入2142y x x =−得2147.52x x −=, 解得:13x =,25x =,∴当小球抛出高度达到7.5m 时,小球与点O 的水平距离为3m 或5m ,故B 错误,符合题意; ∵()221144822y x x x =−=−−+, ∴抛物线的对称轴为直线4x =, ∵102−<, ∴当4x >时,y 随x 的增大而减小,∴小球与点O 的水平距离超过4m 时呈下降趋势,故C 正确,不符合题意;设抛物线上一点A 的坐标为21,42a a a−, 作AB x ⊥轴交直线12y x =于B ,则1,2B a a, , ∴2221117174942222228AB a a a a a a =−−=−+=−−+ , ∵102−<,∴当72a =时,AB 有最大值,最大值为498, ∴小球与斜坡的距离的最大值为49m 8,故D 正确,不符合题意; 故选:B . 9. 如图,抛物线2=23y x x −−与y 轴交于点A ,与x 轴的负半轴交于点B ,点M 是对称轴上的一个动点,连接AM ,BM ,则AM BM +的最小值为( )A. 2B.C.D.【答案】D【解析】 【分析】设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,根据解析式求得,A C 的坐标,根据轴对称的性质得出MB MC =,继而得出AM BM +取得最小值,最小值为AC 的长,勾股定理即可求解.【详解】解:如图所示,设抛物线与x 轴的另一个交点为C ,连接MC ,AC ,∵2=23y x x −−,令0y =,即2230x x −−=,解得:121,3x x =−=, ∴()3,0C ,令0x =,解得=3y −,∴()0,3A −,∵点M 是对称轴上的一个动点,∴MB MC =,∵AM BM AM CM AC +=+≥∴当,,A M C 三点共线时,AM BM +取得最小值,最小值为AC 的长,故选:D .【点睛】本题考查了根据二次函数对称性求线段和的最值,掌握二次函数对称性是解题的关键. 10. 如图,在OAB ∆中,顶点(0,0)O ,(3,4)A −,(3,4)B ,将OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转,每次旋转90°,则第70次旋转结束时,点D 的坐标为( )A. (10,3)B. (3,10)−C. (10,3)−)D. (3,10)−【答案】D【解析】 【分析】先求出6AB =,再利用正方形的性质确定(3,10)D −,由于704172=×+,所以第70次旋转结束时,相当于OAB ∆与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,此时旋转前后的点D 关于原点对称,于是利用关于原点对称的点的坐标特征可出旋转后的点D 的坐标.【详解】解:(3,4)A − ,(3,4)B ,336AB ∴=+=,四边形ABCD 为正方形,6AD AB ∴==,(3,10)D ∴−,704172=×+ ,∴每4次一个循环,第70次旋转结束时,相当于OAB △与正方形ABCD 组成的图形绕点O 顺时针旋转2次,每次旋转90°,∴点D 的坐标为(3,10)−.故选D .【点睛】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.二、填空题(每小题3分,共15分)11. 已知()211350mm x x +−+−=是关于x 的一元二次方程,则m 的值为______. 【答案】1−【解析】【分析】此题主要考查了一元二次方程的定义:含有一个未知数,且未知数的最高次幂是2次的整式方程,特别注意二次项系数不为0,正确把握定义是解题关键.直接利用一元二次方程的定义知道二次项系数不为0同时x 的最高次幂为2,得出m 的值进而得出答案.【详解】解:由题意知:212m +=且10m −≠,解得1m =−,故答案为:1−.12. 图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,则这个位置是_______.【答案】③【解析】【分析】如果一个图形绕着某一点旋转180°后,能够与原来的图形完全重合,那么这个图形叫做中心对称图形,根据中心对称图形的定义和性质思考判断即可.【详解】当放置在①位置时,构成的图形不是中心对称图形,∴①不符合题意;当放置在②位置时,构成的图形不是中心对称图形,∴②不符合题意当放置在③位置时,构成的图形是中心对称图形,∴③符合题意当放置在④位置时,构成的图形不是中心对称图形,∴④不符合题意故答案为:③.【点睛】本题考查了拼图中的中心对称图形,熟练掌握中心对称图形的定义和性质是解题的关键. 13. 抛物线()2223,=−−+y x ,当03x ≤≤时,y 的最小值与最大值的和是________.【答案】2−【解析】【分析】本题主要考查了二次函数的最值问题,先根据解析式得到抛物线顶点坐标为(2,3),且抛物线开口向下,则y 的最大值为32x =,再根据自变量的取值范围推出当0x =时,函数有最小值,据此求出最小值即可得到答案.【详解】解:∵抛物线解析式为()2223,y x =−−+∴抛物线顶点坐标为(2,3),且抛物线开口向下,∴y 的最大值为3,离对称轴越远,函数值越小,且对称轴为直线2x =,∵2032−>−,∴当03x ≤≤时,当0x =时,函数有最小值,最小值为()220235y =−−+=−,∴y 的最小值与最大值的和是532−+=−,故答案为:2−.14. 《念奴娇·赤壁怀古》,在苏轼笔下,周瑜年少有为,文采风流,雄姿英发,谈笑间,樯橹灰飞烟灭,然天妒英才,英年早逝,欣赏下面改编的诗歌,“大江东去浪淘尽,千古风流数人物. 而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.”则这位风流人物去世的年龄为_____岁.【答案】36【解析】【分析】本题考查了由实际问题抽象出一元二次方程,根据“十位恰小个位三,个位平方与寿符”以及10×十位数字+个位数字=个位数字的平方,据此列方程可得答案,找准等量关系,正确列出一元二次方程是解题的关键.【详解】解:设这位风流人物去世的年龄十位数字为x ,则个位数字为3x +,则根据题意:()()21033x x x ++=+,整理得:2560x x −+=,解得12x =,23x =,由题意,而立之年督东吴,则2x =舍去,∴这位风流人物去世的年龄为36岁,故答案为:36.15. 函数222y x ax =−−在12x −≤≤有最大值6,则实数a 的值是______.【答案】1−或72【解析】【分析】先求出二次函数的对称轴为x a =,再分1a ≤−,1a 2−<<和2a ≥三种情况,分别利用二次函数的性质求解即可得. 【详解】二次函数222y x ax =−−的对称轴为22a x a −=−=, 由题意,分以下三种情况:(1)当1a ≤−时,在12x −≤≤内,y 随x 的增大而增大, 则当2x =时,y 取得最大值,最大值为224224a a −−=−,因此有246a −=,解得1a =−,符合题设;(2)当1a 2−<<时,在12x −≤≤内,当1x a −≤≤时,y 随x 的增大而减小;当2a x <≤时,y 随x 的增大而 增大, 则当1x =−或2x =时,y 取得最大值,因此有1226a +−=或22426a −−=, 解得72a =或1a =−(均不符题设,舍去); (3)当2a ≥时,在12x −≤≤内,y 随x 的增大而减小,则当1x =−时,y 取得最大值,最大值为12221a a +−−,因此有216a −=,解得72a =,符合题设; 综上,1a =−或72a =, 故答案为:1−或72. 【点睛】本题考查了二次函数的图象与性质,依据题意,正确分三种情况讨论是解题关键.三、解答题(本大题共8个小题,共75分)16. 解一元二次方程:(1)210150x x −+=(2)()()124x x −+=.【答案】(1)15x =+,25x =(2)13x =−,22x =【解析】【分析】本题考查了解一元二次方程,熟练掌握配方法和因式分解法是解此题的关键.(1)利用配方法解一元二次方程即可;(2)利用因式分解法解一元二次方程即可.【小问1详解】解:∵210150x x −+=,∴21015x x −=−,∴210252515x x −+=−,∴()2510x −=,∴5x −=,∴15x =,25x =;【小问2详解】 解:∵()()124x x −+=, ∴2224x x x +−−=,∴260x x +−=,∴()()320x x +−=, ∴30x +=或20x −=,∴13x =−,22x =.17. 若关于x 的一元二次方程2420x x a −++=有两个不相等的实数根.(1)求a 的取值范围;(2)求当a 为正整数时方程的根.【答案】(1)a 的取值范围为2a <(2)若a 为正整数时,方程的根为1和3【解析】【分析】本题考查了根的判别式,解一元一次不等式和解一元二次方程,能根据根的判别式和已知得出不等式是解题的关键.(1)根据判别式即可求出答案;(2)根据a 的范围可知,代入原方程后根据一元二次方程的解法即可求出答案.【小问1详解】解:∵关于x 的一元二次方程2420x x a −++=有两个不相等的实数根,∴()()22Δ444120b ac a =−=−−××+>,解得:2a <,∴a 的取值范围为2a <.【小问2详解】解:∵a 为正整数,∴1a =,∴原方程2430x x −+=, 即()()130x x −−=, 解得:11x =,23x =,∴若a 为正整数时,方程的根为1和3.18. 在正方形网格中建立如图所示的平面直角坐标系xOy ,△ABC 的三个顶点都在格点上,A 的坐标是(4,4),请回答下列问题:为(1)将△ABC向下平移六个单位长度,画出平移后的△A1B1C1,并写出点A的对应点A1的坐标;(2)画出△ABC关于原点O对称的△A2B2C2,并写出点A2的坐标;(3)判断△A1B1C1与△A2B2C2是否关于某点成中心对称;若是,请画出对称中心M,并写出点M的坐标【答案】(1)图形见解析,A1(4,-2)(2)图形见解析,A2(-4,-4)(3)图形见解析,M(0,-3)【解析】【分析】(1)根据网格结构找出点A、B、C向下平移6个单位的对应点A1、B1、C1的位置,然后顺次连接即可,再根据平面直角坐标系写出点A1的坐标;(2)根据网格结构找出点A、B、C关于原点对称的对应点A2、B2、C2的位置,然后顺次连接即可,再根据平面直角坐标系写出点A2的坐标即可;(3)根据中心对称的定义判断,对称中心是各个对应点连线的交点.【详解】(1) 如图,△A1B1C1即为所求,点A的对应点A1的坐标:(4,-2)(2)如图,△A2B2C2即为所求,点A2的坐标(-4,-4)(3)如图,△A1B1C1与△A2B2C2关于点M成中心对称,M (0,-3).【点睛】本题考查作图,旋转变换,平移变换,中心对称等知识,解题的关键是理解题意,灵活运用所学知识解决问题.19. 如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【答案】(1)2119y x =−+ (2)这辆货运卡车能通过该隧道【解析】【分析】(1)抛物线的解析式为()20y ax bx c a ++≠,把()()()303001,,,D ,C ,E −代入计算即可; (2)把 4.5y =时代入(1)的解析式,求出x 的值即可求出结论.【小问1详解】解:根据题意得:()()()303001,,,D ,C ,E −,设抛物线的解析式为()20y ax bx c a ++≠, 把()()()303001,,,D ,C ,E −代入()20y ax bx c a ++≠ 得:193109310c a b a b = ++=−+=解得1901a b c =− = =, ∴抛物线的解析式为2119y x =−+; 【小问2详解】这辆货运卡车能通过该隧道,理由如下: 在2119y x =−+中,令45405..y =−=得: 210519.x =−+,解得:x =±,()28.49m x ∴=≈, 8493.> ,∴这辆货运卡车能通过该隧道.【点睛】本题考查了二次函数的应用,解题的关键是求出二次函数的解析式.20. 解决问题:邓州公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔7月份到9月份的销量,该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,经市场预测,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【答案】(1)该品牌头盔销售量的月增长率为20%;(2)该品牌头盔的实际售价应定为50元/个.【解析】【分析】(1)设该品牌头盔销售量的月增长率为x ,根据“该品牌头盔7月份销售500个,9月份销售720个,且从7月份到9月份销售量的月增长率相同”列一元二次方程求解即可;(2)设该品牌头盔的实际售价为y 元/个,根据月销售利润=每个头盔的利润×月销售量,即可得出关于y 的一元二次方程,解之即可求出答案.【小问1详解】解:设该品牌头盔销售量月增长率为x ,由题意得:()25001750x +=, 解得:10.220%x ==,2 2.2x =−(不合题意,舍去), 答:该品牌头盔销售量月增长率为20%;【小问2详解】解:设该品牌头盔的实际售价应定为y 元/个,由题意得:()()30600104010000y y −−−=, 整理得:213040000y y −+=,解得:150y =,280y =,∵尽可能让顾客得到实惠,∴50y =,答:该品牌头盔的实际售价应定为50元/个.【点睛】本题考查了列一元二次方程解决实际问题,解题关键是准确理解题意,找出等量关系且熟练掌握解一元二次方程的方法.21. 已知二次函数 2y x bx c =++中,函数y 与自变量x 的部分对应值如下表: x 0 1 2 3 4y 5 2 1 2 5(1)求该二次函数的关系式.的的(2)当x 为何值时,y 有最小值? 最小值是多少?(3)若()1,A m y ,()2,B c y 两点都在该函数的图象上,当12y y <时,求m 的取值范围.【答案】(1)245y x x =−+(2)当2x =时,y 有最小值,最小值为1(3)15m −<<【解析】【分析】本题考查了待定系数法求二次函数解析式、二次函数最值、二次函数的对称性,熟练掌握以上知识点并灵活运用是解此题的关键.(1)利用待定系数法计算即可得出答案;(2)将二次函数解析式化为顶点式即可得出答案;(3)由(1)得出()25,B y ,将二次函数解析式化为顶点式即可得出抛物线的对称轴为直线2x =,抛物线开口向上,得出()25,B y 关于直线2x =对称的点的坐标为()21,y −,即可得解.【小问1详解】解:∵二次函数2y x bx c =++的图象经过点()0,5,()1,2,∴512c b c = ++=, 解得:54c b = =−, ∴该二次函数的关系式是245y x x =−+;【小问2详解】解:∵()224521y x x x −=+=−+,∴当2x =时,y 有最小值,最小值为1;【小问3详解】解:由(1)可得:5c =,即()25,B y ,∵()224521y x x x −=+=−+,∴抛物线的对称轴为直线2x =,抛物线开口向上,∴()25,B y 关于直线2x =对称的点的坐标为()21,y −,∵()1,A m y ,()2,B c y 两点都在该函数的图象上,12y y <,∴15m −<<.22. 如图,抛物线2y x mx =+与直线y x b =−+交于点()2,0A 和点B .(1)求m 和b 的值;(2)求点B 的坐标,并结合图象写出不等式2x mx x b +>−+的解集;(3)点M 是直线AB 上的一个动点,将点M 向左平移3个单位长度得到点N ,若线段MN 与抛物线只有一个公共点,直接写出点M 的横坐标x 的取值范围.【答案】(1)2m =−,2b =(2)点B 的坐标为()1,3−,不等式2x mx x b +>−+的解集为1x <−或2x >(3)12x −≤<或3x =【解析】【分析】本题考查了待定系数法求函数解析式、二次函数与一次函数交点问题,熟练掌握以上知识点并灵活运用,采用分类讨论与数形结合的思想是解此题的关键.(1)利用待定系数法计算即可得解;(2)由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+,联立222y x y x x =−+ =−,求出点B 的坐标为()1,3−,再结合图象即可得出答案;(3)分类求解确定MN 的位置,进而求解.【小问1详解】解:将()2,0A 代入抛物线表达式2y x mx =+可得420m +=, 解得:2m =−,将()2,0A 代入直线y x b =−+可得:20b −+=, 解得:2b =;【小问2详解】解:由(1)可得:抛物线的解析式为22y x x =−,直线的解析式为2y x =−+, 联立222y x y x x =−+ =−, 解得13x y =− = 或20x y = =, ∴点B 的坐标为()1,3−,从图象看,不等式2x mx x b +>−+的解集为1x <−或2x >;小问3详解】解:如图:当点M 在线段AB 上时(不含A 点),线段MN 与抛物线只有一个公共点,∵M ,N 的距离为3,而A 、B 的水平距离是3,故此时只有一个交点,即12x −≤<, 如图,当线段MN P 时,线段MN 与抛物线只有一个公共点,∵()22211y x x x =−=−−, ∴抛物线的顶点()1,1P −, 在2y x =−+中,当1y =−时,21x −+=−,解得3x =; 综上所述,12x −≤<或3x =.23. 在等腰直角三角形ABC 和等腰直角三角形EBF 中,90ACB BEF ∠=∠=°,连接AF ,M 是AF 的中点,连接CM ,EM .【(1)观察猜想:图1中,线段CM 与EM 的数量关系是 ,位置关系是 .(2)探究证明:把EBF △绕点B 顺时针旋转一周,(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由.(3)拓展延伸:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,P 为平面内一动点,且2AP =,连接CP ,D 是CP 的中点,连接BD .请直接写出BD 的最值.【答案】(1)CM EM =,CM EM ⊥(2)成立,证明见解析(3)BD 的最小值为1−,最大值为1+【解析】【分析】(1)由直角三角形的性质得出12CM AM AF ==,12EM AM AF ==,从而得出CM EM =,由等边对等角得出MAC MCA ∠=∠,MAE MEA ∠=∠,由三角形外角的定义及性质得出2EMC BAC ∠=∠,最后再由等腰直角三角形的性质即可得出答案; (2)延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,证明()SAS ACB GCB ≌,得出AB BG =,45BAC BGC ∠=∠=°,同理可得:BH BF =,90∠=°FBH ,证明HBA FBG ≌,得出AH FG =,HAB FGB ∠=∠,由三角形中位线定理可得12EM AH =,EM AH ∥,12CM FG =,CM FG ∥,得出EM CM =,由平行线的性质得出EMF HAF ∠=∠,MCA FGA ∠=∠,求出FMC FAC FGA ∠=∠+∠,即可得解; (3)连接AC ,BC ,由题意得出4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,由等腰直角三角形的性质得出AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =,结合AB AK BK AB AK −≤≤+,得出当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,当点K 在BA 的延长线上时,BK 取得最大值,即BD 取得最大值,即可得解.【小问1详解】解:∵90BEF ∠=°,∴18090AEF BEF ∠=°−∠=°,∵90ACB ∠=°,M 是AF 的中点, ∴12CM AM AF ==,12EM AM AF ==, ∴CM EM =,MAC MCA ∠=∠,MAE MEA ∠=∠,∴222EMC EMF CMF MAE MAC BAC ∠=∠+∠=∠+∠=∠,∵三角形ABC 是等腰直角三角形,∴45BAC ∠=°,∴90EMC ∠=°,即CM EM ⊥;故答案为:CM EM =;CM EM ⊥【小问2详解】解:成立,证明如下:如图,延长AC 到点G ,使CG AC =,连接BG ,FG ,延长FE 到点H ,使EH FE =,连接BH ,AH ,∵90ACB ∠=°,∴91800BCG A ACB CB ∠=−°=∠°∠=,∵CG AC =,BC BC =,∴()SAS ACB GCB ≌,∴AB BG =,45BAC BGC ∠=∠=°,∴18090ABG BAC BGC ∠=°−∠−∠=°,同理可得:BH BF =,90∠=°FBH ,∴HBA ABF FBG ABF ∠+∠=∠+∠,即HBA FBG ∠=∠,∴HBA FBG ≌,∴AH FG =,HAB FGB ∠=∠,∵EH EF =,M 是AF 的中点,CG AC =,∴EM 是AFH 的中位线,CM 是AFG 的中位线, ∴12EM AH =,EM AH ∥,12CM FG =,CM FG ∥, ∴EM CM =,EMF HAF ∠=∠,MCA FGA ∠=∠, ∴FMC FAC MCA FAC FGA ∠=∠+∠=∠+∠,∴90EMC EMF FMC HAF FAC FGA BAC BGC ∠=∠+∠=∠+∠+∠=∠+∠=°,即CM EM ⊥;【小问3详解】解:如图,连接AC ,BC ,,∵点A 的坐标为(2,0),点B 的坐标为()6,0,点C 的坐标为()6,4,∴4AB =,4BC =,90ABC ∠=°,以AP 为斜边作等腰直角三角形AKP ,连接DK ,BK ,∵AK PK =,90AKP ∠=°,∴AP =,∴AK AP =,由(2)可得,DK BD =,DK BD ,同理可得:BD =, ∵AB AK BK AB AK −≤≤+,∴当点K 在AB 线段上时,BK 取得最小值,即BD 取得最小值,此时4BK ==−;1BD当点K在BA的延长线上时,BK取得最大值,即BD取得最大值,此时4BK=,=+;1BD综上所述,BD的最小值为1+.−,最大值为1【点睛】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、三角形外角的定义及性质、坐标与图形、三角形中位线定理等知识点,熟练掌握以上知识点并灵活运用,添加适当的辅助线是解此题的关键.。
2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。
最新 九年级数学第一月考试卷分析

九年级数学第一次月考试卷分析报告一、基本情况九年级数学第一次月考试卷是按照中考卷题型及题量设计,全卷共25道题,覆盖了第二十一章、第二十二章的基本知识点,试题呈现方式多样化,主观性试题的类型丰富:开放题、探究题、应用题、操作题等占一定的分值比例,题型结构搭配比例基本适当,各知识点分值比例分配比较合理恰当,总体难度和难度结构分布合理,符合学生的实际情况。
本校平均分:79、9,优秀率:47、9%,及格率:90%。
二、考生答题情况分析选择题(1—9)和填空题(13—17)均为基础题,主要考查学生对九年级数学中的基本概念、基本技能和基本方法的理解和运用。
从统计考生答卷情况来看,对于大部分小题考生的得分率普遍较高。
某些试题涉及知识虽然基础,但背景新颖,需要考生具备一定的“学习”能力。
考试结果表明,对于这样的试题,有相当一部分学生存在能力上的欠缺。
例如:第2,8题。
第2题学生往往讨论不全面只解答一种情况漏第二种情况导致失分,所以选择题能得满分的考生不多。
第19题是基本根式运算题,虽然涉及到化简根式,但情形简单仍不失基础性。
第20、21题以一元二次方程有无实数根为基础,考察学生对一元二次方程有两个实施根的理解,21题连带复习八年级下册的勾股定理的逆定理知识,很多同学对上学期的知识忘记的比较多,导致此题失分率高,得满分的同学较少。
第23题是一元二次方程与实际问题的应用,此题需要考虑全面,记得加上公共部分的面积,这是这题失分的所在,24题的难度层次分明,逐级递进,可以引导学生逐步深入思考第25题考查的内容是根据具体问题中的数量关系,建立适当的数学模型解决实际问题,体现了分类、数形结合等重要的数学思想方法,内涵比较丰富,对分析问题和解决问题的能力要求较高。
可以说,开放与探究是本试卷的亮点。
三、试卷对课程理念的体现,对科学特点的体现数学试卷呈现出许多新意,重视试题的教育价值的功能,体现新课程改革理念,既体现了数学学科的基本特点,又给学生创造了灵活、综合地运用基础知识、基本技能,探索思考的空间与机会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学第一次月考试卷分析
一、基本概况
这次数学期中考试,九年级(1)(2)班参考28人,及格人数24人,及格率,85.7%,优秀人数11人,优秀率39.3%.
二、试题分析
这次考试主要考察了初三数学第二十三章的内容。
主要内容有,旋转的定义、旋转的性质及应用、中心对称的定义、中心对称的性质及应用、中心对称图形、以及旋转作图以及旋转与三角形四边形的综合应用。
试卷的总体难度适宜,注重基础,加大知识点的覆盖面,控制题目的烦琐程度,整体布局力求合理有序,提高应用题的考查力度,注重知识的拓展与应用.
三.存在问题
1、两极分化
2、基础比较差,知识间的内在联系理不清
3、分析,推理,灵活应变能力不强
4、审题能力不强
5、前期基本的数学模型没有掌握到位,
6、解决问题的方法不灵活,欠缺方法总结
四、今后工作思路
1.在教学中,尽可能针对不同层次的学生采取不同的方法。
对于基础较差的学生主要就是落实双基,让他们能拿到基本分;对于学有余力的学生,要适当给他们“吃点偏饭”,使他们的能力得到较快的提高,力争在中考中取得优异的成绩。
2、教学中要重在凸现学生的学习过程,培养学生的自主学习的能力。
在平时的教学中,作为教师应尽可能地为学生提供学习材料,创造自主学习的机会。
尤其是在教学中,要让学生的思维得到充分的展示,让他们自己来分析题目,设计解题的策略,多做分析和编题等训练。
3、强化过程意识,暴露思维过程
数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上.数学教学中,应当有意识地精选一些典型例题和习题进行思维训练.激发学
生的学习积极性,向学生提供充分从事数学活动的机会.暴露学生把抽象的数学问题具体化和形象化的过程;要让学生多说解题思路和解决问题的策略,暴露学生解决数学问题的思维过程;经常性地进行数学语言的训练,暴露学生对复杂的数学语言进行分解与简化的过程;要通过一题多解和一题多变的训练,暴露学生对数学问题多种解法的比较与反思过程.让学生在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
4、关注过程,引导探究创新。
数学教学不仅要使学生获得基础知识和基本技能,而且要着力引导学生进行自主探索,培养自觉发现新知、发现规律的能力。
这样既能使学生对知识有深层次的理解,又能让学生在探索的过程中学会探索的科学方法。
让学生的学习不仅知其然,还知其所以然。
5.教学中继续渗透数学思想方法教学。
数学思想方法教学应渗透到教学的全过程中,使学生不仅学好概念法则等内容,而且把蕴含其中的数学思想通过不断的积累内化为自己的经验,形成解决问题的自觉意识。
6.加强对学生学习方法的指导和学习能力的培养。
在后面的教学中应注重在课堂教学中发挥学生的主体作用,不光要传授知识,更应传授学习和考试的方法(包括培养学生养成反思的习惯,如何使学生复习的效率更高,在考试时如何审题,如何在考试中减少无谓的失分,尽可能获取分数,如何保持考场上平和的心态等),注重学生能力的培养。
今后的教学过程中,数学思想的教学要作为一个重点内容,使一部分优秀的学生真正能灵活运用数学思想解决实际问题,提高优秀率。
7.继续培养学生反思总结的习惯。
每次考完我要好好分析、研究学生的试卷,分析一下学生错误的主要原因,最好是分析到每个学生,指出学生的问题所在,反思自己在前一阶段中的得与失,从中获取经验和教训,并及时调整自己的教学,使自己的后一阶段的教学中更有针对性。
另外,还应该培养学生养成反思的习惯,使学生的学习更有针对性、主动性和实效性,使学生能力的提高更快。
李会军竞聘工作方案竞聘岗位:项目四部副职。