数学文化论文
关于数学论文(12篇)

关于数学论文(12篇)数学论文篇1星期六,我和爸爸妈妈一起去杭州旅行。
旅行怎么能少了水呢?于是,我和爸爸一起去买水。
到了商店,我亮着嗓门对服务员阿姨说:”阿姨,我要买三瓶水。
“爸爸指了指挂在墙上的牌子。
我顺着爸爸手指的方向看过去,只见牌子上写着:”装修清仓,每样物品买2送1“几个大字。
我想:买2送1,2+1=3瓶,那我不是只要买2瓶就够了!我又对阿姨说:”阿姨,我只要买2瓶。
“阿姨笑眯眯地给了我3瓶水,而每瓶水的价格是1元5角,我买两瓶水那就是:1.5元+1.5元=3元,我花3元钱可以买到3瓶水,比平常廉价了1.5元,平均下来每瓶水的价格是1元。
我给了阿姨一张5元的纸币,阿姨找我了两个一元硬币,我和爸爸高兴奋兴地走了。
数学就在我们身边,让我们去查找生活中的数学吧!数学论文篇2老师在教你做除法计算时,确定强调过:0不能做除数,这个算式是没有结果的,这是为什么呢?当被除数不是0而除数是0时,比方:1÷0,2÷0,3÷0等,依据被除数=除数×商,那么1=0×〔〕,2=0×〔〕,3=0×〔〕,而任何数与0相乘都不行能是一个非零的数,此时商不存在,故0作除数无意义。
当被除数是0而除数也是0时,依据被除数=除数×商,那么0=0×〔〕,而任何数与0相乘都是0,此时商不是唯一的,故0作除数无意义。
再比方“2/0”假如让0作除数,设2/0=A,那么依据乘、除法互为逆运算,可以看出2=0×A,任何数与0相乘都的0,不行能得2的,此数是不存在的,也就是这样的A是不存在的,对0/0怎么办呢?同样可以设0/0=A,依据同样的道理,0=B×0,在这个式子里B可以等于1,2,3,4,5……当中的任何一个数,因此0/0等于多少还是不能确定,所以,0不能当作除数。
哦!如今我明白0为什么不能做除数了。
数学论文篇3大千世界,无奇不有,在我们数学王国里也有很多好玩的事情。
关于数学文化的论文投稿

关于数学文化的论文投稿学生对数学文化的了解,不只是拓展知识及激发学习的兴趣,而且对学生数学思维能力的培养具有重要意义。
下文是店铺为大家整理的关于数学文化的论文投稿的范文,欢迎大家阅读参考!关于数学文化的论文投稿篇1浅探大学数学文化教育【摘要】"数学是一种文化",文化对人和社会的影响是巨大的,对大学生必须进行数学文化的教育。
本文对数学文化的内涵、特征和因素进行分析论证,并在"数学文化观"的理念指导下,尝试对大学生数学文化的教育进行探索。
通过实践探索发现:有目的、有计划地对大学生进行数学文化的教育有利于促进大学生数学文化观的建立,有利于大学生数学素质的提高。
【关键词】数学文化数学文化内涵数学文化特征"数学文化观念,就是把数学置于社会大环境中加以审视,把数学看作是人类的一种文化,它不仅注重数学自身的理论建构,还重视其文化和社会属性。
数学文化观念为数学教育提供一种新理念。
" M.克莱因人为:"数学一直是形成现代文化的主要力量,同时又是这种文化极其重要的因素,……由于受学校教育的影响,一般人认为数学仅仅对科学家,工程师或许还有金融家才有用的一系列技巧。
这样的教育导致了对这门学科的厌恶和忽视。
"一、数学教育目的蕴含文化因素教育是培养人的社会活动,是传承社会文化、传递生产经验和社会生活经验的基本途径。
教育的目的是为培养社会所需要的人,现代教育的根本任务在于提高人的素质。
数学具有知识功能、教育功能和文化功能,数学教育是培养社会需要的人的理想途径之一。
1.应试教育冷落了数学的文化功能在应试教育观下,无视数学的文化功能,数学学习被看作数学知识和技能的学习,把数学看作是数学教材中的内容的罗列和技能、技巧的训练,很少从文化的角度去认识数学,其结果导致一些人的文化底蕴很薄,文化积淀很浅。
2.人们数学知识的增长与热爱数学的情感不成正比数学素质被曲解为应试能力,数学素质教育成了空话,忽略了数学的文化价值、精神价值,导致了"有部分学生在努力学习数学的同时,逐渐地厌倦、冷漠数学,而且随着数学知识的丰厚,厌倦的程度也在加剧",形成"有些本来在中学阶段数学学习很好的学生到了高校就厌倦学习数学"的尴尬状况。
数学文化文章

数学文化文章数学文化是一种特殊的文化形式,是人类智慧的结晶。
它不仅仅是一门学科,更是一种思维方式和一种生活态度。
在数学文化中,我们可以感受到数学的美妙和深邃,体会到数学对人类社会发展的巨大贡献。
数学文化的起源可以追溯到古代文明。
早在古代,埃及人、巴比伦人、古希腊人等就开始了数学的探索和研究。
他们利用数学解决土地测量、建筑设计、天文预测等实际问题,为社会的发展做出了重要贡献。
例如,埃及人利用几何学来测量和划分土地,巴比伦人发明了著名的巴比伦数字系统,古希腊人则提出了许多几何学的基本概念和定理。
数学文化的发展离不开数学家们的努力和贡献。
从古代的欧几里得、阿基米德,到近代的牛顿、莱布尼茨,再到现代的高斯、欧拉等,每一位数学家都为数学的发展做出了重要的贡献。
他们的研究成果不仅推动了数学的发展,也对其他学科的发展产生了深远影响。
例如,牛顿和莱布尼茨的微积分理论不仅为物理学的发展提供了基础,也为工程学、经济学等学科的发展带来了巨大的推动力。
数学文化不仅仅体现在学术研究中,也渗透到了日常生活中的方方面面。
我们在日常生活中会遇到许多与数学相关的问题,例如计算购物时的折扣、规划旅行路线、解决家庭财务问题等等。
数学文化的普及使得我们能够更好地应对这些问题,提高生活质量。
数学文化还体现在艺术和设计中。
许多艺术品和设计作品中都融入了数学的元素。
例如,建筑设计中的对称性、黄金分割等都是基于数学原理的;绘画中的透视法也是基于数学的几何学原理。
数学的美妙和规律性赋予了艺术作品以更深层次的内涵和美感。
除了对实际问题和艺术设计的应用外,数学文化还对人类思维方式的培养和发展起到了重要作用。
数学培养了人们的逻辑思维能力、分析问题和解决问题的能力,培养了人们的创造力和想象力。
通过学习数学,我们可以培养自己的思维方式,提高解决问题的能力,更好地适应社会的发展和变化。
数学文化是一门博大精深的学科,它不仅仅是一种知识,更是一种思维方式和生活态度。
数学知识论文(5篇)

数学知识论文(5篇)数学学问论文篇1一、引导同学学会识图,让同学感受数学的“形之美”在教学有关“圆”的学问时,老师可以举例,把“圆”比作太阳、苹果等有形的东西,加深同学对“圆”的熟悉。
老师还可以利用多媒体来展现和我们的日常生活有紧密联系的有关“圆”的东西,如水面上激起的涟漪,既有静感又有动感,使同学如身临其境,有所感受,比老师单纯在课堂上用圆规画圆要形象得多、生动得多、鲜亮得多。
这样的课堂教学自然能激发同学的学习爱好,使同学深刻感受到数学的美。
二、让同学学会鉴赏,在鉴赏中感受数学的“和谐美”美是人们所憧憬和追求的,美感不但表达在艺术领域,在数学教学中也有肯定的美。
所以,老师要教给同学如何发觉和鉴赏数学之美,要让同学学会用审美的视角来观看数学,深化挖掘数学的结果美、过程美。
首先,老师要引导同学树立在数学中发觉和鉴赏数学美的观念,调动同学的主动性。
例如,在讲解“黄金分割”时,同学一开头会很生疏,不知道什么是黄金分割,这时,老师可以让同学测量一下自己身体的黄金分割点,并讲解有关黄金分割点的意义,让同学在实际生活中去找黄金分割点。
这样,同学自然会发觉其中存在的美感,从而产生深厚的学习爱好,由被动学习变为主动主动学习。
再如,老师在讲授数学应用题时,可以借助线段图形让同学理解题意。
同学在线段的引导下既能理解应用题的题意,又能感受到数学学问的系统性和关联性,感受到数学深层次的体系美。
总之,数学的美表达在方方面面,只要老师擅长引导,使同学树立发觉美的观念,就肯定能使同学感受到数学的美。
三、让同学在嬉戏中体验数学的“趣味美”传统的数学教学过分重视学问,缺乏对同学力量的培育,主要以老师为中心,同学只是被动地接受学问,严峻抑制了同学独特的进展。
新课程改革对数学教学提出了更高的要求,对教学方式进行了大胆的改革和创新,更加注意同学的参加性和主动性。
所以,数学老师应转变教学观念,尽量让同学主动参加到数学教学中。
其中,一种重要的参加方式就是让同学在数学课堂上参加嬉戏,在嬉戏中感受数学的趣味美。
数学文化的论文范文参考

数学文化的论文范文参考(2)推荐文章学校廉政文化方面论文热度:建筑文化的论文发表热度:关于日本文化概论方面论文热度:日本文化毕业论文优秀范文怎么写热度:中国民俗文化论文范文参考论文热度:数学文化的论文篇3浅谈高中数学文化的传播途径一、结合数学史,举办文化讲座数学史教育对于了解数学这一门学科起着重要作用.数学史不仅仅是单纯的数学成就的编年记录,因为数学的发展绝不是一帆风顺的,在更多的情况下是充满犹豫、徘徊,要经历艰难曲折,甚至会面临危机;数学史也是数学家们克服困难和战胜危机的斗争记录,讲座中介绍重要的数学思想,优秀的数学成果,相关人事,使学生了解数学发展中每一步艰辛的历程,有助于培养学生坚忍不拔、不懈努力的意志和正直诚实的品质.比如,通过举办文化讲座向学生介绍“数学历史上三次危机”、“百牛定理”的来历、“哥德巴赫猜想与进展”、“数学悖论产生的原因及解决”、杨辉三角及中国古代数学成就、概率的发展、数学思想方法史等;向学生介绍一些数学大奖、数学界的名题,如数学界的“诺贝尔奖”———菲尔兹奖、沃尔夫奖、华罗庚数学奖、波利亚数学奖、高斯数学奖等,这种润物细无声的教育将激励学生个人的发展愿望.此外,介绍数学史上的重大事件,如无理数的产生引起的争论及代价、无穷小量是零非零的争论、康托尔集合论的论争等等,启发学生体会到,坚持学术争论有利于促进科学理论的完善与发展.二、结合教学内容,穿插数学故事数学故事引人入胜,能激起学生的某种情感、兴趣,激励学生积极向上.教师平时应注意收集与数学内容有关的数学故事,在讲到相关内容时,穿插到课堂教学中,通过向学生展现数学知识产生的背景、数学的思想方法、数学家追求真理的科学精神,让数学文化走进课堂,不失时机地通过数学家的故事来启迪学生、激励学生,对学生进行人文价值教育;在新课引入中,可以从概念、定理、公式的发展和完善过程,数学名人趣闻轶事,概念的起源,定理的发现,历史上数学进展中的曲折历程,以及提供一些历史的、现实的真实“问题”引入新课,一个精彩的引入不仅能够活跃课堂气氛,激发学生的学习情趣,降低数学学习的难度,还可以拓宽学生的视野,培养学生全方位的思维能力和思考弹性,使数学成为一门不再是枯燥呆板,而是生动有趣的学科.例如在讲欧拉公式时,介绍欧拉传奇的一生,欧拉解决该问题时的奇思妙想,特别是其双目失明后的贡献,用数学大师的人格魅力感染学生;讲解析几何时介绍“笛卡尔和费马”两位数学家在创立这门学科过程中的主要贡献,学生可以从中了解解析几何学产生的历史背景,数学家的成长经历,感受数学名人的执着信念,汲取宝贵的数学精神;在讲到相关内容时,介绍华罗庚、陈景润、苏步青、杨乐、陈省身、丘成桐等中国近现代数学家的奋斗历程和数学成就,让学生在感受数学家艰辛劳动的同时激发起民族自豪感.三、结合生活实际,例解数学问题作为工具学科的数学与日常生活息息相关,数学教师必须考虑数学与生活之间的联系,要把数学与现实生活联系在一起,将某个生活中的问题数学化,才能使数学知识的运用得到升华,帮助学生获得富有生命力的数学知识,引导学生用数学的眼光观察世界,进而使学生认识到学习数学的重要性和必要性.教学活动中可以引用贴近学生生活的事例,创设接近学生的认知水平和生活实际的数学问题情境,让学生认识到数学就在我们身边,在我们的生活中.例如,在讲等比数列求和公式时,可以列举其在贷款购房中的应用;从“条形码”、“指纹”等学生熟悉的生活实例深入浅出地解释抽象的映射概念,同时引导学生寻找生活中的映射,钥匙对应锁、学号对应学生等;在讲概率时,列举其在彩票方面的应用等;在讲“指数函数”时让学生了解考古学家是怎样利用合金的比例来测量青铜器的年代;在讲“双曲线方程”时,可结合工业生产中的双曲线型冷却塔、北京市修建的双曲线型通道和法国标志性建筑埃菲尔铁塔,让学生体验双曲线方程的应用价值;另外,分期付款问题、数学成绩与近视眼镜片度数的关系、银行存款与购买保险哪个收益更高、住房按揭、股市走势图、价格分析表等与人们的生活密切相关的问题,通过对这些问题的解答,使学生感受到数学是有用的,它源于生活用于生活,学会用数学的眼光看待生活中的问题,用数学的头脑分析生活中的问题.四、结合其他学科,共享文化精华科技发展迎来了各学科间的相互渗透、交叉与融合,尤其在当代,数学的影响已经遍及人类活动的各个领域.数学教师要注重数学和其他学科的联系,在教学活动中,努力寻找数学与其他学科的结合点,实现数学领域向非数学领域的迁移,最大限度地达到文化共享.可以通过以人物为线索、以数学题材为线索、以史料书籍为线索、以数学符号为线索、以现实生活为线索等多种途径挖掘数学文化资源;可以将封闭的教材内容开放化,把封闭的概念、公式、法则等分解成若干“小板块”,设计一些开放性的问题让学生探索,将书本知识拓宽到书外,与其他文化知识融为一体.实践证明,当老师讲些“活数学”或者把数学与哲学、美学、经济以及其他文化艺术相联系时,学生就表现出极大的兴趣和热情.例如,讲“统计”时,可结合遗传学和法庭依据DNA、指纹印或性格分析等;讲解三角函数内容时,可以介绍三角学的起源与发展,说明对航海、历法推算以及天文观测等实践活动的作用;讲反证法时,向学生详细讲述伽利略是如何更正延续了1800多年的亚里士多德关于物体下落运动的错误断言;在理解仰角、俯角的概念时,可与“举头望明月,低头思故乡”联系;在理解直线与圆的位置关系时,可与“大漠孤烟直,长河落日圆”相联系;讲三视图的概念时,可与“横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中”相联系;在理解随机事件、必然事件和不可能事件时,可与成语相联系(“守株待兔、滴水成冰、飞来横祸”是随机事件,“种瓜得瓜、种豆得豆、黑白分明、瓮中捉鳖”是必然事件,“水中捞月、海枯石烂、画饼充饥”是不可能事件),使学生体会到数学与其他学科的密切联系.五、结合课外活动,小组合作探究由于课堂时间有限而数学文化的内容包罗万象,单靠课堂时间进行数学文化教学是不足够的,课外活动也要凸显数学文化.要充分利用课外、校外的自然资源和社会资源,利用网络、报刊等各种渠道了解丰富的数学文化内容,以某种形式拓展到学生的课余生活中.可以通过举办数学文化知识竞赛,推荐与数学相关的有价值的作品,供学生课外阅读,拓宽他们的数学视野,再通过撰写读后感、数学作文并组织学生交流等多种形式,使数学文化的点点滴滴如春风化雨,滋润学生的心田.书籍类有美国数学家西奥妮•帕帕斯写的《数学的奇妙》,陈诗谷、葛孟曾著的《数学大师启示录》,李心灿等著的《当代数学精英(菲尔玆奖得主及其建树与见解)》,张景中院士著的《数学家的眼光》《新概念几何》《漫话数学》《数学与哲学》等这些作品通俗易懂,都是传播数学文化,教学展现数学魅力的好书.还可以将学生分成小组,教师就某块内容或专题提供一些参考文献或选题,让学生利用课余时间从课外读物、因特网查找古今中外数学家的事迹,了解他们的成才过程、对数学的贡献及他们严谨治学、勇攀科学高峰的事迹,然后将收集到的故事编印后分发给学生交流,体会数学文化.例如就“多面体欧拉公式的发现”这一专题,由“直观———验证———猜想———证明———应用”层层推进,步步深入,追随着大数学家欧拉的足迹进行探索研究,不仅能掌握关于多面体的欧拉公式的来龙去脉,了解欧拉传奇的一生,还可以体会发现的艰辛,学习治学的态度,掌握研究的方法,提升学生的人文素质.这样,学生在小组合作中增长了数学文化知识,体验合作探究的乐趣,让数学充满智慧与生命.六、结合教学评价,纳入数学考试虽然高中数学教材已经进一步改进,更大程度上体现数学文化内容,实验教材在每一章节或模块的始尾都有数学文化方面的介绍,但还都是阅读材料,教师认为学生能看明白,而学生认为考试不考,在教学中,往往是“考什么,教什么,学什么”,师生对此部分内容都未给予足够重视.平时注重的是对掌握知识、技能方面的情况进行考核和评价,呈现重数学知识,轻文化素养;重显性知识,轻隐性知识;重结果,轻过程等弊端.要让师生切实地感受到数学文化的重要性,应该以评价的方式促进高中数学文化的教学,可以把数学文化的相关内容根植于高考的试题之中,常规的考试中适当涉及常识性的数学文化内容.这样,高中教师在教学的同时就会自觉地将数学文化的内容尽可能与高中各模块的内容相结合,逐步地、系统地进行数学文化的传授.高中数学课程标准要求我们不仅要注重对学生数学知识的传递,还要重视数学文化内涵的传播,要树立数学文化观:充分发挥数学教育的两个功能即科学技术教育功能和文化教育功能.与数学知识和技能的教学不同,数学文化在数学教学中的体现形式应更为多样化和灵活化,这关键在于教师.首先,教师要提高自身的数学文化素养;其次,挖掘数学的文化内涵,努力营造数学文化氛围;再次,提升数学文化品位,在整合资源和优化课堂与活动方面下功夫.教师要善于在各个教学环节中合适而巧妙地渗透和传播数学文化,让数学文化走进课堂,努力使学生在学习数学过程中真正受到文化熏陶,让学生不但是一个科学人,还是一个文化人,形成和发展数学品质,全面提高学生的数学素养。
关于数学文化的论文

关于数学文化的论文数学的发展源远流长,可以说,人类文明的发展离不开数学,而“数学是一种文化”的观念也早已深入人心。
下文是店铺为大家整理的关于数学文化的论文的范文,欢迎大家阅读参考!关于数学文化的论文篇1谈数学文化与数学教学文化[摘要]数学文化是数学的灵魂,新课程改革以来,数学文化被数次提及,也成为数学教师的共识。
数学教学是一种传承文化的过程,同时其自身也是一种文化。
数学教学文化与数学文化之间是一种辩证关系,也能够在教学实践中体现出来。
[关键词]数学教学;数学文化;数学教学文化近几年,人们对数学文化的研究热情不减,这说明我们数学教师的研究触角已经更多地进入这一领域。
笔者一直思考一个问题:我们的研究触角为什么要伸出应试的海平面,伸入数学文化这个领域呢?经过持续思考,笔者的理解是,数学文化是推动数学发展的内在动力,数学文化是数学的灵魂。
而在高中数学的教学中,笔者以为其也应当有文化的成分。
也就是说,如果我们认为是数学是一种文化的话,那数学教学也应当是一种文化。
将数学教学放到文化的视角下来分析,有助于我们从更高的高度看待我们从事的高中数学教学。
一、数学文化与数学教学文化的辩证关系《普通高中数学课程标准》(实验稿)明确指出:“数学是人类文化的重要组成部分……”这说明从国家课程意志的层面已经明确了数学是离不开文化的,但数学课程标准给出的数学文化教学方式却耐人寻味。
其说:“数学课程应当适当介绍数学的历史、应用和发展趋势……数学的美学价值,数学家的创新精神。
”这段话的意思并不难理解,其似乎是告诉我们数学文化的一种呈现方式,那就是“介绍”。
我们不否认数学文化离不开介绍这一方式,但我们同时也应当看到文化的魅力不只在于介绍,文化最终是由学生来感知的,感知信息的输入除了老师的介绍之外,还有自我阅读、自主体验等多种方式。
这些方式没有纳入高中数学课程标准,这其中的原因是什么?而反思我们此刻正在思考的问题,即数学文化应当以什么样的方式来向学生传递的问题,其实正是我们所探讨的数学教学文化的问题——数学文化的教学方式是数学教学文化的产物。
数学论文 浅谈数学的文化价值

数学论文浅谈数学的文化价值数学,这门古老而深邃的学科,不仅是科学的基石,更是人类文明的重要组成部分。
它的价值不仅仅体现在解决实际问题和推动科技进步上,还深深融入了我们的文化之中,塑造着我们的思维方式、价值观和审美观念。
从最基本的层面来看,数学是一种语言。
它以精确、简洁和通用的方式描述和表达世界。
就像我们用母语交流思想一样,数学语言让科学家、工程师和学者能够跨越地域和文化的障碍,分享和交流复杂的概念和发现。
无论是描述天体的运行轨迹,还是分析经济市场的波动,数学语言都提供了清晰、准确的表达方式,使我们能够更深入地理解和探索自然与社会现象。
数学的文化价值还体现在它培养的逻辑思维能力上。
学习数学需要我们遵循严格的推理和证明过程,从已知的条件出发,通过一系列合理的步骤得出结论。
这种逻辑思维的训练使我们能够理性地分析问题,辨别真伪,做出明智的决策。
在日常生活中,无论是解决工作中的难题,还是处理人际关系中的矛盾,逻辑思维都能帮助我们更清晰地思考,避免盲目和冲动。
数学也是一门充满创造力和想象力的学科。
许多数学定理和公式的发现并非仅仅依靠逻辑推导,更需要创新的思维和大胆的想象。
比如,非欧几何的诞生就是对传统空间观念的一次巨大突破,它展现了数学家们敢于挑战常规、开拓新领域的勇气和智慧。
这种创造力和想象力不仅在数学领域内推动了学科的发展,也为其他领域的创新提供了灵感和方法。
数学的历史本身就是人类文明发展的一个缩影。
从古代埃及和巴比伦的数学起源,到古希腊的辉煌数学成就,再到近代数学的飞速发展,数学的发展与人类社会的进步息息相关。
每一个时代的数学成果都反映了当时社会的需求和文化背景,同时也为后续的发展奠定了基础。
例如,古埃及人在测量土地和建造金字塔的过程中发展了几何知识,而古希腊的哲学家们则通过对数学的思考探讨了宇宙的本质和人类的智慧。
数学在艺术领域也有着深远的影响。
黄金分割比例在建筑、绘画和音乐中都被广泛应用,赋予作品以和谐与美感。
关于数学文化的价值获奖论文优秀范文

关于数学文化的价值获奖论文优秀范文数学文化可以表述为以数学科学为核心,以数学的思想、精神、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大功能的动态系统。
下文是店铺为大家整理的关于数学文化的论文的内容,欢迎大家阅读参考!数学文化的论文篇1浅析数学的独特文化美感【摘要】数学在普通人的心目中似乎永远是枯燥学科的代名词,正是这种先入为主的误解阻碍着更多人欣赏其独特宏大的自然学术之美。
本文结合美学的相关知识和作者本人数学专业学习的心得感受,从理性、简约、确定、基础四个方面,力图展示数学的独特文化美感,揭示其美中之最上者的学术文化地位。
【关键词】数学之美;文化美学相信在大多数人的眼中,世界上最枯燥的学科非数学莫属。
枯燥的数字,枯燥的定理,枯燥的推演方式,关于数学的一切都枯燥得令人敬畏。
学校里,同学们谈数学色变,偶然遇到一位学生,且不论其专业课成绩如何,有勇气选择这个充满挑战性的专业学习本身已经很值得佩服了。
这样一门世人眼中乏味枯燥的学科,为什么能让那么多拥有天赐之才的科学家为之着迷?为什么人类追求美的天性并没有让他们对似乎没有任何美感的数学退避三舍?直到最近一次偶然机会,才让我有时间仔细寻找学习数学的十几年在我的思想深处留下的痕迹,我终于能够明白“天堂里也有数学之美”是出自对于怎样一种宏大之美的敬畏与向往。
1 美之理性篇如果说培根的科学研究思想开启了人类认识世界的系统理性大门,那么最能够体现这种理性美的学科当之无愧非数学莫属。
无论是推理演绎的方法,还是严格的假设与证伪,都是数学研究中随处可见的思想,更不用说著名的庞加来猜想、歌德巴赫猜想等等人类对客观世界的理性扣问。
在古希腊时代,《几何原本》影响巨大,直到今天,它都是印刷数量、版本仅次于《圣经》的读物;文艺复兴延续到17、18世纪的近代文明,牛顿发明了微积分,连同他的力学理论把整个科学带到了新的境界;以爱因斯坦相对论为基础的现代文明中,高斯、黎曼准备了很多数学工作,黎曼几何就是相对论的数学基础;20世纪下半叶的信息时代,就是冯·诺伊曼创造了计算机的数学基础,开启了通往今日世界繁荣的大门。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学文化的价值机制084 108011114 程应健内容摘要:数学是打开科学大门的钥匙。
科学家们如此重视教学,他们述说的这些切身经验和坚定的信念,如果从哲学的层次来理解,其实就是说,任何事物都是量和质的统一体,都有自身的量的方面的规律,不掌握量的规律,就不可能对各种事物的质获得明确清晰的认识。
而数学正是一门研究“量”的科学,它不断地在总结和积累各种量的规律性,因而必然会成为人们认识世界的有力工具。
关键词:科学思维思想方法理性艺术精神科学史表明,一些划时代的科学理论成就的出现,无一不借助于数学的力量。
早在古代,希腊的毕达哥拉斯(Pythagoras)学派就把数看作万物之本源。
享有“近代自然科学之父”尊称的伽利略(G.Galileo)认为,展现在我们眼前的宇宙像一本用数学语言写成的大书,如不掌握数学的符号语言,就像在黑暗的迷宫里游荡,什么也认识不清。
物理学家伦琴(W.K.R ntgen)因发现了X射线而成为1910 年开始的诺贝尔物理奖的第一位获得者。
当有人问这位卓越的实验物理学家科学家需要什么样的修养时,他的回答是:第一是数学,第二是数学,第三还是数学。
对计算机的发展做出过重大贡献的冯·诺依曼(J.V.Neumman )认为“数学处于人类智能的中心领域”。
他还指出:“数学方法渗透进支配着一切自然科学的理论分支,它已愈来愈成为衡量成就的主要标志。
”马克思曾明确指出:“一门科学只有当它达到了能够成功地运用数学时,才算真正发展了。
”这是对数学作用的深刻理解,也是对科学化趋势的深刻预见。
事实上,数学的应用越来越广泛,连一些过去认为与数学无缘的学科,如考古学、语言学、心理学等现在也都成为数学能够大显身手的领域。
数学方法也在深刻地影响着历史学研究,能帮助历史学家做出更可靠、更令人信服的结论。
这些情况使人们认为,人类智力活动中未受到数学的影响而大为改观的领域已寥寥无几了。
有不少自然科学家、特别是理论物理学家都曾明确地强调了数学的语言功能。
例如,着名物理学家玻尔(N.H.D.Bohr)就曾指出:“数学不应该被看成是以经验的积累为基础的一种特殊的知识分支,而应该被看成是普通语言的一种精确化,这种精确化给普通语言补充了适当的工具来表示一些关系,对这些关系来说普通字句是不精确的或过于纠缠的。
严格说来,量子力学和量子电动力学的数学形式系统,只不过给推导关于观测的预期结果提供了计算法则。
”狄拉克(P.A.M.Dirac )也曾写道:“数学是特别适合于处理任何种类的抽象概念的工具,在这个领域内,它的力量是没有限制的。
正因为这个缘故,关于新物理学的书如果不是纯粹描述实验工作的,就必须基本上是数学性的。
”另外,爱因斯坦(A.Einstein)则更通过与艺术语言的比较专门论述了数学的语言性质,他写道:“人们总想以最适当的方式来画出一幅简化的和易领悟的世界图像;于是他就试图用他的这种世界体系来代替经验的世界,并来征服它。
这就是画家、诗人、思辨哲学家和自然科学家所做的,他们都按照自己的方式去做。
理论物理学家的世界图象在所有这些可能的图象中占有什么地位呢?它在描述各种关系时要求尽可能达到最高标准的严格精确性,这样的标准只有用数学语言才能做到。
”一般地说,就像对客观世界量的规律性的认识一样,人们对于其他各种自然规律的认识也并非是一种直接的、简单的反映,而是包括了一个在思想中“重新构造”相应研究对象的过程,以及由内在的思维构造向外部的“独立存在”的转化(在爱因斯坦看来,“构造性”和“思辨性”正是科学思想的本质的思想);就现代的理论研究而言,这种相对独立的“研究对象”的构造则又往往是借助于数学语言得以完成的(数学与一般自然科学的认识活动的区别之一就在于:数学对象是一种“逻辑结构”,一般的“科学对象”则可以说是一种“数学建构”),显然,这也就更为清楚地表明了数学的语言性质。
数学作为一种科学语言,还表现在它能以其特有的语言(概念、公式、法则、定理、方程、模型、理论等)对科学真理进行精确和简洁的表述。
如着名物理学家、数学家麦克斯韦(J. C. Maxwell )的麦克斯韦方程组,预见了电磁波的存在,推断出电磁波速度等于光速,并断言光就是一种电磁波。
这样,麦克斯韦创立了系统的电磁理论,把光、电、磁统一起来,实现了物理学上重大的理论结合和飞跃。
还有黎曼(Riemann )几何和不变量理论为爱因斯坦发现相对论提供了绝妙的描述工具。
而边界值数学理论使本世纪二三十年代的远距离原子示波器的制成变为现实。
矩阵理论为本世纪20年代海森堡(W. K. Heisenberg)和狄拉克引起的物理学革命奠定了基础。
随着社会的数学化程度日益提高,数学语言已成为人类社会中交流和贮存信息的重要手段。
如果说,从前在人们的社会生活中,在商业交往中,运用初等数学就够了,而高等数学一般被认为是科学研究人员所使用的一种高深的科学语言,那么在今天的社会生活中,只懂得初等数学就会感到远远不够用了。
事实上,高等数学(如微积分、线性代数)的一些概念、语言正在越来越多地渗透到现代社会生活各个方面的各种信息系统中,而现代数学的一些新的概念(如算子、泛函、拓扑、张量、流形等)则开始大量涌现在科学技术文献中,日渐发展成为现代的科学语言。
数学是任何人分析问题和解决问题的思想工具。
这是因为:首先,数学具有运用抽象思维去把握实在的能力。
数学概念是以极度抽象的形式出现的。
在现代数学中,集合、结构等概念,作为数学的研究对象,它们本身确是一种思想的创造物。
与此同时,数学的研究方法也是抽象的,这就是说数学命题的真理性不能建立在经验之上,而必须依赖于演绎证明。
数学家像是生活在一个抽象的数学王国中,然而他们在数学王国的种种发现,即数学结构内部和各种结构之间的规律性的东西,最终还是现实的摹写。
而数学应用于实际问题的研究,其关键还在于能建立一个较好的数学模型。
建立数学模型的过程,是一个科学抽象的过程,即善于把问题中的次要因素、次要关系、次要过程先撇在一边,抽出主要因素、主要关系、主要过程,经过一个合理的简化步骤,找出所要研究的问题与某种数学结构的对应关系,使这个实际问题转化为数学问题。
在一个较好的数学模型上展开数学的推导和计算,以形成对问题的认识、判断和预测。
这就是运用抽象思维去把握现实的力量所在。
其次,数学赋予科学知识以逻辑的严密性和结论的可靠性,是使认识从感性阶段发展到理性阶段,并使理性认识进一步深化的重要手段。
在数学中,每一个公式、定理都要严格地从逻辑上加以证明以后才能够确立。
数学的推理步骤严格地遵守形式逻辑法则,以保证从前提到结论的推导过程中,每一个步骤都在逻辑上准确无误。
所以运用数学方法从已知的关系推求未知的关系时,所得结论有逻辑上的确定性和可靠性。
数学的逻辑严密性还表现在它的公理化方法上。
以理性认识的初级水平发展到更高级的水平,表现在一个理论系统还需要发展到抽象程度更高的公理化系统,通过数学公理化方法,找出最基本的概念、命题,作为逻辑的出发点,运用演绎理论论证各种派生的命题。
牛顿所建立的力学系统则可看成自然科学中成功应用公理化方法的典型例子。
第三,数学也是辩证的辅助工具和表现方式。
这是恩格斯(F.Engels)对数学的认识功能的一个重要论断。
在数学中充满着辩证法,而且有自己特殊的表现方式,即用特殊的符号语言,简明的数学公式,明确地表达出各种辩证的关系和转化。
如牛顿(I. Newton )—莱布尼兹(G. W. Leibniz )公式描述了微分和积分两种运算之间的联系和相互转化,概率论和数理统计表现了事物的必然性与偶然性的内在关系等等。
最后,值得指出的是,数学还是思维的体操。
这种思维操练,确实能够增强思维本领,提高科学抽象能力、逻辑推理能力和辩证思维能力。
数学是研究量的科学。
它研究客观对象量的变化、关系等,并在提炼量的规律性的基础上形成各种有关量的推导和演算的方法。
数学的思想方法体现着它作为一般方法论的特征和性质,是物质世界质与量的统一、内容与形式的统一的最有效的表现方式。
这些表现方式主要有:提供数量分析和计算工具;提供推理工具;建立数学模型。
任何一种数学方法的具体运用,首先必须将研究对象数量化,进行数量分析、测量和计算。
毛泽东同志曾指出:“对情况和问题一定要注意到它们的数量方面,要有基本的数量的分析。
任何质量都表现为一定的数量,没有数量也就没有质量。
”例如太阳系第八大行星——海王星的发现,就是由亚当斯(J. C. Adams)和勒维烈(U. J. Leverrier)运用万有引力定律,通过复杂的数量分析和计算,在尚未观察到海王星的情况下推理并预见其存在的。
数学作为推理工具的作用是巨大的。
特别是对由于技术条件限制暂时难以观测的感性经验以外的客观世界,推理更有其独到的功效,例如正电子的预言,就是由英国理论物理学家狄拉克根据逻辑推理而得出的。
后来由宇宙射线观测实验证实了这一论断。
值得指出的是,数学模型方法作为对某种事物或现象中所包含的数量关系和空间形式所进行的数学概括、描述和抽象的基本方法,已经成为应用数学最本质的思想方法之一。
模型这一概念在数学上已变得如此重要,以致于许多数学家都把数学看成是“关于模型的科学”。
怀特海(A. N. Whitehead )认为:“模式具有重要性的看法和文明一样古老社会组织的结合力也依赖于行为模式的保持;文明的进步也侥幸地依赖于这些行为模式的变更。
”并进一步指出:“数学对于理解模式和分析模式之间的关系,是最强有力的技术。
”物理学家博尔茨曼(L.E. Boltzmann)认为:“模型,无论是物理的还是数学的,无论是几何的还是统计的,已经成为科学以思维能力理解客体和用语言描述客体的工具。
”这一观点目前不仅流行于自然科学界,还遍布于社会科学界。
为自然界和人类社会的各种现象或事物建立模型,是把握并预测自然界与人类社会变化与发展规律的必然趋势。
在欧洲,在人文科学和社会科学中称为结构主义的运动,雄辩地论证了所有各种范围的人类行为与意识都有形式的数学结构为基础。
在美国,社会科学自夸有更坚实、定量的东西,这通常也是用数学模型来表示的。
从模型的观点看,数学已经突破了量的确定性这一较狭义的范畴而获得了更广泛的意义。
既然数学的研究对象已经不再局限于“量”而扩展为更广义的“模型”,那么,数学概念的本质也在发生嬗变。
数学正成为一个动态的、变化的、泛化了的概念体系,其涵盖的科学对象也必然随之增加。
数学在社会科学中的模型建构大都以结构分析为目标,即在高度简化与理想化的框架中去理解社会行为机制。
在某些框架下,利用科学去预测与控制一个社会系统的一切变量的更高层次的目标已经实现。
数学的模型方法把数学的思想方法功能转化成科学研究的实际力量。
数学中有一个分支叫应用数学,主要就是研究如何从实际问题中提炼数学模型。