数理统计总复习 (1)

合集下载

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题1-知识归纳整理

概率论与数理统计复习题(一)A. 古典概型挑选题1. 在所有两位数(10-99)中任取一两位数,则此数能被2或3整除的概率为 ( ) A. 6/5 B . 2/3 C. 83/100 D.均不对2. 对事件A,B.下列正确的命题是 ( ) A .如A,B 互斥,则A ,B 也互斥B. 如A,B 相容,则A ,B 也相容C. 如A,B 互斥,且P(A)>0,P(B)>0,则A.B 独立 D . 如A,B 独立,则A ,B 也独立3. 掷二枚骰子,事件A 为闪现的点数之和等于3的概率为 ( ) A.1/11 B . 1/18 C. 1/6 D. 都不对5. 甲,乙两队比赛,五战三胜制,设甲队胜率为0.6,则甲队取胜概率为( ) A. 0.6B. C 35*0.63*0.42C. C 350.63*0.42+C 45*0.64*0.4D .C 35*0.63*0.42+C 45*0.64*0.4+0.656. 某果园生产红富士苹果,一级品率为0.6,随机取10个,恰有6个一级品之概率( ) A. 1B. 0.66C . C 466104.06.0D.(0.6)460.4)(7. 一大楼有3层,1层到2层有两部自动扶梯,2层到3层有一部自动扶梯,各扶梯正常工作的概率为 P ,互不影响,则因自动扶梯不正常不能用它们从一楼到三楼的概率为( ) A.(1-P )3 B. 1-P 3C . 1-P 2(2-P )D.(1-P )(1-2P )8. 甲,乙,丙三人共用一打印机,其使用率分别p, q, r ,三人打印独立,则打印机空暇率为( ) A. 1-pqr B . (1-p )(1-q )(1-r ) C. 1-p-q-r D. 3-p-q-r 9. 事件A,B 相互独立, P(A)=0.6, P( A B )=0.3, 则 P(AB)=( ) A . 0.15 B. 0.2 C. 0.25 D. 0.110. 甲,乙各自射击一目标,命中率分别为0.6和0.5,已知目标被击中一枪,则此枪为甲命中之概率 ( ) A . 0.6 B. 0.3 C. 0.5 D. 0.55 11. 下列命题中,真命题为 ( )A. 若 P (A )=0 ,则 A 为不可能事件知识归纳整理B .若A,B 互不相容,则1BA P )=( C.若 P(A)=1,则A 何必然事件D.若A,B 互不相容,则 P(A)=1-P(B)12. A,B 满足P(A)+P(B)>1,则A,B 一定( )A. 不独立B. 独立C. 不相容 D . 相容13. 若 ( ),则〕〕〔=〔)P(B)-1P(A)-1B A P( A. A,B 互斥 B. A>B C. 互斥,B A D . A,B 独立14. 6本中文书,4本外文书放在书架上。

概率论与数理统计复习笔记 (1)

概率论与数理统计复习笔记 (1)

概率论与数理统计复习 第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现. 样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(?):每次试验中一定不会发生的事件. 二. 事件间的关系和运算⊂(事件B包含事件A )事件A 发生必然导致事件B 发生.∪B (和事件)事件A 与B 至少有一个发生. 3. A ∩B=AB(积事件)事件A 与B 同时发生. 4. A-B(差事件)事件A 发生而B 不发生.5. AB=? (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=?且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B .运算规则 交换律 结合律 分配律 德?摩根律 B A B A I Y = B A B A Y I = 三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率. (1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+… 2.性质(1) P(?) = 0 , 注意: A 为不可能事件 P(A)=0 . (2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B-A)=P(B)-P(A) . (4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0). P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0)3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P ∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件. (1)两个事件A,B 相互独立? P(B)= P (B|A) .(2)若A 与B,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立. 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kki i i i i i A P A P A P A A A P ΛΛ2121=,则称这n 个事件A 1,A 2,…,A n 相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX k k P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~?(?)参数为?的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (?>0)三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数).2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(x x dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 . 3.三种重要的连续型随机变量的分布(1)X ~U (a,b) 区间(a,b)上的均匀分布 ⎩⎨⎧=-0)(1a b x f 其它b x a << .(2)X 服从参数为?的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (?>0).(3)X~N (?,?2)参数为?,?的正态分布 222)(21)(σμσπ--=x e x f -?<x<?, ?>0.特别, ?=0, ?2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数 ⎰=Φ∞--xt dt e x 2221)(π, ?(-x)=1-Φ(x) .若X ~N ((?,?2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z ?}= P{Z<-z ?}= P{|Z|>z ?/2}= ?,则点z ?,-z ?, ?z ?/ 2分别称为标准正态分布的上,下,双侧?分位点. 注意:?(z ?)=1-? , z 1- ?= -z ?. 四.随机变量X 的函数Y= g (X)的分布 1.离散型随机变量的函数若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为 ()()()()⎩⎨⎧'=0y h y h f y f X Y 其它βα<<y其中h(y)是g(x)的反函数 , ?= min (g (-?),g (?)) ?= max (g (-?),g (?)) .如果 f (x)在有限区间[a,b]以外等于零,则 ?= min (g (a),g (b)) ?= max (g (a),g (b)) .第三章 二维随机变量及其概率分布一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ?)=0, F(-?,y)=0, F(-?,-?)=0, F(?,?)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质 (1)非负性 0≤p i j ≤1 . (2)归一性 ∑∑=i jij p 1 . 3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),( 则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-dxdy y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<?}= F (x , ?) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<?, Y ≤y}= F (?,y)2.二维离散型随机变量(X,Y)关于X 的边缘分布律 P{X= x i }= ∑∞=1j ij p = p i · ( i =1,2,…) 归一性 11=∑∞=•i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p ·j ( j =1,2,…) 归一性 11=∑∞=•j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X 关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j = p i ··p ·j ( i ,j =1,2,…)对一切x i ,y j 成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X (x)f Y (y)对(X,Y)所有可能取值(x,y)都成立. 六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称,}{},{jj i j j i p p y Y P y Y x X P •=====P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称P{Y=y j |X=x i } 为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X) ∑∞=1i i i p x (级数绝对收敛) ⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2} []∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差?(X)=√D(X) . 二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2 D(X) . ,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔ P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X) ~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p) ~ b (n,p) (0<p<1) n p n p (1- p) ~ ?(?) ? ?,}{},{•=====i ji i j i p p x X P y Y x X P~ U(a,b) (a+b)/2 (b-a) 2/12 服从参数为?的指数分布 ? ?2 ~ N (?,?2) ? ?2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E{[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l }第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i iX X n S 12211 样本标准差S 样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==ni k i k X X n B 1)(1( k=1,2,…)二.抽样分布 即统计量的分布1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n . 特别,若X~ N (?,?2 ) ,则 X ~ N (?, ?2 /n) .2.?2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ ?2(n)自由度为n 的?2分布.(2)性质 ①若Y~ ?2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ ?2(n 1) Y 2~ ?2(n 2) ,则Y 1+Y 2~ ?2(n 1 + n 2). ③若X~ N (?,?2 ), 则22)1(σS n -~ ?2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ ?2(n),0< ? <1 ,则满足的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为?2分布的上、下、双侧?分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ ?2(n),且X,Y 相互独立,则t=nY X ~t(n)自由度为n 的t 分布.(2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (?,?2 )时, nS X μ-~ t (n-1) . ③两个正态总体相互独立的样本 样本均值 样本方差X~ N (?1,?12 ) 且?12=?22=?2 X 1 ,X 2 ,…,X n1 X S 12 Y~ N (?2,?22 ) Y 1 ,Y 2 ,…,Y n2 Y S 22则 212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w (3)分位点 若t ~ t (n) ,0 < ?<1 , 则满足的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧?分位点. 注意: t 1- ? (n) = - t ? (n).分布 (1)定义 若U~?2(n 1), V~ ?2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< ? <1,则满足的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧?分位点. 注意: .).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数?1, ?2,…, ?k .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμΛΛΛ解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθΛΛΛ,以样本矩A l 取代总体矩? l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A ΛΛΛθθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p(x, ?1, ?2,…, ?k ),称样本X 1 ,X 2 ,…,X n的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθΛΛ为似然函数.取使似然函数达到最大值的∧∧∧k θθθ,,,21Λ,称为参数?1, ?2,…,?k 的最大似然估计值,代入样本得到最大似然估计量.若L(?1, ?2,…, ?k )关于?1, ?2,…, ?k 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=?,则估计量∧θ称为参数?的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=?k =E(X k ),即样本均值X ,样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩?k 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= ?, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP→∧,则称估计量∧θ是参数?的相合估计量. 二.区间估计1.求参数?的置信水平为1-?的双侧置信区间的步骤(1)寻找样本函数W=W(X 1 ,X 2 ,…,X n ,?),其中只有一个待估参数?未知,且其分布完全确定.(2)利用双侧?分位点找出W 的区间(a,b),使P{a<W <b}=1-?.(3)由不等式a<W<b 解出θθθ<<则区间(θθ,)为所求.2.单个正态总体待估参数 其它参数 W 及其分布 置信区间? ?2已知 n X σμ-~N (0,1) (2/ασz n X ±) ? ?2未知n S X μ-~ t (n-1) )1((2/-±n t n S X α ?2 ?未知22)1(σS n -~ ?2(n-1) ))1()1(,)1()1((22/1222/2-----n S n n S n ααχχ 3.两个正态总体(1)均值差? 1-? 2 其它参数 W 及其分布 置信区间已知2221,σσ 22212121)(n n Y X σσμμ+--- ~ N(0,1) )(2221212n n z Y X σσα+±- 未知22221σσσ== 212111)(n n S Y X w +---μμ~t(n 1+n 2-2) )11)2((21212n n S n n t Y X w +-+±-α 其中S w 等符号的意义见第六章二. 3 (2)③. (2) ? 1,? 2未知, W=22212221σσS S ~ F(n 1-1,n 2-1),方差比?12/?22的置信区间为 注意:对于单侧置信区间,只需将以上所列的双侧置信区间中的上(下)限中的下标?/2改为?,另外的下(上)限取为-? (?)即可.。

概率论与数理统计总复习参考

概率论与数理统计总复习参考
运算的优先次序: 逆,积,和,差
定义7 (概率的统计定义) 定义8 (概率的公理化定义) 设试验E的样本
空间为Ω,对任意事件A,赋予一实数 P(A),若
它满足
非负性公理:0≤P(A) ≤1;
规范性公理:P(Ω)=1;
可列可加性公理:若A1, A2, …两两互斥, 则
P ( Ai ) P ( Ai ).
二、随机事件的关系与运算
1. 事件的关系
(1) 包含关系 若事件A发生必然导致事件B发生,则称事件A包含于B,
记为 A B.
(2) 互斥(互不相容): 若两个事件A、B不可能同时发生,则称事件A与B互斥 (互不相容). 必然事件与不可能事件互斥; 基本事件之间是互斥的.
2. 事件的运算
(1) 事件的并(和) 若C表示“事件A与事件B至少有一个发生”这一事件,
fY
(
y)
f
X
[h(
y)] | 0,
h(
y)
|,
y ,
其他.
第三章 二维随机变量及其分布
1. 二维随机变量
(X, Y ):X, Y 是定义在同一样本空间 上的两个随机变量.
2. 联合分布函数、性质 F(x, y) =P{X x, Y y}, (任意实数x, y).
3. 边缘分布函数 FX (x) = F(x, +), FY (y) = F(+, y).
P p1
p2 … pn …
注 :如果 g( xk ) 中有些项相同,则需将它们 作适当并项.
(2) 连续型随机变量函数的分布 (i) 定义法
FY ( y) P{Y y} P{g( X ) y}
{ x|g( x) y} f X ( x)dx.

数理统计总复习(题型归纳)

数理统计总复习(题型归纳)

56学 考题8(2005级 256学时) 三 、 ( 本 题 8 分 ) 设 X 1 , X 2 , L , X n为 服 从 泊 松 分 布 )的 π(λ )的总体X的一个样本,求λ的极大似然估计量。
32 考题9(2004级 32学时) 三、(本题8分)设总体X的概率密度为: ( θ + 1) x θ , 0 < x < 1, f ( x) = 0, 其它 其中θ > −1是未知参数,X 1 , X 2 , L , X n为总体X 的一个容量为n简单随机样本,求参数θ的极大 似然估计量。
考题5(2007级 64学时 作业P153 四) 七、(本题8分)设X 1 , L , X n为总体X的样本, X的密度函数为: 0< x<1 θ, f ( x , θ) = 1 − θ, 1 ≤ x < 2;其中未知参数θ > 0 0, 其他 设N为样本值x1 , L , xn中小于1的个数,求θ的极 大似然估计。
1 2 n
32学 考题4(2007级 32学时) 10分 六、(本题10分)设随机变量X的概率密度为 2x 2 , 0< x<θ f ( x) = θ ,其中未知参数θ > 0, 0, 其他 X 1 , L , X n是样本,求θ的矩估计和最大似然估计。
(此题和2008级的第三大题一样的.)
: 解(1)检验假设H 0:σ 2 = 1,H 1:σ 2 ≠ 1; ( n − 1) S 2 取统计量:χ 2 = 2 σ0
2 拒绝域为:χ 2 ≤ χ 2 α ( n − 1) = χ 0.975 ( 9) = 2.70 1−
或χ 2 ≥ χ 2 ( n − 1) = χ α
2
2 2 0.025

数理统计复习要点

数理统计复习要点

e x , x 0
0, x 0
其中 0 。试用矩法求 的估计量。
解: =E (X )
1 所以, =


xf ( x)dx xe
0

x
dx
1

1 ˆ ˆ =X ,所以, = 用样本 X 估计, 则有 X
3.设母体X具有在区间[a,b]上的均匀分布,其 分布密度为 f(x)=
H0
16.某电工器材厂生产一种保险丝。测量其融化 时间,依通常情况方差为400。今从某天产品中 抽取容量为25的子样,测量其融化时间并计算得 x 62.24,s*2 404.77,问这天保险丝融化时间 分散度与通常有无明显差异( 1%)?假定融 化时间是正态母体。 解:(1 )建立假设H 0: 0 400
=e
( xi )
i 1
n
d ln L ln L ( xi n ), 0无解 d i
xi n尽可能小,所以 为了使L达到最大, i 尽可能大,而 x , min x x
i 1i n i (1)
12、设母体X服从正态分布 N (,1),( X1, X 2 ) 是从此母体中抽取的一个子样。试验证下面 三个估计量 2 1 (1)^ 1 X 1 X 2
0
(3)给定显著水平 0.05 ,有 u 1.96 ,使 2 x 0 P{ u u } 即 P{ 1.96} 0.05 0 / n 2 (4)由样本n=16, x 27.56 代入 27.56 26 接受H0 u 1.2 u 1.96 5.2 / 4 2
解:
(1)X
*2
用 s 估计 2 给定置信概率1 =99%,查表得

概率论与数理统计复习提纲

概率论与数理统计复习提纲

概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。

概率论与数理统计复习题1

概率论与数理统计复习题1

概率论与数理统计复习题一、 填空题(每题2分)1、设连续型随机变量的概率密度函数为()f x ,则()f x dx +∞-∞=⎰12、 随机变量X 服从泊松分布,其分布律{},0,1,2...!kP X k e k k λλ-===3、 随机变量X 服从标准正态分布,其概率密度函数22()x f x -=4、一批产品,由甲厂生产的占31,其次品率为5%,由乙厂生产的占32,其次品率为10%,从这批产品中随机取一件,恰好取到次品的概率为1125、 随机变量X~N (2,22),则P {X ≤0}=0.1587 (Φ(1)=0.8413)6、甲、乙两门高射炮彼此独立地向一架飞机各发一炮, 甲、乙击中飞机的概率分别为0.3和0.4,则飞机至少被击中一炮的概率为0.58 二、 选择题(每题2分)1. 设随机变量X 的概率密度函数为2(1)8()x f x +-=,则X ~ B 。

A. (1,2)N -B. (1,4)N -C. (1,8)N -D. (1,16)N - 2. 设随机变量X 、Y 都服从区间[0,1]上的均匀分布,则E(X+Y)= C 。

A. 16B. 12C. 1D. 23. X 为随机变量,其方差存在,c 为任意非零常数,则下列等式正确的是 A 。

A. D(X+c)=D(X)B. D(X+c)=D(X)+cC. D(X-c)=D(X)-cD. D(cX)=cD(X)4. 设随机事件A 与B 互不相容,且P(A)>0,P(B)>0,则 D 。

A.()1()P A P B =- B.()()()P AB P A P B = C.()1P A B ⋃= D. ()1P AB =5. 设A 、B 为随机事件,且P(B)>0,P(A|B)=1,则必有 A 。

A.()()P A B P A ⋃= B.A B ⊂ C.()()P A P B = D. ()()P AB P A = 三、 计算题(每题8分)1. 把10本书任意放在书架的一排上,求其中指定的3本书放在一起的概率。

概率论与数理统计总复习知识点归纳

概率论与数理统计总复习知识点归纳

D( X ) E( X 2 ) E 2 ( X ), Cov( X ,Y ) E( XY ) EXEY
XY Cov( X ,Y ) / D( X )D(Y )
⑴ E(aX+b)=aE(X)+b,D(aX+b)=a2D(X)
⑵ E(∑iλi Xi)=∑i λi E(Xi)
(3) D(λ1X±λ2Y)=λ12D(X)+λ22D(Y) ±2λ1λ2Cov(X,Y)
0.587
法二 用Bayes公式:
P (C) = 0.1, P(C ) 0.9;
P (D/C) = 0.3*0.8+0.7*0.2,
P(D / C ) 0.3*0.2.
C
C
于是有
D
P(C / D)
P(C ) P(D / C )
P(C) P(D / C) P(C ) P(D / C )
i 1
i 1
i 1
例3 已知X~ f(x),求Y= -X2的概率密度。 解 用分布函数法。
y<0 时,FY(y) = P(Y≤y) = P(-X2 ≤y) P(X y) P(X y)
FX ( y ) [1 FX ( y )] y≥0 时, FY(y) = P(Y≤y) =1
于是Y的概率密度为
fY ( y) fX (
y)
1 2
( y)1/ 2
fX
(
y ) 1 ( y)1/2 2
1 2
(
y)1/ 2[
fX
(
y) fX (
y )] , y 0
fY (y) 0 , y 0
例4 设二维随机变量(X,Y )的联合密度函数为:
f
( x,
y)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

这个性质叫 分布的可加性.
2
2015-1-8 数理统计总复习 11
3.若 ~ (n),
2 2
2 则 E( )=n, D( )=2n
2
证明:
2015-1-8
数理统计总复习
12
定义2 称满足条件
的点

分位点。
2015-1-8
数理统计总复习
13
2、t 分布 2 定义: 设X~N(0,1) , Y~ ( n ) , 且X与Y相互 独立,则称变量 X T Y n 所服从的分布为自由度为 n的 t 分布. 记为T~t(n).

2
2
F
Y n2
服从自由度为n1及 n2 的F分布,n1称为第 一自由度,n2称为第二自由度,记作 F~F(n1,n2) .
2015-1-8
数理统计总复习
18
X的数学期望为:
n2 E( X ) n2 2
若n2>2
即它的数学期望并不依赖于第一自由度n1.
2015-1-8
数理统计总复习
19
0.8 0.6 0.4 0.2
2 1 2 2
取自Y的样本, X和Y 分别是这两个样本的 样本
2 均值,S12和S2 分别是这两个样本的样本方差,
则有
S12 12 ~ F ( n1 1, n2 1) 2 2 S2 2
2015-1-8 数理统计总复习 30
第六章 参数估计
2015-1-8
数理统计总复习
31
关键词
• 矩估计量、最大似然估计量、似然函数
2015-1-8
数理统计总复习
21
性质2 证明:
2015-1-8
数理统计总复习
22

所以
2015-1-8
数理统计总复习
23
几个重要的抽样分布定理
定理 1 (样本均值的分布) 设X1,X2,…,Xn是取自正态总体 N ( , ) 的样本,则有
2
X ~ N ( , ) n X ~ N (0,1) n
2015-1-8 数理统计总复习 36
§3 、估计量的评选标准
1.无偏性
估计量是随机变量,对于不同的样本值会得 到不同的估计值 . 我们希望估计值在未知参数真值 附近摆动,而它的期望值等于未知参数的真值. 这 就导致无偏性这个标准 .
ˆ( X , , X )是未知参数 的估计量,若 设 1 n
则有
X Y ( 1 2 )
2 ( n1 1) S12 ( n2 1) S2 n1 n2 2
1 1 n1 n2
~ t ( n1 n2 2)
2015-1-8
数理统计总复习
29
定理 5 (两总体样本方差比的分布)
且X与Y独立, 设X ~ N ( 1 , ), Y ~ N ( 2 , ), X1, X2,…, X n1是取自X的样本, Y1,Y2,…, Yn2 是
I ( ) 的种种性质显示,” I ( ) 越大 ”可被解
定理4 (Cramer - Rao 不等式)
设正则条件满足, X 1,X 2, , X n 是来自该总体 的样本,T T ( X 1 , X 2 , , X n )是g( )的任一个无偏 g( ) 估计,g( ) 存在,且对 ,对 n g ( ) T (x1 ,x2 , , xn ) p(xi ; θ )dx1 dxn
2015-1-8
数理统计总复习
38
3、相合性 (一致估计)
定义1、设总体 X 具有概率函数
为未知参数。 f ( x ; ),
n n x1 , , xn
若对
^
^

的一个估计量,n 为样本容量。
p
0 ,有
^ ^ lim P n 0 , 即 n , n n ^ 则称 为 的相合估计量或一致估计。 n
~ ( n 1)
2
X和S 相互独立.
2015-1-8
数理统计总复习
26
n取不同值时
2015-1-8
(n 1) S
2
数理统计总复习

2
的分布
27
定理 3
设X1,X2,…,Xn是取自正态总体 N ( , )
2
的样本, X和S 2 分别为样本均值和样本方差, 则有
X ~ t ( n 1) S n
x
当n充分大时,其图形类似于标准正态分 布密度函数的图形.
2015-1-8
数理统计总复习
16
例3设
是取自正态总体
的简单随机样本,
且 则 时,统计量 服从 分布复习
17
3、F分布
定义: 设 X ~ ( n1 ), Y ~ ( n2 ),X与Y相互 独立,则称统计量 X n1
• 估计量的评选标准:无偏性、有效性、 相合性、均方误差、一致最小方差无偏 估计、Fish信息量,Cramer-Rao不等式 • 置信度、置信区间
2015-1-8
数理统计总复习
32
基本要求
1、掌握点估计、最大似然估计的概念。 2、能够熟练求出样本值的矩估计量、最大似 然估计量 3、熟练掌握区间估计的概念,会求正态总体 的均值、方差的区间估计 4、了解估计量的评选标准,并能够判断所求 估计量符合哪个标准 5、会求双侧和单侧置信区间
F ( m , n)
m = 10, n = 4 m = 10, n = 10 m = 10, n = 15
1 2 3 4 5 6
0.8 0.6 0.4 0.2
m = 4, n =10 m = 10, n = 10 m = 15, n = 10
1 2 3 4 5 6
性质1 若,
则 称满足条件 的点 为F分布的 分位点。
E (ˆ )
ˆ 为 的无偏估计 . 则称
2015-1-8 数理统计总复习 37
3.有效性
ˆ ˆ (X , , X ) ˆ ˆ (X , , X )和 设 2 2 1 n 1 1 1 n
都是参数 的无偏估计量,若有
ˆ )< D( ˆ) D( 1 2 ˆ 较 ˆ 有效 . 则称 1 2
2015-1-8
数理统计总复习
33
矩估计法
用相应的样本矩去估计总体矩的估计方法
记总体k阶矩为 k E ( X )
k
1 n k 样本k阶矩为 Ak X i n i 1 k E [ X E ( X )] 记总体k阶中心矩为 k 1 n k 样本k阶中心矩为 Bk ( X i X ) n i 1
2
数理统计总复习 5
n
样本方差
2015-1-8
它反映了总体k 阶矩 的信息
样本k阶原点矩 样本k阶中心矩
它反映了总体k 阶 中心矩的信息
1 k Ak X i n i 1 n 1 k Bk ( X i X ) n i 1
k=1,2,…
n
2015-1-8
数理统计总复习
6
注:一般地,
2015-1-8 数理统计总复习 3
定义1
为来自总体X的一
个样本,

的函数,若g连续且不含
任何未知参数,则称
是一个统计量。
2015-1-8
数理统计总复习
4
几个常见统计量
它反映了总体均值 的信息
样本均值
它反映了总体方差 的信息
1 n X Xi n i 1 1 2 S ( Xi X ) n 1 i 1
i 1
n g ( ) T (x1 ,x2 , , xn ) p(xi ; θ ) dx1 dxn i 1 n n ln p(xi ; θ ) p(xi ; θ )dx1 dxn T (x1,x2 , , xn ) i 1 i 1 对离散总体,积分改为 求和等式成立 .
2015-1-8 数理统计总复习 35
求极大似然估计(MLE)的一般步骤是: (1) 由总体分布导出样本的联合概率函数 (或联合密度); (2) 把样本联合概率函数(或联合密度)中自变 量看成已知常数,而把参数 看作自变量, 得到似然函数L( ); (3) 求似然函数L( ) 的最大值点(常常转化 为求ln L( )的最大值点) ,即 的MLE; (4) 在最大值点的表达式中, 用样本值代入 就得参数的极大似然估计值 .
2015-1-8
数理统计总复习
28
定理 4 (两总体样本均值差的分布)
设X ~ N ( 1 , 2 ),Y ~ N ( 2 , 2 ), 且X与Y独立, X1,X2,…, X n1 是取自X的样本, Y1,Y2,…, Yn2 是
取自Y的样本, X和Y 分别是这两个样本的 样本
2 均值, S12和S2 分别是这两个样本的样本方差,
2015-1-8
数理统计总复习
14
0.4 0.3 0.2 0.1
n= 1
-3
-2
-1
1
2
3
2015-1-8
数理统计总复习
15
具有自由度为n的t分布的随机变量T的数 学期望和方差为:
E(T)=0; D(T)=n / (n-2) , 对n >2 t分布的密度函数关于x=0对称,且
Lim f ( x; n ) 0
2
1. 设 X 1 , X 2 ,, X n 相互独立, 都服从正态分布 2 N ( , ), 则
n 1 2 2 ( X i )2 ~ 2 (n) i 1
2. 设 X 1 ~ 2 ( n1 ), X 2 ~ 2 ( n2 ), 且X1,X2相互 独立,则 X 1 X 2 ~ 2 ( n1 n2 )
相关文档
最新文档