磁致伸缩位移传感器信号处理电路的研究与实现

合集下载

《磁致伸缩直线位移传感器的机理研究与应用》范文

《磁致伸缩直线位移传感器的机理研究与应用》范文

《磁致伸缩直线位移传感器的机理研究与应用》篇一一、引言磁致伸缩直线位移传感器是一种基于磁致伸缩效应的测量设备,被广泛应用于精密测量、位移控制和定位等领域。

随着科技的进步,对高精度、高灵敏度测量技术需求的日益增长,磁致伸缩直线位移传感器的研究与应用越来越受到重视。

本文旨在研究磁致伸缩直线位移传感器的机理,并探讨其在实际应用中的价值。

二、磁致伸缩直线位移传感器的基本原理磁致伸缩效应是指磁性材料在磁场作用下产生伸缩的现象。

磁致伸缩直线位移传感器主要由磁致伸缩材料、线圈和电子检测元件等组成。

其基本原理是通过磁致伸缩材料和外部磁场相互作用,从而引起磁致伸缩材料的伸长或缩短,以此测量位移。

具体来说,当电流通过线圈时,会产生一个磁场。

这个磁场与磁致伸缩材料相互作用,使材料产生伸长或缩短。

电子检测元件则通过测量这种伸长或缩短的幅度,从而确定位移的大小。

三、磁致伸缩直线位移传感器的特点磁致伸缩直线位移传感器具有以下特点:1. 高精度:由于磁致伸缩效应的灵敏度较高,因此该传感器具有较高的测量精度。

2. 高稳定性:磁致伸缩材料具有较好的稳定性,因此传感器在长时间使用过程中仍能保持较高的测量精度。

3. 大范围:该传感器可实现大范围的位移测量,适用于多种应用场景。

4. 快速响应:由于采用电子检测元件,该传感器具有较快的响应速度。

四、磁致伸缩直线位移传感器的应用磁致伸缩直线位移传感器在工业自动化、航空航天、精密测量等领域具有广泛的应用。

例如:1. 工业自动化:在工业生产过程中,需要精确控制各种设备的运动位置和速度。

磁致伸缩直线位移传感器可实现高精度的位移测量和反馈,从而提高生产效率和产品质量。

2. 航空航天:在航空航天领域,精确的测量和定位是确保飞机和航天器安全、可靠运行的关键。

磁致伸缩直线位移传感器的高精度和大范围测量能力使其成为航空航天领域的重要工具。

3. 精密测量:在科研、教学等领域,需要进行高精度的长度、位移等物理量测量。

西安长量程磁致伸缩位移传感器工作原理

西安长量程磁致伸缩位移传感器工作原理

西安长量程磁致伸缩位移传感器工作原理磁致伸缩位移(液位)传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。

测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。

测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。

由于这个应变机械波脉冲信号在波导管内的传输时间和活动磁环与电子室之间的距离成正比,通过测量时间,就可以高度精确地确定这个距离。

由于输出信号是一个真正的绝对值,而不是比例的或放大处理的信号,所以不存在信号漂移或变值的情况,更无需定期重标。

磁致伸缩位移测量的研究与回波信号的分析与处理

磁致伸缩位移测量的研究与回波信号的分析与处理

磁致伸缩位移测量的研究与回波信号的分析与处理杨宗旺;周新志【摘要】以研制5~10m的大位移的磁致伸缩位移传感器为目标,重点分析研究了在磁致伸缩位移测量中对回波信号的检测,对回波信号的接收装置做了创新性的改进,接收装置改成了压电陶瓷,针对回波信号掺杂的干扰信号,提出了一些对实验装置的信号的抗干扰性改进的方法思路,在杂波可能出现的实验装置上进行了分析.设计中为传感器留出一些常用的工业仪表专用接口,如符合工业标准的4~20mA的信号接口,PROFIBUS工业总接口,为以后将位移测量值接入测量和控制系统,实现智能化的工业控制系统做了准备.%This paper aimed at researching 5 m to 10 m large displacement magnetostrictive displacement sensor, and mainly analyzed and studied the detection of echo signal during magnetostrictive displacement measurement. And it made innovative improvements on the echo signal receiving device with the replacement of piezoelectric ceramic to receiving device. According to the interference signal intermingled in the echo signal, some improved methods to the anti-interference of the signal of experimental device were put forward, and some analysis were carried out on the experimental device where the clutter might occur. The design provided some commonly used industrial instruments specific interface for the sensor. For example, the signal interface conforming to the industrial standard from 4 mA to 20 mA and the PROFIBUS total industrial interface. This makes preparation for the introduction of displacement measurement value to the measurement and control system, and for the realization of intelligent industrial control system.【期刊名称】《仪表技术与传感器》【年(卷),期】2012(000)011【总页数】4页(P177-180)【关键词】5~10 m大位移;磁致伸缩;位移测量;回波分析;回波处理【作者】杨宗旺;周新志【作者单位】四川大学电子信息学院,四川成都610065;四川大学电子信息学院,四川成都610065【正文语种】中文【中图分类】TP212.60 引言随着传感器检测技术的发展,新的传感器技术的不断涌现,基于磁致伸缩位移测量传感器技术的传感器也应运而生,该类型的传感器技术较为新颖,在位移测量方面有着巨大的发挥前景。

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理

磁致伸缩位移传感器原理磁致伸缩位移传感器(Magnetorestrictive Displacement Sensor)是一种能够测量物体位移的传感器。

它基于磁致伸缩效应,通过测量由磁体产生的磁场中磁器件的变化,来确定物体的位移。

磁致伸缩效应是指当磁性材料处于外加磁场中时,会发生形状和尺寸的变化。

这种变化是由于外加磁场引起磁性材料的磁矩重新排列所致。

具体来说,在磁场的作用下,磁性材料的磁矩会由于磁场的作用而重新排列,导致材料的长度和体积发生微小的变化。

当磁致伸缩杆处于外加磁场中时,磁致伸缩效应会导致磁致伸缩杆的长度发生微小的变化。

这个变化会导致探头上的磁场也发生相应的改变。

探头上的磁场是通过电流在传感器内部流过时在磁体上产生的。

测量磁致伸缩位移传感器的位移需要使用一个传感器电路进行分析。

这个电路主要由一个驱动电路和一个接收电路组成。

驱动电路主要负责通过传递电流来产生磁场,而接收电路则是负责测量探头上的磁场的变化。

驱动电路通常会通过在磁致伸缩杆上施加短脉冲电流来产生磁场。

这个磁场会沿着磁致伸缩杆的长度方向扩展。

同时,接收电路会测量探头上的磁场,这个磁场是受到磁致伸缩杆长度变化的影响的。

测量位移时,接收电路会测量磁致伸缩杆上磁场的两个特征:主磁场和包络线。

主磁场是磁致伸缩杆上磁场的强度,它与磁致伸缩杆的长度成比例。

包络线则是磁场的分布情况,它的变化与磁致伸缩杆的形状变化有关。

通过测量主磁场和包络线的变化,可以确定磁致伸缩杆的位移。

具体的测量方法可以通过对接收电路输出信号的分析来实现。

一些常见的分析方法包括使用频谱分析器、放大器和数据采集系统来测量磁场的变化。

总之,磁致伸缩位移传感器是一种基于磁致伸缩效应的传感器。

通过测量磁致伸缩杆上的磁场的变化,可以确定被测物体的位移。

这种传感器在很多领域中都有广泛的应用,例如测量机械运动、控制系统和自动化设备。

《磁致伸缩直线位移传感器的机理研究与应用》

《磁致伸缩直线位移传感器的机理研究与应用》

《磁致伸缩直线位移传感器的机理研究与应用》篇一一、引言磁致伸缩直线位移传感器是一种基于磁致伸缩效应原理工作的精密测量装置,它具有高精度、高分辨率和良好的重复性等特点,在机械、自动化控制、机器人、精密测量等领域有着广泛的应用。

本文将对磁致伸缩直线位移传感器的机理进行深入研究,并探讨其在实际应用中的效果。

二、磁致伸缩直线位移传感器的工作原理磁致伸缩直线位移传感器主要由磁致伸缩材料、传感器探头和电子电路三部分组成。

当外部磁场作用于磁致伸缩材料时,材料会产生伸缩变形,从而改变其长度。

通过测量这一长度变化,即可得到被测物体的位移信息。

1. 磁致伸缩材料磁致伸缩材料是磁致伸缩直线位移传感器的核心部分,它具有优异的磁致伸缩性能和良好的稳定性。

常见的磁致伸缩材料有镍基合金、铁基合金等。

这些材料在磁场作用下会产生明显的伸缩变形,从而为测量位移提供了基础。

2. 传感器探头传感器探头是用于检测磁致伸缩材料长度变化的装置。

它通常由两个部分组成:一是固定的非磁性外壳,用于安装和固定磁致伸缩材料;二是与外部电子电路连接的输出信号端子。

3. 电子电路电子电路是用于将传感器的信号转换为数字信号并输出的部分。

通过外部控制器发送的电流信号可以驱动传感器探头产生磁场,进而引起磁致伸缩材料的伸缩变形。

同时,电子电路还能对传感器输出的信号进行放大、滤波和数字化处理,以便于后续的信号处理和分析。

三、磁致伸缩直线位移传感器的应用磁致伸缩直线位移传感器具有高精度、高分辨率和良好的重复性等特点,在许多领域都有广泛的应用。

以下是几个典型的应用场景:1. 机械制造领域在机械制造领域,磁致伸缩直线位移传感器被广泛应用于各种精密测量和控制系统。

例如,在机床的加工过程中,需要实时检测工件的尺寸和位置信息,以便进行精确的控制和调整。

这时,磁致伸缩直线位移传感器就能发挥出其高精度测量的优势,提高机床的加工精度和生产效率。

2. 自动化控制领域在自动化控制领域,磁致伸缩直线位移传感器也得到了广泛的应用。

磁致伸缩位移传感器研制

磁致伸缩位移传感器研制

早期磁致伸缩位移传感器的研制磁致伸缩位移传感是利用磁致伸缩效应研制的传感器。

该传感器可以实现非接触、绝对式测量,具有高精度、大量程的特点,特别是由于磁铁和传感器并无直接接触,因此传感器可应用在恶劣的工业环境,如易燃、易爆、易挥发、有腐蚀的场合。

此外,传感器能承受高温高压和高振荡的环境。

传感器输出信号为绝对数值,所以即使电源中断重接也不会对数据收构成问题,更无尖重新调整零位。

由于传感器组件都是非接触的,所以即使测量过程理不断重复的,也不会对传感器造成任何磨损。

研制中涉及的关键技术有:(1)大电流周期激发电路的设计;(2)微弱信号的检测、信号的滤波、放大、电压比较、峰值检验波、电压限幅等一系列电路的设计;(3)基于单片机的高精度时间量测量。

技术要求:测量范围0~8cm,精度0.1mm。

测量范围不是很大,主要是受到实验所用波导钢丝本身长度的限制。

1位移传感器的原理磁致旋转波位移传感器,如图1所示。

除位置磁铁外,所有其他元器件都安装在传感器壳体内,组成传感器的主体。

位置磁铁通常装在一个运动部件A上,而传感器主体则装在一个固定的部件B上。

传感器工作时,电子信号和处理系统发给磁致波导钢丝间隔为T的激励脉冲电流ie 该脉冲电流将产生一个围绕波导钢丝的旋转磁场。

位置磁铁也产生一个固定的磁场。

根据Widemanm效应,金属随其瞬间变形产生波导扭曲,使波导钢丝产生磁致弹性伸缩,即形成一个磁致旋转波。

磁致旋转波的传播速度为式中:G为波导管的剪切弹性模量;ρ为波导管密度。

由于G和ρ均为恒定(对于一定的波导管来说)的,所以传播速度也恒定。

经过计算该旋转波沿着波导钢丝以2 800 m/s的速度向两边传播。

当它传到波导钢丝一端的波检测器时被转换成电信号ua·通过测量磁致旋转波从位置磁铁传到波检测器的时间tL就能确定位置磁铁和波检测器之间的距离。

这样,当部件A和B产生相对运动,通过磁致旋转波位移传感器就可以确定部件A的位置和速度。

北京高精度磁致伸缩位移传感器工作原理

北京高精度磁致伸缩位移传感器工作原理

北京高精度磁致伸缩位移传感器工作原理高精度磁致伸缩位移传感器是一种用于测量物体位移的设备。

它利用了磁致伸缩效应和磁场传感技术,可以实现对位移的高精度测量。

磁致伸缩效应是指一些材料在磁场作用下,其长度会发生相应变化的现象。

这种效应可以通过外加磁场与材料内部自发起的磁场相互作用来实现。

当外加磁场与内部磁场方向一致时,两者的相互作用将使材料收缩。

当外加磁场与内部磁场方向反向时,两者的相互作用将使材料伸长。

通过测量这种材料的长度变化,可以实现对物体位移的测量。

高精度磁致伸缩位移传感器通常由导电重锶铁酸锶钡(PMN-PT)薄膜、磁芯、线圈和传感电路等组成。

导电重锶铁酸锶钡薄膜是一种特殊材料,它具有磁致伸缩效应,并能够产生强磁场。

磁芯由软磁材料制成,用于集中磁力线。

线圈则是产生外加磁场的源头,它通过激励信号改变外加磁场的方向和大小。

传感电路则负责将传感器测量到的信号转化为物理量。

当线圈中有激励信号通过时,会产生一个外加磁场。

这个外加磁场会与导电重锶铁酸锶钡薄膜产生相互作用,使其发生拉伸或压缩,产生位移。

同时,导电重锶铁酸锶钡薄膜内部的磁场也会与外加磁场相互作用,影响位移的大小和方向。

根据磁致伸缩效应的原理,可以通过测量导电重锶铁酸锶钡薄膜的位移,推断物体的位移。

在测量过程中,传感器会不断地改变外加磁场的方向和大小,以获取多个位移值。

然后,利用这些位移值进行数据处理,可以提高位移测量的精度和稳定性。

传感器的传感电路通常采用微处理器或其他电子器件,可以对数据进行滤波、放大和校准等处理,最终输出测量结果。

高精度磁致伸缩位移传感器具有测量范围宽、响应速度快、测量精度高等优点。

它可以广泛应用于精密测量、机器人、航空航天、汽车、机械等领域。

通过改变内部结构、材料和工艺等因素,可以进一步提高传感器的性能和稳定性。

Fe83Ga17磁致伸缩位移传感器激励信号的ANSYS分析及DSP实现

Fe83Ga17磁致伸缩位移传感器激励信号的ANSYS分析及DSP实现
2 2矩 01
仪 表 技 术 与 传 感 器
I sr m e Te h qu a d S n o n tu nt c ni e n esr
2 2 01 NO 8 .
第 8期
F 8Ga7 致伸 缩位 移 传 感器 激 励信 号 的 AN YS分 析 及 DS e 1磁 3 S P实现
余 超, 新志, 周 熊胤 琪
6 06 ) 10 5 ( 四川 大 学 电子 信 息 学 院 , 川 成 都 四
摘 要 : 助 A S S和 D P 讨 论 了 F G 致伸 缩位 移传 感 器 激 励 信 号 部 分 的 可行 性 及 其 实 现 。 激 励 信 号 主 要 包 借 NY S, e a, 磁 括 电脉 冲信 号和 磁 场 信 号 两 个部 分 。在 磁 场 信 号 方 面 , 感 器 波 导 丝 采 用 了一 种 区别 于 F N 材 料 的新 型 F G 。 致 伸 传 ei e。 a, 磁
关 键 词 : 致 伸 缩 ;S ; 磁 D P 激励 信 号 ; N Y A SS 中图 分 类 号 :P 1 T 22 文献标识码 : A 文 章 编 号 :0 2—14 (0 2 0 0 0 10 8 1 2 1 )8— 0 4—0 3
Re e r h o Ex ia i n S g lO 8 a M a neo t itv s a c n ct to ina fFe3 ” G g t srci e
m e ts n o r s use Ex tto ina ncu dt ntr o e td pat o e i h mpu s i a , nd t t ri g tc n e s rwe edic s d. ci in sg l i l de wo i e c nn ce rs, n st e i a lesg l a heohe sma nei n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档