操作系统实验1:进程调度
操作系统实验报告进程调度

操作系统实验报告进程调度操作系统实验报告:进程调度引言在计算机科学领域中,操作系统是一个重要的概念,它负责管理和协调计算机系统中的各种资源,包括处理器、内存、输入/输出设备等。
其中,进程调度是操作系统中一个非常重要的组成部分,它负责决定哪个进程在何时获得处理器的使用权,以及如何有效地利用处理器资源。
实验目的本次实验的目的是通过对进程调度算法的实验,深入理解不同的进程调度算法对系统性能的影响,并掌握进程调度算法的实现方法。
实验环境本次实验使用了一台配备了Linux操作系统的计算机作为实验平台。
在该计算机上,我们使用了C语言编写了一些简单的进程调度算法,并通过模拟不同的进程调度场景进行了实验。
实验内容1. 先来先服务调度算法(FCFS)先来先服务调度算法是一种简单的进程调度算法,它按照进程到达的顺序进行调度。
在本次实验中,我们编写了一个简单的FCFS调度算法,并通过模拟多个进程同时到达的情况,观察其对系统性能的影响。
2. 短作业优先调度算法(SJF)短作业优先调度算法是一种根据进程执行时间长度进行调度的算法。
在本次实验中,我们编写了一个简单的SJF调度算法,并通过模拟不同长度的进程,观察其对系统性能的影响。
3. 时间片轮转调度算法(RR)时间片轮转调度算法是一种按照时间片大小进行调度的算法。
在本次实验中,我们编写了一个简单的RR调度算法,并通过模拟不同时间片大小的情况,观察其对系统性能的影响。
实验结果通过实验,我们发现不同的进程调度算法对系统性能有着不同的影响。
在FCFS 算法下,长作业会导致短作业等待时间过长;在SJF算法下,长作业会导致短作业饥饿现象;而RR算法则能够较好地平衡不同进程的执行。
因此,在实际应用中,需要根据具体情况选择合适的进程调度算法。
结论本次实验通过对进程调度算法的实验,深入理解了不同的进程调度算法对系统性能的影响,并掌握了进程调度算法的实现方法。
同时,也加深了对操作系统的理解,为今后的学习和研究打下了良好的基础。
实验一、进程调度实验报告

实验一、进程调度实验报告一、实验目的进程调度是操作系统中的核心功能之一,其目的是合理地分配 CPU 资源给各个进程,以提高系统的整体性能和资源利用率。
通过本次实验,我们旨在深入理解进程调度的原理和算法,掌握进程状态的转换,观察不同调度策略对系统性能的影响,并通过实际编程实现来提高我们的编程能力和对操作系统概念的理解。
二、实验环境本次实验使用的操作系统为 Windows 10,编程语言为 C++,开发工具为 Visual Studio 2019。
三、实验原理1、进程状态进程在其生命周期中会经历不同的状态,包括就绪态、运行态和阻塞态。
就绪态表示进程已经准备好执行,只等待 CPU 分配;运行态表示进程正在 CPU 上执行;阻塞态表示进程由于等待某个事件(如 I/O操作完成)而暂时无法执行。
2、调度算法常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)等。
先来先服务算法按照进程到达的先后顺序进行调度。
短作业优先算法优先调度执行时间短的进程。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片执行。
四、实验内容1、设计并实现一个简单的进程调度模拟器定义进程结构体,包含进程 ID、到达时间、执行时间、剩余时间等信息。
实现进程的创建、插入、删除等操作。
实现不同的调度算法。
2、对不同调度算法进行性能测试生成一组具有不同到达时间和执行时间的进程。
分别采用先来先服务、短作业优先和时间片轮转算法进行调度。
记录每个算法下的平均周转时间、平均等待时间等性能指标。
五、实验步骤1、进程结构体的定义```c++struct Process {int pid;int arrivalTime;int executionTime;int remainingTime;int finishTime;int waitingTime;int turnaroundTime;};```2、进程创建函数```c++void createProcess(Process processes, int& numProcesses, int pid, int arrivalTime, int executionTime) {processesnumProcessespid = pid;processesnumProcessesarrivalTime = arrivalTime;processesnumProcessesexecutionTime = executionTime;processesnumProcessesremainingTime = executionTime;numProcesses++;}```3、先来先服务调度算法实现```c++void fcfsScheduling(Process processes, int numProcesses) {int currentTime = 0;for (int i = 0; i < numProcesses; i++){if (currentTime < processesiarrivalTime) {currentTime = processesiarrivalTime;}processesistartTime = currentTime;currentTime += processesiexecutionTime;processesifinishTime = currentTime;processesiwaitingTime = processesistartTime processesiarrivalTime;processesiturnaroundTime = processesifinishTime processesiarrivalTime;}}```4、短作业优先调度算法实现```c++void sjfScheduling(Process processes, int numProcesses) {int currentTime = 0;int minExecutionTime, selectedProcess;bool found;while (true) {found = false;minExecutionTime = INT_MAX;selectedProcess =-1;for (int i = 0; i < numProcesses; i++){if (processesiarrivalTime <= currentTime &&processesiremainingTime < minExecutionTime &&processesiremainingTime > 0) {found = true;minExecutionTime = processesiremainingTime;selectedProcess = i;}}if (!found) {break;}processesselectedProcessstartTime = currentTime;currentTime += processesselectedProcessremainingTime;processesselectedProcessfinishTime = currentTime;processesselectedProcesswaitingTime =processesselectedProcessstartTime processesselectedProcessarrivalTime;processesselectedProcessturnaroundTime =processesselectedProcessfinishTime processesselectedProcessarrivalTime;processesselectedProcessremainingTime = 0;}}```5、时间片轮转调度算法实现```c++void rrScheduling(Process processes, int numProcesses, int timeSlice) {int currentTime = 0;Queue<int> readyQueue;for (int i = 0; i < numProcesses; i++){readyQueueenqueue(i);}while (!readyQueueisEmpty()){int currentProcess = readyQueuedequeue();if (processescurrentProcessarrivalTime > currentTime) {currentTime = processescurrentProcessarrivalTime;}if (processescurrentProcessremainingTime <= timeSlice) {currentTime += processescurrentProcessremainingTime;processescurrentProcessfinishTime = currentTime;processescurrentProcesswaitingTime =processescurrentProcessstartTime processescurrentProcessarrivalTime;processescurrentProcessturnaroundTime =processescurrentProcessfinishTime processescurrentProcessarrivalTime;processescurrentProcessremainingTime = 0;} else {currentTime += timeSlice;processescurrentProcessremainingTime = timeSlice;readyQueueenqueue(currentProcess);}}}```6、性能指标计算函数```c++void calculatePerformanceMetrics(Process processes, int numProcesses, double& averageWaitingTime, double& averageTurnaroundTime) {double totalWaitingTime = 0, totalTurnaroundTime = 0;for (int i = 0; i < numProcesses; i++){totalWaitingTime += processesiwaitingTime;totalTurnaroundTime += processesiturnaroundTime;}averageWaitingTime = totalWaitingTime / numProcesses; averageTurnaroundTime = totalTurnaroundTime / numProcesses;}```7、主函数```c++int main(){Process processes100;int numProcesses = 0;//创建进程createProcess(processes, numProcesses, 1, 0, 5);createProcess(processes, numProcesses, 2, 1, 3);createProcess(processes, numProcesses, 3, 2, 4);createProcess(processes, numProcesses, 4, 3, 2);//先来先服务调度fcfsScheduling(processes, numProcesses);double fcfsAverageWaitingTime, fcfsAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, fcfsAverageWaitingTime, fcfsAverageTurnaroundTime);cout <<"先来先服务调度的平均等待时间:"<<fcfsAverageWaitingTime << endl;cout <<"先来先服务调度的平均周转时间:"<<fcfsAverageTurnaroundTime << endl;//短作业优先调度sjfScheduling(processes, numProcesses);double sjfAverageWaitingTime, sjfAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, sjfAverageWaitingTime, sjfAverageTurnaroundTime);cout <<"短作业优先调度的平均等待时间:"<<sjfAverageWaitingTime << endl;cout <<"短作业优先调度的平均周转时间:"<<sjfAverageTurnaroundTime << endl;//时间片轮转调度(时间片为 2)rrScheduling(processes, numProcesses, 2);double rrAverageWaitingTime, rrAverageTurnaroundTime;calculatePerformanceMetrics(processes, numProcesses, rrAverageWaitingTime, rrAverageTurnaroundTime);cout <<"时间片轮转调度(时间片为 2)的平均等待时间:"<< rrAverageWaitingTime << endl;cout <<"时间片轮转调度(时间片为 2)的平均周转时间:"<< rrAverageTurnaroundTime << endl;return 0;}```六、实验结果与分析1、先来先服务调度平均等待时间:40平均周转时间:85分析:先来先服务调度算法简单直观,但对于短作业可能会造成较长的等待时间,导致平均等待时间和平均周转时间较长。
进程调度操作系统实验报告

进程调度操作系统实验报告一、实验目的本次实验的主要目的是深入理解操作系统中进程调度的概念和原理,通过实际编程和模拟,观察不同调度算法对系统性能的影响,并掌握进程调度的实现方法。
二、实验环境操作系统:Windows 10编程语言:C++开发工具:Visual Studio 2019三、实验原理进程调度是操作系统的核心功能之一,它负责决定哪个进程在何时获得 CPU 资源进行执行。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、时间片轮转(RR)、优先级调度等。
先来先服务算法按照进程到达的先后顺序进行调度,先到达的进程先获得 CPU 执行。
这种算法简单直观,但可能导致短作业等待时间过长。
短作业优先算法优先调度执行时间短的进程,能有效减少平均等待时间,但可能导致长作业饥饿。
时间片轮转算法将 CPU 时间划分成固定大小的时间片,每个进程轮流获得一个时间片进行执行。
如果进程在时间片内未完成,则被放回就绪队列等待下一轮调度。
优先级调度根据进程的优先级来决定调度顺序,优先级高的进程先获得 CPU 资源。
四、实验步骤1、设计进程结构体定义进程的标识号(PID)、到达时间、服务时间、剩余时间、优先级等属性。
2、实现先来先服务算法按照进程到达的先后顺序将它们放入就绪队列。
从就绪队列中取出第一个进程进行调度执行,直到其完成。
3、实现短作业优先算法计算每个进程的剩余服务时间。
将进程按照剩余服务时间从小到大排序,放入就绪队列。
从就绪队列中取出剩余服务时间最短的进程进行调度执行。
4、实现时间片轮转算法设定时间片大小。
将进程放入就绪队列,按照先来先服务的原则依次分配时间片执行。
进程在时间片内未完成的,放回就绪队列末尾。
5、实现优先级调度算法为每个进程设置优先级。
将进程按照优先级从高到低排序,放入就绪队列。
从就绪队列中取出优先级最高的进程进行调度执行。
6、计算平均周转时间和平均带权周转时间周转时间=完成时间到达时间带权周转时间=周转时间/服务时间平均周转时间=总周转时间/进程数平均带权周转时间=总带权周转时间/进程数7、输出调度结果包括每个进程的调度顺序、开始时间、结束时间、周转时间、带权周转时间等。
实验进程调度

淮海工学院计算机科学系实验报告书课程名:《操作系统原理》题目:实验一进程管理班级:Z软件52学号:2017140595姓名:郭文静1、实验目的与要求进程是操作系统最重要的概念之一,进程调度是操作系统内核的重要功能,本实验要求用C/C++语言编写一个进程调度模拟程序,至少使用最高优先权优先或时间片轮转法两种算法来实现进程调度。
通过本实验可加深对进程调度算法的理解。
1、设计有5个进程并发执行的模拟调度程序,每个程序由一个PCB表示。
2、模拟调度程序至少使用最高优先权优先或时间片轮转法两种算法来实现进程调度。
3、程序执行中应能在屏幕上显示出各进程的状态变化,以便于观察调度的整个过程。
2、实验内容或题目2.1优先级算法说明(1)PCB的结构:优先级算法中,设PCB的结构如右图所示,其中各数据项的含义Array如下:Id:进程标识符号,取值1—5。
Prior:优先级,随机产生,范围5—10。
Used:目前已占用的CPU时间数,初值为0;当该进程被调用执行时,每执行一个时间片,Used加1。
Need:进程尚需的CPU时间数,初值表示该进程需要运行的总时间,取值范围为1—5。
并随机产生,每运行一个时间片need减1;need为0则进程结束。
Status:进程状态R(运行),J(就绪),F(完成);初始时都处于就绪状态。
Next:指向就绪队列中下一个进程的PCB的指针。
(2)初始状态及就绪队列组织:5个进程初始都处于就绪状态,进程标识1—5,used初值都为0。
各进程的优先级随机产生,范围1—5。
处于就绪状态的进程,用队列加以组织,队列按优先级由高到低依次排列,队首指针设为head。
(3)调度原则以及运行时间的处理:正在执行的进程每执行一个时间片,其优先级减1(允许优先级为负)。
进程调度将在以下情况发生:当正在运行的程序其优先级小于就绪队列队首进程的优先级时。
程序中进程的运行时间以逻辑时间片为单位。
2.2时间片轮转算法说明(1)PCB的结构(如下图所示):轮转法中,设PCB的结构如右图所示,其中各数据项的含义如下:Span:在某一轮中,分配给先运行进程的时间片数,取值1—3。
操作系统进程调度实验

操作系统进程调度实验操作系统进程调度是操作系统中非常重要的一个功能,它决定了多个进程的执行顺序和调度策略。
进程调度的好坏直接影响着系统的性能和资源利用率。
本实验旨在通过实现一个简单的进程调度模拟,了解不同的调度算法,探讨其优劣和适用场景。
一、实验目的和原理本实验的目标是实现进程调度模拟,并探究不同调度算法的性能和适用场景。
通过实验,我们可以了解以下内容:1.进程调度算法的基本原理和实现方式;2.比较不同调度算法的优劣和特点;3.了解不同调度算法在不同场景下的应用。
二、实验环境和工具本实验使用C语言进行实现,可以选择任何一种编程环境和工具,例如Dev-C++、Visual Studio等。
三、实验过程及方法1.实现一个进程控制块(PCB)的数据结构,用来保存进程的相关信息,包括进程ID、进程状态、优先级等。
2.实现一个进程队列,用来保存就绪队列中的进程。
可以使用数组或链表等数据结构实现。
3. 实现不同调度算法的函数,包括先来先服务(FCFS)、最短作业优先(SJF)、优先级调度(Priority Scheduling)和时间片轮转(Round Robin)等。
4.根据实际需求生成一批进程,设置其信息,并根据不同算法进行调度。
5.对比不同算法的运行结果和性能,分析其优劣。
四、实验结果和分析通过实验,我们可以得到每个算法的平均等待时间、平均周转时间和吞吐量等性能指标。
根据这些指标,我们可以对不同算法进行评价和分析。
1.先来先服务(FCFS)算法FCFS算法是最简单的调度算法,按照进程到达的顺序进行调度。
它的主要优点是实现简单、公平性好。
然而,FCFS算法有明显的缺点,会导致长作业等待时间过长,产生"饥饿"现象。
2.最短作业优先(SJF)算法SJF算法是按照进程的执行时间长短进行调度的算法。
它能够最大限度地减少平均等待时间和周转时间,但是需要提前知道所有进程的执行时间,这在实际中是很难做到的。
操作系统进程调度实验报告

《计算机操作系统》课程实验报告题目实验一进程调度学院: 计算机学院专业: 计算机科学与技术姓名班级学号2015年10月21日实验一进程调度1.实验目的:通过对进程调度算法的模拟,进一步理解进程的基本概念,加深对进程运行状态和进程调度过程、调度算法的理解。
2.实验内容:用C语言实现对N个进程采用某种进程调度算法先来先服务调度、短作业优先调度的调度。
3.设计实现:要求给出设计源码,设计源码要有详细注释,#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/int atime; /*到达时间*/int stime; /*服务时间*/int ftime; /*完成时间*/int rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("根据到达时间重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=0;i<n-1-j;i++)if(a[i].atime>a[i+1].atime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %d %d |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void fcfs(struct program a[],int n){int i;int time=0;for(i=0;i<n;i++){time=time+a[i].stime;a[i].ftime=a[0].atime+time;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=(float)a[i].rtime/a[i].stime;}printf("\nFCFS算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %d %.2d %.2d %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******先来先服务算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);fcfs(pro,m);getchar();}#include <stdio.h>#include<iostream>using namespace std;struct program{char name; /*进程名*/float atime; /*到达时间*/float stime; /*服务时间*/float ftime; /*完成时间*/float rtime; /*周转时间*/float qrtime; /*带权周转时间*/};void xianshi(struct program a[],int n){int i,j;struct program t;/*将进程按时间排序*/printf("重新排序:\n");printf("*****进程*************到达时间***************服务时间*****\n");for(j=0;j<n-1;j++)for(i=1;i<n-1-j;i++)if(a[i].stime>a[i+1].stime){t.atime=a[i].atime;a[i].atime=a[i+1].atime;a[i+1].atime=t.atime;=a[i].name;a[i].name=a[i+1].name;a[i+1].name=;t.stime=a[i].stime;a[i].stime=a[i+1].stime;a[i+1].stime=t.stime;}for(i=0;i<n;i++)printf(" %c %f %f |\n",a[i].name,a[i].atime,a[i].stime);printf("----------------------------------------------------\n"); }void SJF(struct program a[],int n){int i;a[0].ftime=a[0].atime+a[0].stime;a[0].rtime=a[0].ftime-a[0].atime;a[0].qrtime=a[0].rtime/a[0].stime;for(i=1;i<n;i++){a[i].ftime=a[i-1].ftime+a[i].stime;a[i].rtime=a[i].ftime-a[i].atime;a[i].qrtime=a[i].rtime/a[i].stime;}printf("\nSJF算法:\n");printf("*****进程****到达时间****完成时间******周转时间*******带权周转时间*****\n");for(i=0;i<n;i++){printf(" %c %.2f %.2f %.2f %.2f |\n",a[i].name,a[i].atime,a[i].ftime,a[i].rtime,a[i].qrtime);}printf("-----------------------------------------------------------------------\n");}void main(){int i,m;struct program pro[4];/*创建进程 */printf(" ******短作业优先算法****** \n");printf("请输入进程的数目:\n");scanf("%d",&m);i=m;for(i=0;i<m;i++){printf("请输入进程%d的进程名,到达时间,服务时间\n",i+1);cin>>pro[i].name>>pro[i].atime>>pro[i].stime;}xianshi(pro,m);SJF(pro,m); getchar(); }4.实验结果5.实验过程中出现的问题及解决办法先来先服务调度算法就是根据进程达到的时间为依据,哪一个进程先来那么该进程就会先执行;最短进程优先调度算法则是以每个进程执行所需时间长短为依据,某一个进程执行所需花的时间要短些那么该进程就先执行。
实验进程调度的实验报告

一、实验目的1. 加深对进程概念和进程调度算法的理解。
2. 掌握进程调度算法的基本原理和实现方法。
3. 培养编程能力和系统分析能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:C++3. 开发工具:Visual Studio 2019三、实验内容1. 实现进程调度算法2. 创建进程控制块(PCB)3. 模拟进程调度过程四、实验原理进程调度是操作系统核心功能之一,负责将CPU分配给就绪队列中的进程。
常见的进程调度算法有先来先服务(FCFS)、短作业优先(SJF)、优先级调度、时间片轮转(RR)等。
1. 先来先服务(FCFS)算法:按照进程到达就绪队列的顺序进行调度。
2. 短作业优先(SJF)算法:优先调度运行时间最短的进程。
3. 优先级调度算法:根据进程的优先级进行调度,优先级高的进程优先执行。
4. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行,时间片结束后进行调度。
五、实验步骤1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、运行时间、优先级、状态等信息。
2. 创建进程队列,用于存储就绪队列、等待队列和完成队列。
3. 实现进程调度算法:a. FCFS算法:按照进程到达就绪队列的顺序进行调度。
b. SJF算法:优先调度运行时间最短的进程。
c. 优先级调度算法:根据进程的优先级进行调度。
d. 时间片轮转(RR)算法:每个进程分配一个时间片,按顺序轮流执行。
4. 模拟进程调度过程:a. 初始化进程队列,将进程添加到就绪队列。
b. 循环执行调度算法,将CPU分配给就绪队列中的进程。
c. 更新进程状态,统计进程执行时间、等待时间等指标。
d. 当进程完成时,将其移至完成队列。
六、实验结果与分析1. FCFS算法:按照进程到达就绪队列的顺序进行调度,简单易实现,但可能导致短作业等待时间过长。
2. SJF算法:优先调度运行时间最短的进程,能提高系统吞吐量,但可能导致进程饥饿。
进程的调度实验报告(3篇)

第1篇一、实验目的通过本次实验,加深对操作系统进程调度原理的理解,掌握先来先服务(FCFS)、时间片轮转(RR)和动态优先级(DP)三种常见调度算法的实现,并能够分析这些算法的优缺点,提高程序设计能力。
二、实验环境- 编程语言:C语言- 操作系统:Linux- 编译器:GCC三、实验内容本实验主要实现以下内容:1. 定义进程控制块(PCB)结构体,包含进程名、到达时间、服务时间、优先级、状态等信息。
2. 实现三种调度算法:FCFS、RR和DP。
3. 创建一个进程队列,用于存储所有进程。
4. 实现调度函数,根据所选算法选择下一个执行的进程。
5. 模拟进程执行过程,打印进程执行状态和就绪队列。
四、实验步骤1. 定义PCB结构体:```ctypedef struct PCB {char processName[10];int arrivalTime;int serviceTime;int priority;int usedTime;int state; // 0: 等待,1: 运行,2: 完成} PCB;```2. 创建进程队列:```cPCB processes[MAX_PROCESSES]; // 假设最多有MAX_PROCESSES个进程int processCount = 0; // 实际进程数量```3. 实现三种调度算法:(1)FCFS调度算法:```cvoid fcfsScheduling() {int i, j;for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;if (processes[i].usedTime == processes[i].serviceTime) { processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); }for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(2)RR调度算法:```cvoid rrScheduling() {int i, j, quantum = 1; // 时间片for (i = 0; i < processCount; i++) {processes[i].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[i].processName); processes[i].usedTime++;processes[i].serviceTime--;if (processes[i].serviceTime <= 0) {processes[i].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[i].processName); } else {processes[i].arrivalTime++;}for (j = i + 1; j < processCount; j++) {processes[j].arrivalTime--;}}}```(3)DP调度算法:```cvoid dpScheduling() {int i, j, minPriority = MAX_PRIORITY;int minIndex = -1;for (i = 0; i < processCount; i++) {if (processes[i].arrivalTime <= 0 && processes[i].priority < minPriority) {minPriority = processes[i].priority;minIndex = i;}}if (minIndex != -1) {processes[minIndex].state = 1; // 设置为运行状态printf("正在运行进程:%s\n", processes[minIndex].processName);processes[minIndex].usedTime++;processes[minIndex].priority--;processes[minIndex].serviceTime--;if (processes[minIndex].serviceTime <= 0) {processes[minIndex].state = 2; // 设置为完成状态printf("进程:%s 完成\n", processes[minIndex].processName); }}}```4. 模拟进程执行过程:```cvoid simulateProcess() {printf("请选择调度算法(1:FCFS,2:RR,3:DP):");int choice;scanf("%d", &choice);switch (choice) {case 1:fcfsScheduling();break;case 2:rrScheduling();break;case 3:dpScheduling();break;default:printf("无效的调度算法选择。