七年级数学提优练习难题易错题
七年级初一数学第二学期第八章 二元一次方程组单元 易错题难题测试提优卷试卷

七年级初一数学第二学期第八章二元一次方程组单元易错题难题测试提优卷试卷一、选择题1.如图,周长为34的矩形ABCD被分成7个全等的矩形,则矩形ABCD的面积为()A.280 B.140 C.70 D.1962.某校七年级1班学生为了参加学校文化评比买了22张彩色的卡纸制作如下图形(每个图形由两个三角形和一个圆形组成),已知一张彩色卡纸可以剪5个三角形,或3个圆形,要使圆形和三角形正好配套,需要剪三角形的卡纸有x张,剪圆形的卡纸有y张,可列式为()A.2256x yx y+=⎧⎨=⎩B.2265x yx y+=⎧⎨=⎩C.22310x yx y+=⎧⎨=⎩D.22103x yx y+=⎧⎨=⎩3.方程组5213310x yx y+=⎧⎨-=⎩的解是()A.31xy=⎧⎨=-⎩B.13xy=-⎧⎨=⎩C.31xy=-⎧⎨=-⎩D.13xy=-⎧⎨=-⎩4.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.45.若二元一次方程组,3x y ax y a-=⎧⎨+=⎩的解是二元一次方程3570x y--=的一个解,则a为()A .3B .5C .7D .96.把方程23x y -=改写成用含x 的式子表示y 的形式( ) A .23y x =-B .23y x =+C .1322x y =+ D .132x y =+ 7.现有如图(1)的小长方形纸片若干块,已知小长方形的长为a ,宽为b .用3个如图(2)的全等图形和8个如图(1)的小长方形,拼成如图(3)的大长方形,若大长方形的宽为30cm ,则图(3)中阴影部分面积与整个图形的面积之比为( )A .15B .16C .17D .188.已知关于x 、y 的方程组22331x y kx y k +=⎧⎨+=-⎩以下结论:①当0k =时,方程组的解也是方程24-=-x y 的解;②存在实数k ,使得0x y +=;③当1y x ->-时,1k >;④不论k 取什么实数,3x y +的值始终不变,其中正确的是( ) A .①②③ B .①②④C .①③④D .②③④9.解方程组时,第一次消去未知数的最佳方法是( )A .加减法消去x ,将①-③×3与②-③×2B .加减法消去y ,将①+③与①×3+②C .加减法消去z ,将①+②与③+②D .代入法消去x ,y ,z 中的任何一个10.如图,8块相同的小长方形地砖拼成一个长方形,其中每一个小长方形的面积为( )A .400cm 2B .500cm 2C .600cm 2D .675cm 2二、填空题11.小红买了80分、120分的两种邮票,共花掉16元钱(两种邮票都买),则购买方案共有 种.12.解放碑某商场地下停车场有5个出入口,每天早晨7点开始对外停车且此时车位空置率为80%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,7小时车库恰好停满:如果开放3个进口和2个出口,4小时车库恰好停满.2019年清明节期间,由于商场人数增多,早晨7点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨7点开始经过_______小时车库恰好停满. 13.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.14.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 15.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.16.关于x ,y 的二元一次方程组5323x y x y a +=⎧⎨+=⎩的解是正整数,试确定整数a 的值为_________________.17.已知|x ﹣z+4|+|z ﹣2y+1|+|x+y ﹣z+1|=0,则x+y+z=________.18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.若(x ﹣y +3)2+=0,则x +y 的值为______.20.已知方程组1122a x y c a x y c +=⎧⎨+=⎩解为510x y =⎧⎨=⎩,则关于x ,y 的方程组1112223232a x y a c a x y a c +=+⎧⎨+=+⎩的解是_______.三、解答题21.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理. 你认为哪种方案既省时又省钱?试比较说明.22.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A纸板70张,B型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A型纸板较为充足,B型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B型纸板用完)(3)经测量发现B型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?23.数轴上有两个动点M,N,如果点M始终在点N的左侧,我们称作点M是点N的“追赶点”.如图,数轴上有2个点A,B,它们表示的数分别为-3,1,已知点M是点N的“追赶点”,且M,N表示的数分别为m,n.(1)由题意得:点A是点B的“追赶点”,AB=1-(-3)=4(AB表示线段AB的长,以下相同);类似的,MN=____________.(2)在A,M,N三点中,若其中一个点是另外两个点所构成线段的中点,请用含m的代数式来表示n.(3)若AM=BN,MN=43BM,求m和n值.24.某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如果两个班联合起来,作为一个团体购票,则需付 1078 元.(1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮他们买票呢?请给出最省钱的方案.25.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a的△ABC逐次进行以下操作:分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1,求S1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值. 26.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】解:设小长方形的长、宽分别为x 、y , 依题意得:,解得:,则矩形ABCD 的面积为7×2×5=70. 故选C .【点评】考查了二元一次方程组的应用,此题是一个信息题目,首先会根据图示找到所需要的数量关系,然后利用这些关系列出方程组解决问题.2.A解析:A 【分析】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张,根据彩色卡纸的总张数为22张其剪出三角形的数量为圆的2倍,即可得出关于x 、y 的二元一次方程组,此题得解. 【详解】设需要剪三角形的卡纸有x 张,剪圆形的卡纸有y 张, 根据题意得:2256x y x y +=⎧⎨=⎩.故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.A解析:A 【分析】利用代入消元法即可求解. 【详解】 解:5213310x y x y +=⎧⎨-=⎩①②,由②得:310y x =-③,把③代入②可得:()5231013x x +-=, 解得3x =,把3x =代入③得1y =-,故方程组的解为31x y =⎧⎨=-⎩,故选:A . 【点睛】本题考查解二元一次方程组,根据方程组的特点选择合适的求解方法是解题的关键.4.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.5.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=,解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.6.A解析:A 【分析】把x 看做已知数求出y 即可. 【详解】方程2x−y =3,解得:y =2x−3, 故选:A . 【点睛】此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.7.B解析:B 【分析】观察图③可知3个小长方形的宽与1个小长方形的长的和等于大长方形的宽,小长方形的4个长等于小长方形的3个长与3个宽的和,可列出关于a ,b 的方程组,解方程组得出a ,b 的值;利用a ,b 的值分别求得阴影部分面积与整个图形的面积,即可求得影部分面积与整个图形的面积之比. 【详解】解:根据题意、结合图形可得:330433a b a a b +=⎧⎨=+⎩, 解得:155a b =⎧⎨=⎩,∴阴影部分面积223()310300=-=⨯=a b , 整个图形的面积304304151800=⨯=⨯⨯=a , ∴阴影部分面积与整个图形的面积之比300118006==, 故选B . 【点睛】本题考查了二元一次方程组的应用,理解题意并利用大长方形的长与宽和小长方形的关系建立二元一次方程组是解题的关键.8.B解析:B 【分析】①把k=0代入方程组求出解,代入方程检验即可;②方程组消元k 得到x 与y 的方程,检验即可;③表示出y-x ,代入已知不等式求出k 的范围,判断即可;④方程组整理后表示出x+3y ,检验即可. 【详解】解:①把k=0代入方程组得:20231x y x y +=⎧⎨+=-⎩,解得:21x y =-⎧⎨=⎩,代入方程得:左边=-2-2=-4,右边=-4, 左边=右边,此选项正确; ②由x+y=0,得到y=-x ,代入方程组得:31x kx k -=⎧⎨-=-⎩,即k=3k-1,解得:12k =,则存在实数12k =,使x+y=0,本选项正确;③22331x y k x y k +=⎧⎨+=-⎩,解不等式组得:321x k y k =-⎧⎨=-⎩,∵1y x ->-,∴1(32)1k k --->-, 解得:1k <,此选项错误; ④x+3y=3k-2+3-3k=1,本选项正确; ∴正确的选项是①②④; 故选:B. 【点睛】此题考查了二元一次方程组的解以及解二元一次方程组熟练掌握运算法则是解本题的关键.9.C解析:C 【解析】 【分析】根据加减消元的方法,当未知数的系数相等或互为相反数时即可进行加减消元.据此即可解题. 【详解】解:∵三个方程中z 的系数已经相等或互为相反数,∴第一次消去未知数的最佳方法是加减法消去z ,将①+②与③+② 故选C. 【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元法的应用条件是解题关键.10.D解析:D 【解析】试题分析:设小长方形的宽为xcm ,则长为3xcm ,根据图示列式为x+3x=60cm ,解得x=15cm ,因此小长方形的面积为15×15×3=675cm 2. 故选D.点睛:此题主要考查了读图识图能力的,解题时要认真读图,从中发现小长方形的长和宽的关系,然后根据关系列方程解答即可.二、填空题 11.6 【分析】设80分的邮票购买x 张,120分的邮票购买y 张,根据题意列方程0.8x+1.2y=16,用含y 的代数式表示x 得,根据x 、y 都是整数取出x 与y 的对应值,得到购买方案.【详解】解:设8解析:6【分析】设80分的邮票购买x张,120分的邮票购买y张,根据题意列方程0.8x+1.2y=16,用含y的代数式表示x得3202x y=-,根据x、y都是整数取出x与y的对应值,得到购买方案.【详解】解:设80分的邮票购买x张,120分的邮票购买y张,0.8x+1.2y=16,解得3202x y =-,∵x、y都是正整数,∴当y=2、4、6、8、10、12时,x=17、14、11、8、5、2,∴共有6种购买方案,故答案为:6.【点睛】此题考查一元二次方程的实际应用,根据题意只得到一个方程时,可将方程变形为用一个未知数表示另一个未知数的形式,然后根据未知数的要求得到对应值即可解决实际问题. 12.【分析】先设1个进口1小时开进辆车,1个出口1小时开出辆车,车位总数是根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程根据已知条件如果开放3个进口和2个出口,4小时车库解析:35 8【分析】先设1个进口1小时开进x辆车,1个出口1小时开出y辆车,车位总数是a根据已知条件如果开放2个进口和3个出口,7小时车库恰好停满,可列出方程7(23)80%x y a-=根据已知条件如果开放3个进口和2个出口,4小时车库恰好停满,可列出方程4(32)80%x y a-=方程组可求得x、y关于a的关系式题中所求空置率变为60%,只能开放2个进口和1个出口时,几个小时停满,60%(2)a x y÷-将x、y关于a的关系式代入即可求解.【详解】设1个进口1小时开进x辆车,1个出口1小时开出y辆车,车位总数是a7(23)80%4(32)80%x y a x y a -=⎧⎨-=⎩解得:131752175a x a y ⎧=⎪⎪⎨⎪=⎪⎩ 1323560%(2)0.6(2)1751758a a a x y a ÷-=÷⨯-=(小时) 故答案为:358【点睛】本题解题关键是可以设出1个进口1小时开进x 辆车,1个出口1小时开出y 辆车,车位总数是a ,根据已知条件便可列出方程组,得出x 、y 关于a 的关系式,求解的问题同列方程组思路相同. 13.【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x 盒,装9个苹果的有y 盒,装6个苹果的有z 盒, ∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z =108,再根据x ,y ,z 是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x 盒,装9个苹果的有y 盒,装6个苹果的有z 盒, ∵每种规格都要有且每个盒子均恰好装满,∴0<x <10,0<y≤11,0<z≤15,且x ,y ,z 都是整数,则10x+9y+6z =108,∴x =1089610--y z =3(3632)10--y z , ∵0<x <10,且为整数,∴36﹣3y ﹣2z 是10的倍数,即:36﹣3y ﹣2z =10或20或30, 当36﹣3y ﹣2z =10时,y =2623-z , ∵0<y≤11,0<z≤15,且y ,z 都为整数,∴26﹣2z =3或6或9或12或15或18或21或24,∴z =232(舍)或z =10或z =172(舍)或z =7或z =112(舍)或z =4或z =52(舍)或z =1,当z =10时,y =2,x =3,当z =7时,y =4,x =3,当z =4时,y =8,x =3当z =1时,y =8,x =3,当36﹣3y ﹣2z =20时,y =1623-z , ∵0<y≤11,0<z ≤15,且y ,z 都为整数,∴16﹣2z =3或6或9或12或15或18或21或24,∴z =132(舍)或z =5或z =72(舍)或z =2或z =12(舍) 当z =5时,y =2,x =6,当z =2时,y =4,x =6,当36﹣3y ﹣2z =30时,y =623-z , ∵0<y≤11,0<z≤15,且y ,z 都为整数,∴6﹣2z =3,∴z =32(舍) 即:满足条件的不同的装法有6种,故答案为6.【点睛】 此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.14.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】 本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 15.7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】由题意得,解得:或,当a=2,b=-2时,=7;当a=-2,b=2时,=3,故答案为:7或解析:7或3【解析】【分析】解此题可设b=-a ,求出a ,b 的值,然后代入代数式求解即可.【详解】 由题意得04a b a b +=⎧⎨-=⎩, 解得:22a b =⎧⎨=-⎩或22a b =-⎧⎨=⎩, 当a=2,b=-2时,2a ab 1 a ab 1-+++=7; 当a=-2,b=2时,2a ab 1a ab 1-+++=3, 故答案为:7或3.【点睛】本题考查了解二元一次方程组以及代数式求值,正确求出a 、b 的值是解题的关键. 16.7或5【解析】分析:首先用含a的代数式分别表示x,y,再根据条件二元一次方程组的解为正整数,得到关于a的不等式组,求出a的取值范围,再根据a为整数确定a的值.详解:①-②×3,得2x=2解析:7或5【解析】分析:首先用含a的代数式分别表示x,y,再根据条件二元一次方程组的解为正整数,得到关于a的不等式组,求出a的取值范围,再根据a为整数确定a的值.详解:5323x yx y a+=⎧⎨+=⎩①②①-②×3,得2x=23-3a解得x=2332a-把x=2332a-代入②得y=5232a-∵关于x,y的二元一次方程组5323x yx y a+=⎧⎨+=⎩的解是正整数∴2332a->0,5232a->0解得2323 53a<<即a=5、6、7∵x、y为正整数∴a为5或7.故答案为:5或7.点睛:本题考查了二元一次方程组的解,解二元一次方程组,解一元一次方程的应用,关键是能根据题意得出关于a的方程.17.9【解析】由题意得,解得,所以x+y+z=9.解析:9【解析】由题意得4021010x zz yx y z-+=⎧⎪-+=⎨⎪+-+=⎩,解得135xyz=⎧⎪=⎨⎪=⎩,所以x+y+z =9.18.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.19.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.20.【分析】根据方程组解的定义,把x =5,y =10代入即可得出a1,a2,c1,c2的关系,再代入计算即可.【详解】解:∵方程组∵解为:x =5,y =10,∴,∴∵,∴,①−②,得3a解析:25x y ⎧⎨⎩== 【分析】根据方程组解的定义,把x =5,y =10代入即可得出a 1,a 2,c 1,c 2的关系,再代入计算即可.【详解】解:∵方程组1122==a x y c a x y c +⎧⎨+⎩ ∵解为:x =5,y =10,∴1122510=510=a c a c +⎧⎨+⎩, ∴()12125a a c c -=-∵11122232=32=a x y a c a x y a c ++⎧⎨++⎩, ∴112232=61032=610a x y a a x y a ++⎧⎨++⎩①②, ①−②,得3a 1x−3a 2x =6a 1−6a 2,∴x =2,把x =2代入①得,y =5,∴方程组11122232=32a x y a c a x y a c ++⎧⎨+=+⎩的解是=2=5x y ⎧⎨⎩, 故答案为:=2=5x y ⎧⎨⎩. 【点睛】本题考查了解二元一次方程组,掌握方程组的解法是解题的关键.三、解答题21.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.22.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x 个,乙y 个,则需要A ,B 型号的纸板如下表:(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩,即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数,所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.23.(1)n -m ;(2)①M 是AN 的中点,n =2m +3;②A 是MN 中点,n =-m -6;③N 是AM 的中点,1322=-n m ;(3)0 4m n =⎧⎨=⎩或6 2m n =-⎧⎨=-⎩或95 15m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M 是A 、N 的中点,n =2m +3;②当A 点在M 、N 点中点时,n =﹣6﹣m ;③N 是M 、A 的中点时,n 32m -+=; (3)由已知可得|m +3|=|n ﹣1|,n ﹣m 43=|m +3|,分情况求解即可. 【详解】(1)MN =n ﹣m .故答案为:n ﹣m ;(2)分三种情况讨论:①M 是A 、N 的中点,∴n +(-3)=2m ,∴n =2m +3;②A 是M 、N 点中点时,m +n =-3×2,∴n =﹣6﹣m ;③N 是M 、A 的中点时,-3+m =2n ,∴n 32m -+=;(3)∵AM =BN ,∴|m +3|=|n ﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.24.(1)七(1)班有47人,七(2)班有51人;(2) 如果两个班联合起来买票,不可以买单价为9 元的票, 省钱的方法,可以买101张票,多余的作废即可【解析】【分析】(1)由两个班联合起来,作为一个团体购票,则需付 1078 元可知:710879=1209÷可得票价不是9元,所以两个班的总人数没有超过100人,设七(1)班有x 人,七(2)班有y 人,可列方程组,解方程组即可得答案;(2)如果两班联合起来作为一个团体购票,则每张票11元,省钱的方法,可以买101张票,多余的作废即可。
七年级初一数学第二学期第六章 实数单元 易错题难题提优专项训练

七年级初一数学第二学期第六章 实数单元 易错题难题提优专项训练一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a b a b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+;③*()(*)(*)a b c a b a c +=+;④(*)(*2)a a b c b c c +=+. A .①②③ B .①②④ C .①③④D .②④ 2.下列说法中正确的是( )A .4的算术平方根是±2B .平方根等于本身的数有0、1C .﹣27的立方根是﹣3D .﹣a 一定没有平方根3.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A .ac >0B .|b |<|c |C .a >﹣dD .b +d >0 4.若23(2)0m n -++=,则m+n 的值为( )A .-1B .1C .4D .75.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是( ) A .②④⑤ B .①③⑥ C .④⑤⑥ D .③④⑤6.如图,四个有理数m ,n ,p ,q 在数轴上对应的点分别为M ,N ,P ,Q ,若n+p=0,则m ,n ,p ,q 四个有理数中,绝对值最大的一个是( )A .pB .qC .mD .n7.2a+b b-4=0,则a +b 的值为( )A .﹣2B .﹣1C .0D .2 8.估计20的算术平方根的大小在( )A .2与3之间B .3与4之间C .4与5之间D .5与6之间 9.在下列实数中,无理数是( )A .337B .πC 25D .1310.已知m 是整数,当|m 40取最小值时,m 的值为( )A .5B .6C .7D .8二、填空题11.用⊕表示一种运算,它的含义是:1(1)(1)x A B A B A B ⊕=++++,如果5213⊕=,那么45⊕= __________. 12.对于有理数a ,b ,规定一种新运算:a ※b=ab +b ,如2※3=2×3+3=9.下列结论:①(﹣3)※4=﹣8;②若a ※b=b ※a ,则a=b ;③方程(x ﹣4)※3=6的解为x=5;④(a ※b )※c=a ※(b ※c ).其中正确的是_____(把所有正确的序号都填上).13.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.14.写出一个大于3且小于4的无理数:___________.15.定义新运算a ☆b =3a ﹣2b ,则(﹣2)☆1=_____.16.有若干个数,第1个数记作1a ,第2个数记为2a ,第3个数记为3a ,……,第n 个数记为n a ,若1a =13,从第2个数起,每个数都等于1与前面的那个数的差的倒数,则2019a =_____.17.3是______的立方根;81的平方根是________2=__________.18.将2π,3这三个数按从小到大的顺序用“<”连接________. 19.下列说法:-10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________20.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.三、解答题21.先阅读第()1题的解法,再解答第()2题:()1已知a ,b是有理数,并且满足等式52b a =+,求a ,b 的值.解:因为52b a -=+ 所以()52b a =-所以2b a 52a 3-=⎧⎪⎨-=⎪⎩解得2a 313b 6⎧=⎪⎪⎨⎪=⎪⎩()2已知x ,y 是有理数,并且满足等式2x 2y 17--=-x y +的值.22.观察下列各式:(x -1)(x+1)=x 2-1(x -1)(x 2+x+1)=x 3-1(x -1)(x 3+x 2+x+1)=x 4-1…… (1)根据以上规律,则(x -1)(x 6+x 5+x 4+x 3+x 2+x+1)=__________________. (2)你能否由此归纳出一般性规律(x -1)(x n +x n -1+x n -2+…+x+1)=____________. (3)根据以上规律求1+3+32+…+349+350的结果.23.据说,我国著名数学家华罗庚在一次访问途中,看到飞机邻座的乘客阅读的杂志上有一道智力题:一个数32768,它是一个正数的立方,希望求它的立方根,华罗庚不假思索给出了答案,邻座乘客非常惊奇,很想得知其中的奥秘,你知道华罗庚是怎样准确计算出的吗?请按照下面的问题试一试:(1)由33101000,1001000000==,因为1000327681000000<<______位数;(2)由32768的个位上的数是8________,划去32768后面的三位数768得到32,因为333=27,4=64_____________(3)已知13824和110592-分别是两个数的立方,仿照上面的计算过程,请计算:________=24.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数.第二步:∵59319的个位数是9,39729=∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39.(解答问题)根据上面材料,解答下面的问题(1)求110592的立方根,写出步骤.(2=__________.25.阅读下面的文字,解答问题: 大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用21-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵22<(7)2<32 ,即2<<3, 7的整数部分为27-2).请解答:(110的整数部分是__________,小数部分是__________(2)5a 37的整数部分为b ,求a +b 5的值;26.阅读理解.459253.∴151<251的整数部分为1,5152.解决问题:已知a 17﹣3的整数部分,b 17﹣3的小数部分.(1)求a ,b 的值; (2)求(﹣a )3+(b +4)2172=17.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b c a b a c a ++++++==+,所以①成立; ②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b c a b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立.故选B.解析:C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:A 、4的算术平方根是2,故A 错误;B 、平方根等于本身的数是0,故B 错误;C 、(-3)3=-27,所以-27的立方根是-3,故C 正确;D 、﹣a 大于或等于0时,可以有平方根,故D 错误.故选:C.【点睛】本题考查了算术平方根、平方根、立方根的定义,熟记定义是解决此题的关键.注意平方根和算术平方根的异同.3.D解析:D【分析】根据实数在数轴上的位置判断大小,结合实数运算法则可得.【详解】根据数轴,﹣4<a <﹣3,﹣2<b <﹣1,0<c <1,2<d <3,∵﹣4<a <﹣3,0<c <1,∴ac <0,故A 错误;∵﹣2<b <﹣1,0<c <1,∴1<|b |<2,0<|c |<1,故|c |<|b |,故B 错误; ∵﹣4<a <﹣3,2<d <3,∴﹣3<﹣d <﹣2,故a <﹣d ,故C 错误;∵﹣2<b <﹣1,2<d <3,∴b +d >0,故D 正确.故选:D .【点睛】本题主要考查实数与数轴以及实数的大小比较,熟练实数相关知识点是解答此题的关键.4.B解析:B【分析】根据非负数的性质列式求出m 、n 的值,然后代入代数式进行计算即可得解.【详解】 ∵23(2)0m n -++=∴m-3=0,n+2=0,解得:m=3,n=-2,∴m+n=1故选B.【点睛】此题考查非负数的性质:偶次方,非负数的性质:绝对值,解题关键在于掌握其性质.解析:D【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.6.B解析:B【分析】根据n+p=0可以得到n和p互为相反数,原点在线段PN的中点处,从而可以得到绝对值最大的数.【详解】解:∵n+p=0,∴n和p互为相反数,∴原点在线段PN的中点处,∴绝对值最大的一个是Q点对应的q.故选B.【点睛】本题考查了实数与数轴及绝对值.解题的关键是明确数轴的特点.7.D解析:D【分析】根据绝对值与算术平方根的非负性,列出关于a、b的方程组,解之即可.【详解】b-4=0,∴2a+b=0,b﹣4=0,∴a =﹣2,b =4,∴a+b =2,故选D .【点睛】本题考查了绝对值与算术平方根的非负性,正确列出方程是解题的关键.8.C解析:C【解析】试题分析:∵16<20<25, ∴∴4<5.故选C .考点:估算无理数的大小.9.B解析:B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】解:337,13是有理数, π是无理数,故选B .【点睛】 此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,0.8080080008…(每两个8之间依次多1个0)等形式.10.B解析:B【分析】根据绝对值是非负数,所以不考虑m 为整数,则m 取最小值是0,又0的绝对值为0,令0m =,得出m =m 的整数可得:m=6.【详解】解:因为m 取最小值,0m ∴=,0m ∴=,解得:m =240m =,67m ∴<<,且m 更接近6,∴当6m =时,m 有最小值.故选:B .【点睛】本题考查绝对值的非负性,以及估算二次根式的大小,理解并熟练掌握绝对值的非负性是本题解题关键;在估算二次根式大小的时候,先算出二次根式的平方,再看这个平方在哪两个平方数之间,就相应的得出二次根式在哪两个整数之间,即可估算出二次根式的大小.二、填空题11.【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】解:由解得:x=8故答案为.【点睛】本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的 解析:1745【分析】按照新定义的运算法先求出x ,然后再进行计算即可.【详解】 解:由1521=21(21)(11)3x ⊕=++++ 解得:x=8 18181745==45(41)(51)93045⊕=+++++ 故答案为1745. 【点睛】 本题考查了新定义运算和一元一次方程,解答的关键是根据定义解一元一次方程,求得x 的值.12.①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式解析:①③【解析】【分析】题目中各式利用已知的新定义公式计算得到结果,即可做出判断.【详解】(−3)※4=−3×4+4=−8,所以①正确;a ※b=ab+b ,b ※a=ab+a ,若 a=b ,两式相等,若 a≠b ,则两式不相等,所以②错误; 方程(x−4) )※3=6化为3(x−4)+3=6,解得x=5,所以③正确;左边=(a ※b) ※c=(a×b+b) )※c=(a×b+b)·c+c=abc+bc+c 右边=a ※(b ※c )=a ※(b×c+c)=a (b×c+c) +(b×c+c)=abc+ac+bc+c 2 两式不相等,所以④错误.综上所述,正确的说法有①③.故答案为①③.【点睛】有理数的混合运算, 解一元一次方程,属于定义新运算专题,解决本题的关键突破口是准确理解新定义.本题主要考查学生综合分析能力、运算能力.13.;【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【解析】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.14.如等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于和之间的无理数有无穷多个,因为,故而9和16都是完全平方数,都是无理数.解析:π等,答案不唯一.【详解】本题考查无理数的概念.无限不循环小数叫做无理数.介于3和4之间的无理数有无穷多个,因为2239,416==,故而9和16,15都是无理数.15.﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8, 故答案为−8.【点睛】此题考查了有理数的混合运算,解析:﹣8【分析】原式利用题中的新定义计算即可得到结果.【详解】解:根据题中的新定义得:(﹣2)☆1=3×(−2)−2×1=−6−2=−8,故答案为−8.【点睛】此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.16.-2【分析】根据1与它前面的那个数的差的倒数,即,即可求得、、……,然后根据得到结果出现的规律,即可确定.【详解】解:=……所以数列以,,三个数循环,所以==故答案为:.【解析:-2【分析】根据1与它前面的那个数的差的倒数,即111n n a a +=-,即可求得2a 、3a 、4a ……,然后根据得到结果出现的规律,即可确定2019a .【详解】解:1a =13 2131213a ==-312312a ==--411123a ==+ …… 所以数列以13,32,2-三个数循环, 20193673÷=所以2019a =3a =2-故答案为:2-.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.17.±9 2-【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵ ,∴3是27的立方根;∵ ,∴81的平方根是 ;∵ ,∴;故答案为:2解析:【分析】根据立方根、平方根的定义以及去绝对值法则求解,即可得到答案;【详解】解:∵3327= ,∴3是27的立方根;∵2(9)81±= ,∴81的平方根是9± ;2< ,22=故答案为:27,9±,;【点睛】本题主要立方根、平方根的定义以及去绝对值法则,掌握一个数的平方根有两个,它们互为相反数是解题的关键.18.<<【分析】先根据数的开方法则计算出和的值,再比较各数大小即可.【详解】==,==,∵>3>2,∴<<,即<<,故答案为:<<【点睛】本题考查实数的大小比较,正确化简得出和的值是解<2π 【分析】先根据数的开方法则计算出3的值,再比较各数大小即可. 【详解】33=22=32-=32, ∵π>3>2,∴22<32<2π,即3<2π,<2π 【点睛】本题考查实数的大小比较,正确化简得出3的值是解题关键. 19.2个【分析】 ①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即解析:2个【分析】①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平行线的性质即可判断;根据平行公理的推论对④进行判断;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【详解】①10=,故①错误;②数轴上的点与实数成一一对应关系,故说法正确;③两条平行直线被第三条直线所截,同位角相等;故原说法错误; ④在同一平面内,垂直于同一条直线的两条直线互相平行,故原说法错误;与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是②⑥共2个.故答案为:2个.【点睛】 此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无π也是无理数. 20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.x y 9+=或x y 1+=-.【分析】利用等式左右两边的有理数相等和二次根式相同,建立方程组,然后解方程即可.【详解】因为2x 2y 17--=-所以()2x 2y 17-=- 所以2x 2y 17y 4-=⎧=⎨⎩, 解得{x 5y 4==或{x 5y 4=-=,所以x y 9+=或x y 1+=-.【点睛】本题是一个阅读题目,主要考查了实数的运算,其中关键是理解解方程组的思路就是消元.对于阅读理解题要读懂阅读部分,然后依照同样的方法和思路解题.22.(1)x7-1;(2)x n+1-1;(3)5131 2-.【分析】(1)仿照已知等式写出答案即可;(2)先归纳总结出规律,然后按规律解答即可;(3)先利用得出规律的变形,然后利用规律解答即可.【详解】解:(1)根据题意得:(x-1)(x6+x5+x4+x3+x2+x+1)=x7-1;(2)根据题意得:(x-1)(x"+x"-1+.…+x+1)=x"+1-1;(3)原式=12×(3-1)(1+3+32+···+349+350)=12×(x50+1-1)=51312-故答案为:(1)x7-1;(2)x n+1-1;(3)5131 2-.【点睛】本题考查了平方差公式以及规律型问题,弄清题意、发现数字的变化规律是解答本题的关键.23.(1)两;(2)2,3;(3)24,-48.【分析】(1)根据题中所给的分析方法先求出这32768的立方根都是两位数;(2)继续分析求出个位数和十位数即可;(3)利用(1)(2)中材料中的过程进行分析可得结论.【详解】解:(1)由103=1000,1003=1000000,∵1000<32768<100000,∴10100,故答案为:两;(2)∵只有个位数是2的立方数是个位数是8,2划去32768后面的三位数768得到32,因为33=27,43=64,∵27<32<64,∴3040.3.故答案为:2,3;(3)由103=1000,1003=1000000,1000<13824<1000000,∴10100,∵只有个位数是4的立方数是个位数是4,4划去13824后面的三位数824得到13,因为23=8,33=27,∵8<13<27,∴2030.;由103=1000,1003=1000000,1000<110592<1000000,∴10100,∵只有个位数是8的立方数是个位数是2,8,划去110592后面的三位数592得到110,因为43=64,53=125,∵64<110<125,∴4050.;故答案为:24,-48.【点睛】此题考查立方根,解题关键在于理解一个数的立方的个位数就是这个数的个位数的立方的个位数.24.(1)48;(2)28【分析】(1)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.(2)根据题中所给的分析方法先求出这几个数的立方根都是两位数,然后根据第二和第三步求出个位数和十位数即可.【详解】解:(1)第一步:10=100=,11059210100000000<<,10100∴<,∴能确定110592的立方根是个两位数.第二步:110592的个位数是2,38512=,∴能确定110592的立方根的个位数是8.第三步:如果划去110592后面的三位592得到数110,,则45<<,可得4050<,由此能确定110592的立方根的十位数是4,因此110592的立方根是48;(2)第一步:10=100=,1000219521000000<<,10100∴<,∴能确定21952的立方根是个两位数.第二步:21952的个位数是2,38512=,∴能确定21952的立方根的个位数是8.第三步:如果划去21952后面的三位952得到数21,23<,可得2030,由此能确定21952的立方根的十位数是2,因此21952的立方根是28.28=,故答案为:28.【点睛】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.25.(1)33;(2)4【解析】分析:求根据题目中所提供的方法求无理数的整数部分和小数部分.详解:(1的整数部分是3,3;(2)∵∴a 2, ∵∴6b =, ∴a b +264+=.点睛:求无理数的整数部分和小数部分,需要先给这个无理数平方,观察这个数在哪两个整数平方数之间.需要记忆1-20平方数,1²= 1, 2² = 4 ,3² = 9, 4² = 16, 5² = 25, 6² = 36 ,7² = 49 ,8² = 64 ,9² = 81 ,10² = 100,11² = 121, 12² = 144 ,13² = 169 ,14² = 196 ,15² = 225, 16² = 256, 17² = 289 ,18² = 324, 19² = 361 ,20² = 400.26.(1)a =1,b ﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a ,b 的值,(2)根据开平方运算,可得平方根.【详解】解:(1<,∴4<<5,∴1﹣3<2,∴a=1,b4;(2)(﹣a)3+(b+4)2=(﹣1)3+﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4<5是解题关键.。
人教版七年级初一数学下学期第六章 实数单元 易错题提优专项训练试题

人教版七年级初一数学下学期第六章 实数单元 易错题提优专项训练试题一、选择题1.设记号*表示求,a b 算术平均数的运算,即*2a ba b +=,那么下列等式中对于任意实数,,a b c 都成立的是( )①()()()**a b c a b a c +=++;②()()**a b c a b c +=+;③()()()**a b c a b a c +=++;④()()**22aa b c b c +=+ A .①②③ B .①②④ C .①③④ D .②④ 2.圆的面积增加为原来的m 倍,则它的半径是原来的( )A .m 倍B .2m 倍C 倍D .2m 倍3.下列说法错误的是( )A .a 2与(﹣a )2相等B 互为相反数CD .|a|与|﹣a|互为相反数4.若2a a a -=,则实数a 在数轴上的对应点一定在( ) A .原点左侧B .原点或原点左侧C .原点右侧D .原点或原点右侧5.有四个有理数1,2,3,﹣5,把它们平均分成两组,假设1,3分为一组,2,﹣5分为另一组,规定:A =|1+3|+|2﹣5|,已知,数轴上原点右侧从左到右有两个有理数m 、n ,再取这两个数的相反数,那么,所有A 的和为( ) A .4mB .4m +4nC .4nD .4m ﹣4n6.下列各组数中,互为相反数的是( )A .2-与12-B .|C D 7.下列各数中,属于无理数的是( ) A .227B .3.1415926C .2.010010001D .π3-8.下列说法:①所有无理数都能用数轴上的点表示;②若一个数的平方根等于它本身,则这个数是0或14±,其中正确的个数有( ) A .0个B .1个C .2个D .3个9.设n 为正整数,且n n+1,则n 的值为( ) A .5B .6C .7D .810.若a 、b 为实数,且满足|a -2|0,则b -a 的值为( ) A .2B .0C .-2D .以上都不对11.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).12.a 是10的整数部分,b 的立方根为-2,则a+b 的值为________. 13.若已知x-1+(y+2)2=0,则(x+y)2019等于_____. 14.观察下列各式: (1)123415⨯⨯⨯+=; (2)2345111⨯⨯⨯+=; (3)3456119⨯⨯⨯+=;根据上述规律,若121314151a ⨯⨯⨯+=,则a =_____.15.按如图所示的程序计算:若开始输入的值为64,输出的值是_______.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____. 17.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________. 18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.用“*”表示一种新运算:对于任意正实数a ,b ,都有*1a b b .例如89914*=,那么*(*16)m m =__________.20.已知正实数x 的平方根是m 和m b +. (1)当8b =时,m 的值为_________;(2)若22()4m x m b x ++=,则x 的值为___________21.读一读,式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501(21)n n =-∑,又知13+23+33+43+53+63+73+83+93+103可表示为1031n n=∑.通过对以上材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________. (2)1+12+13+…+110用求和符号可表示为_________. (3)计算6211n n =-∑()=_________.(填写最后的计算结果)22.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 23.概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n aa a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究(1)直接写出计算结果:2③=________,1)2-(⑤=________;(2)关于除方,下列说法错误的是________A .任何非零数的圈2次方都等于1;B .对于任何正整数n ,1=1;C .3④=4③D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数. 深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________; (3)算一算:()3242162÷+-⨯④.24.定义☆运算: 观察下列运算: (+3)☆(+15)= +18 (﹣14)☆(﹣7)= +21 (﹣2)☆(+14)=﹣16 (+15)☆(﹣8)=﹣23 0☆(﹣15)= +15(+13)☆ 0= +13两数进行☆运算时,同号 ,异号 .特别地,0和任何数进行☆运算,或任何数和0进行☆运算, . (2)计算:(﹣11)☆ [0☆(﹣12)]= . (3)若2×(﹣2☆a )﹣1=8,求a 的值. 25.计算:2(1)|2|(3)4-+--(2)|32|32||21|+-3313(3)312548-- 22233172(4)46453273⎛⎫+--- ⎪⎝⎭26.(1)计算:3231927|25(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据材料新定义运算的描述,把等式的两边进行变形比较即可. 【详解】①中()*2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中()2a b c a b c ++*+=,()*2a b c a b c +++=,所以②成立; ③中,()()32*2a b c a b a c ++++=,()2*2a b ca b c +++=,所以③不成立; ④中()2a b a b c c +*+=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选:B . 【点睛】考核知识点:代数式.理解材料中算术平均数的定义是关键.2.C解析:C 【分析】设面积增加后的半径为R ,增加前的半径为r ,根据题意列出关系式计算即可. 【详解】设面积增加后的半径为R ,增加前的半径为r , 根据题意得:πR 2=mπr 2,∴,故选:C . 【点睛】此题主要考查了实数的运算,要注意,圆的面积和半径之间是平方关系而非正比例关系.3.D解析:D【分析】利用平方运算,立方根的化简和绝对值的意义,逐项判断得结论.【详解】∵(﹣a)2=a2,∴选项A说法正确;a=a,互为相反数,故选项B说法正确;互为相反数,故选项C说法正确;∵|a|=|﹣a|,∴选项D说法错误.故选:D.【点睛】此题主要考查了绝对值的意义,平方运算及立方根的化简.掌握立方根的化简和绝对值的意义是解决本题的关键.4.B解析:B【分析】根据非正数的绝对值是它的相反数,可得答案.【详解】解:由a-|a|=2a,得|a|=-a,故a是负数或0,∴实数a在数轴上的对应点在原点或原点左侧故选:B.【点睛】本题考查了实数与数轴,利用了非负数的绝对值,非正数与数轴的关系:非正数位于原点及原点的左边.5.C解析:C【分析】根据题意得到m,n的相反数,分成三种情况⑴m,n;-m,-n ⑵m,-m;n,-n ⑶m,-n;n,-m 分别计算,最后相加即可.【详解】解:依题意,m,n(m<n)的相反数为﹣m,﹣n,则有如下情况:m,n为一组,﹣m,﹣n为一组,有A=|m+n|+|(﹣m)+(﹣n)|=2m+2nm,﹣m为一组,n,﹣n为一组,有A=|m+(﹣m)|+|n+(﹣n)|=0m,﹣n为一组,n,﹣m为一组,有A=|m+(﹣n)|+|n+(﹣m)|=2n﹣2m 所以,所有A的和为2m+2n+0+2n﹣2m=4n故选:C.【点睛】本题主要考查了新定义的理解,注意分类讨论是解题的关键.6.C解析:C【分析】先化简,然后根据相反数的意义进行判断即可得出答案.【详解】解:A. 2-与12-不是一组相反数,故本选项错误;B. |,所以|不是一组相反数,故本选项错误;,故选:C【点睛】本题考查了相反数,能将各数化简并正确掌握相反数的概念是解题关键.7.D解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A、227是有理数,故选项A不符合题意;B、3.1415926是有理数,故选项B不符合题意;C、2.010010001是有理数,故选项C不符合题意;D、π3-是无理数,故选项D题意;故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.C解析:C【分析】分别根据相关的知识点对四个选项进行判断即可. 【详解】解:①所有无理数都能用数轴上的点表示,故①正确; ②若一个数的平方根等于它本身,则这个数是0,故②错误; ③任何实数都有立方根,③说法正确;2±,故④说法错误; 故其中正确的个数有:2个. 故选:C . 【点睛】本题考查的是实数,需要注意掌握实数的概念、平方根以及立方根的相关知识点.9.D解析:D 【分析】n 的值. 【详解】∴89,∵n n+1, ∴n=8, 故选;D . 【点睛】10.C解析:C 【详解】根据绝对值、算术平方根的非负性得a-2=0,20b -=, 所以a=2,b=0. 故b -a 的值为0-2=-2. 故选C.二、填空题11.③,④ 【分析】①[x) 示小于x 的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可, ②由定义得[x)x 变形可以直接判断, ③由定义得x≤[x)+1,变式即可判断, ④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x1-≤[x)<x,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算,阅读题给的定义,理解其含义,掌握性质[x)<x≤[x)+1,利用性质解决问题是关键.12.-5【解析】∵32<10<42,∴的整数部分a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.解析:-5【解析】∵32<10<42,a=3,∵b的立方根为-2,∴b=-8,∴a+b=-8+3=-5.故答案是:-5.13.-1【分析】根据非负数的性质先求出x与y,然后代入求解即可. 【详解】解:∵+(y+2)2=0∴∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟解析:-1【分析】根据非负数的性质先求出x与y,然后代入求解即可.【详解】(y+2)2=0∴1020 xy-=+=⎧⎨⎩12 xy=⎧∴⎨=-⎩∴(x+y)2019=-1故答案为:-1.【点睛】本题主要考查了非负数的性质,熟练掌握性质,并求出x与y是解题的关键. 14.181【分析】观察各式得出其中的规律,再代入求解即可.【详解】由题意得将代入原式中故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.解析:181【分析】n=求解即可.观察各式得出其中的规律,再代入12【详解】由题意得()31n n=⨯++n=代入原式中将12a==⨯+=12151181故答案为:181.【点睛】本题考查了实数运算类的规律题,掌握各式中的规律是解题的关键.15.【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】解:=8,=2,2的算术平方根是,故答案为:.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握【分析】根据运算顺序,先求算术平方根,再求立方根,最后求算术平方根,可得答案.【详解】82,2,.【点睛】本题考查了算术平方根和立方根的意义,熟练掌握算术平方根和立方根的意义是解题关键.16.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10x -<<时,[x ]=-1,(x )=0,[x )=-1或0,∴[x ]+(x )+[x )=-2或-1;②当0x =时,[x ]=0,(x )=0,[x )=0,∴[x ]+(x )+[x )=0;③当01x <<时,[x ]=0,(x )=1,[x )=0或1,∴[x ]+(x )+[x )=1或2;综上所述,化简[x ]+(x )+[x )的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!17.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.18.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键.解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 19.+1【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*(+1)=m*5=+1.故答案为:+1.【点睛】此题考查实数的运算,解题的关键是要【分析】首先正确理解题目要求,然后根据给出的例子进行计算即可.【详解】m*(m*16)=m*)=m*5=..此题考查实数的运算,解题的关键是要掌握运算法则.20.-4【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知,再代入求解即可.【详解】解:(1)∵正实数的平方根是和,∴,∵,∴,∴;(2)∵正解析:【分析】(1)根据正实数平方根互为相反数即可求出m 的值;(2)根据题意可知22,()m x m b x +==,再代入求解即可.【详解】解:(1)∵正实数x 的平方根是m 和m b +,∴0m b m ++=,∵8b =,∴28m =-,∴4m =-;(2)∵正实数x 的平方根是m 和m b +,∴22,()m x m b x +==,∴224x x +=,∴22x =,∵x 是正实数,∴x .故答案为:-4.【点睛】本题考查的知识点是平方根,掌握正实数平方根的性质是解此题的关键. 三、解答题21.(1)5012n n =∑;(2)1011n n =∑;(3)50(1)根据题中的新定义得出结果即可;(2)根据题中的新定义得出结果即可;(3)利用题中的新定义将原式变形,计算即可得到结果.【详解】解:解:(1)根据题意得:2+4+6+8+10+…+100=5012n n =∑;(2)1+12+13+…+110=1011n n =∑; (3)原式=1-1+4-1+9-1+16-1+25-1+36-1=85.故答案为:(1)5012n n =∑;(2)1011n n =∑;(3)85. 【点睛】此题考查了有理数的加法和减法运算,弄清题中的新定义是解本题的关键.22.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+-…… =1﹣12020=20192020. 【点睛】 本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.23.初步探究(1)12;—8;(2)C ;深入思考(1)213;415;28;(2)21n a ;(3)—1. 【解析】试题分析:理解除方运算,利用除方运算的法则和意义解决初步探究,通过除方的法则,把深入思考的除方写成幂的形式解决(1),总结(1)得到通项(2).根据法则计算出(3)的结果.试题解析:概念学习(1)2③=2÷2÷2=,(﹣)⑤=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1÷(﹣)÷(﹣)÷(﹣)=(﹣2)÷(﹣)÷(﹣)=﹣8故答案为,﹣8;(2)A 、任何非零数的圈2次方就是两个相同数相除,所以都等于1; 所以选项A 正确; B 、因为多少个1相除都是1,所以对于任何正整数n ,1ⓝ都等于1; 所以选项B 正确;C 、3④=3÷3÷3÷3=,4③=4÷4÷4=,则 3④≠4③; 所以选项C 错误;D 、负数的圈奇数次方,相当于奇数个负数相除,则结果是负数,负数的圈偶数次方,相当于偶数个负数相除,则结果是正数.所以选项D 正确;本题选择说法错误的,故选C ;深入思考:(1)(﹣3)④=(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)=1×()2=;5⑥=5÷5÷5÷5÷5÷5=1×()4=; (﹣)⑩=(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)÷(﹣)=1×2×2×2×2×2×2×2×2=28;故答案为,,28.(2)a ⓝ=a ÷a ÷a…÷a=1÷a n ﹣2=. (3):24÷23+(﹣8)×2③=24÷8+(﹣8)×=3﹣4=﹣1.【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.24.(1)得正,再把绝对值相加;得负,再把绝对值相加;等于这个数的绝对值;(2)-23;(3)a=-52 【分析】(1)通过观察表中各算式,然后从两数的符号关系或是否有0出发归纳出☆运算的法则; (2)根据(1)归纳的☆运算的法则进行计算,注意先算括号内的,再与括号外的计算; (3)根据(1)归纳出的运算法则对a 的取值进行分类讨论即可得到答案.【详解】(1)由表中各算式,可以得到:同号得正,再把绝对值相加; 异号得负,再把绝对值相加;特别地,0和任何数进行☆运算,或任何数和0进行☆运算,结果等于这个数的绝对值; (2)由(1)归纳的☆运算的法则可得:原式=(﹣11)☆|-12|=(﹣11)☆12= -(|(﹣11)|+|12|)= -23;(3)①当a=0时,左边=()22012213⨯--=⨯-=☆,右边=8,两边不相等,∴a≠0; ②当a>0时,2×(﹣2☆a)﹣1=2×[-(2+a )]﹣1=8,可解得132a =-(舍去), ③当a<0时,2×(﹣2☆a)﹣1=2×(|﹣2|+|a|)﹣1=8,可解得a=52-, 综上所述:a=-52. 【点睛】本题考查新定义的实数运算,通过观察实例归纳出运算规律是解题关键.25.(1)9;(2)322-;(3)-3;(4)1【分析】 (1)分别根据绝对值的代数意义、有理数的乘方以及算术平方根运算法则进行计算即可; (2)先去绝对值,再合并即可;(3)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解;(4)先分别根据算术平方根以及立方根的意义进行化简,再进行回头运算即可得解.【详解】(1)2|2|(3)-+-=2+9-2=9;(2)|2||1|+-=21=3-(3=13+522- =-3;(4= =524433--+ =1.【点睛】此题主要考查了实数的混合运算,熟练掌握运算法则是解此题的关键.26.(11;(2【分析】(1)根据立方根、绝对值、乘方进行运算即可;(2)利用平方根、立方根的定义求出x 、y 的值,再利用算术平方根的定义即可解答【详解】解:(1)原式=1334-+-++=(2)∵21x -的平方根为2±,21x y +-的立方根为2-∴2x 142x y 18-=⎧⎨+-=-⎩∴5x 2y 12⎧=⎪⎨⎪=-⎩∴52=2+12=172-⨯x y∴2x y-【点睛】本题考查了绝对值、乘方、平方根、立方根、算术平方根的定义,解题的关键是掌握计算的方法,准确的进行化简求值.。
七年级初一数学下学期第六章 实数单元 易错题难题测试提优卷试题

七年级初一数学下学期第六章 实数单元 易错题难题测试提优卷试题一、选择题1.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b =2.现定义一种新运算:a ★b=ab+a-b ,如:1★3=1×3+1-3=1,那么(-2)★5的值为( ) A .17 B .3 C .13 D .-173.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式(代数式中a 换成b ,b 换成a ,代数式保持不变).下列三个代数式:①2()a b -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( ) A .①② B .①③ C .②③ D .①②③ 4.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个5. )A .2和3之间B .3和4之间C .4和5之间D .5和6之间 6.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个7.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行;②立方根等于它本身的数只有0;③两条边分别平行的两个角相等;④互为邻补角的两个角的平分线互相垂直A .4个B .3个C .2个D .1个8.已知m 是整数,当|m |取最小值时,m 的值为( ) A .5 B .6 C .7D .89.2的平方根是a ,﹣125的立方根是b ,则a ﹣b 的值是( ) A .0或10 B .0或﹣10 C .±10 D .010.下列运算中,正确的是( )A .93=±B .382=C .|4|2-=-D .2(8)8-=-二、填空题11.定义一种对正整数n 的“F”运算:①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为2k n (其中k 是使2kn 为奇数的正整数),并且运算重复进行.例如:取n=26,则:若449n =,则第201次“F”运算的结果是 .12.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______. 13.现定义一种新运算:对任意有理数a 、b ,都有a ⊗b=a 2﹣b ,例如3⊗2=32﹣2=7,2⊗(﹣1)=_____.14.2(2)-的平方根是 _______ ;38a 的立方根是 __________.15.写出一个大于3且小于4的无理数:___________.16.已知72m =-,则m 的相反数是________.17.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. 18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.如果36a =,b 是7的整数部分,那么ab =_______.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是(2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题提优专项训练试题

人教版七年级初一数学第二学期第八章 二元一次方程组单元 易错题提优专项训练试题一、选择题1.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A .50人,40人B .30人,60人C .40人,50人D .60人,30人2.方程组3453572x y x y +=⎧⎪⎨-+=-⎪⎩的解是( ) A .20.25x y =⎧⎨=-⎩ B . 4.53x y =-⎧⎨=⎩ C .10.5x y =-⎧⎨=-⎩ D .10.5x y =⎧⎨=⎩3.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ).A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩4.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .255.如果3m 2n n m 3x 4y 120---+=是关于,x y 的二元一次方程,那么,m n 的值分别为( ) A .m=2, n=3 B .m=2, n=1 C .m=-1, n=2D .m=3, n=4 6.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)7.购买甲、乙两种笔记本共用70元.若甲种笔记本单价为5元,乙种笔记本单价为15元,且甲种笔记本数量是乙种笔记本数量的整数倍,则购笔记本的方案有( ) A .2种 B .3种 C .4种 D .5种8.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm ,9只饭碗摆起来的高度为21cm ,食堂的碗橱每格的高度为35cm ,则一摞碗最多只能放( )只.A .20B .18C .16D .159.小明去买2元一支和3元一支的两种圆珠笔(一种圆珠笔至少买一支),恰好花掉30元,则购买方案有( )A .4种B .5种C .6种D .7种 10.方程组125x y x y +=⎧⎨+=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .21x y =⎧⎨=⎩ C .43x y =⎧⎨=-⎩ D .23x y =-⎧⎨=⎩二、填空题11.商场购进A 、B 、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C 的标价为80元,为了促销,商场举行优惠活动:如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 14.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .15.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________16.如图,长方形ABCD 被分成8块,图中的数字是其中5块的面积数,则图中阴影部分的面积是____﹒17.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____. 18.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.19.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.20.某“欣欣”奶茶店开业大酬宾推出...A B C D 四款饮料.1千克A 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克B 饮料的原料是2千克苹果,3千克梨,1千克西瓜;1千克C 饮料的原料是3千克苹果,9千克梨, 6千克西瓜;1千克D 饮料的原料是2千克苹果,6千克梨,4千克西瓜;如果每千克苹果的成本价为2元,每千克梨的成本价为1.2元,每千克西瓜的成本价为3.5元.开业当天全部售罄,销售后,共计苹果的总成本为100元,并且梨的总成本为126元,那么西瓜的总成本为_____元三、解答题21.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.22.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示: 体积(立方米/件) 质量(吨/件)A 型商品 0.8 0.5B 型商品 21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?23.如图,已知()0,A a ,(),0B b ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.24.小明到某服装商场进行社会调查,了解到该商场为了激励营业员的工作积极性,实行“月总收入=基本工资+计件奖金”的方法,并获得如下信息:假设营业员的月基本工资为x 元,销售每件服装奖励y 元:(1)求x y 、的值;(2)若营业员小丽某月的总收入不低于1800元,那么小丽当月至少要卖服装多少件?(3)商场为了多销售服装,对顾客推荐一种购买方式:如果购买甲3件、乙2件、丙1件,共需315元;如果购买甲1件,乙2件,丙3件,共需285元,某顾客想购买甲、乙、丙各一件共需多少元?25.方程组1327x y x y +=-⎧-=⎨⎩的解满足210(x ky k -=是常数), ()1求k 的值.()2直接写出关于x ,y 的方程()1213k x y -+=的正整数解26.问题:有甲、乙、丙三种商品,①购甲3件、乙5件、丙7件共需490元钱;②购甲4件、乙7件、丙10件共需690元钱;③购甲2件,乙3件,丙1件共需170元钱. 求购甲、乙、丙三种商品各一件共需多少元?小明说:“可以根据3个条件列出三元一次方程组,分别求出购甲、乙、丙一件需多少钱,再相加即可求得答案.”小丽经过一番思考后,说:“本题可以去掉条件③,只用①②两个条件,仍能求出答案.” 针对小丽的发言,同学们进行了热烈地讨论.(1)请你按小明的思路解决问题.(2)小丽的说法正确吗?如果正确,请完成解答过程;如果不正确,请说明理由. (3)请根据上述解决问题中积累的经验,解决下面的问题:学校购买四种教学用具A 、B 、C 、D ,第一次购A 教具1件、B 教具3件、 C 教具4件、D 教具5件共花2018元;第二次购A 教具1件、B 教具5件、 C 教具7件、D 教具9件共花3036元. 求购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】等量关系为:生产的螺栓的工人数+生产螺帽的人数等于90;螺栓总数乘以2等于螺帽总数,把相关数值代入求解即可.【详解】解:设生产螺栓和生产螺帽的人数分别为x,y人,根据题意得90 15224x yx y+=⎧⎨⨯=⎩,解得4050 xy=⎧⎨=⎩,∴生产螺栓和生产螺帽的人数分别为40人,50人.故选C.【点睛】本题考查了二元一次方程组的应用,读懂题意,找到等量关系式是解题的关键.2.D解析:D【分析】整理后①×7+②×2得出41x=41,求出x,把x的值代入①求出y即可.【详解】解:整理得:345 10143x yx y+=⎧⎨-=⎩①②,①×7+②×2得:41x=41,∴x=1,把x=1代入①得:3+4y=5,∴y=0.5,∴方程组的解是:10.5 xy=⎧⎨=⎩,故选D.【点睛】本题考查了解二元一次方程组,关键是把二元一次方程组转化成一元一次方程,解题时要根据方程组的特点进行有针对性的计算.3.A解析:A【分析】根据大小桶所盛酒的数量列方程组即可.【详解】∵5个大桶加上1个小桶可以盛酒3斛,∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴x+5y=2,∴得到方程组5352 x yx y+=⎧⎨+=⎩,故选:A.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键. 4.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.5.D解析:D【分析】根据二元一次方程的概念可得关于m、n的方程组,解方程组求得m、n即可.【详解】由题意得3211m nn m-=⎧⎨-=⎩,解得34mn=⎧⎨=⎩,故选D.【点睛】本题考查了二元一次方程的概念,解二元一次方程组,熟练掌握相关知识是解题的关键. 6.A解析:A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n的递推关系式a n-a n-1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.7.A解析:A【解析】【分析】设购买甲种笔记本x个,则乙种笔记本y个,利用购甲、乙两种笔记本共用70元得到x=14-3y,利用143yy-=14y–3为整数可判断y=1,2,7,14,然后求出对应x的值从而得到购笔记本的方案.【详解】设购买甲种笔记本x个,购买乙种笔记本y个,根据题意得5x+15y=70,则x=14–3y,因为143yy-为整数,而143yy-=14y–3,所以y=1,2,7,14,当y=1时,x=11;当y=2时,x=4;y=7和y=14舍去,所以购笔记本的方案有2种.故选A.【点睛】本题考查了二元一次方程的解,分析题意,找到关键描述语,找到合适的等量关系,特别是确定甲种笔记本数量和乙种笔记本数量关系,然后利用整除性确定方案.8.D解析:D【解析】【详解】试题分析:设1个碗的高度为xcm ,没加一个碗的高度增加的高度为ycm ,列方程组515{821x y x y +=+= ,解得52x y =⎧⎨=⎩ , 设可摆k 个碗,则5+2k≤35,解得:k≤15,故选D .【点睛】本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.9.A解析:A【分析】根据题意列出二元一次方程,再结合实际情况求得正整数解.【详解】解:设买x 支2元一支的圆珠笔,y 支3元一支的圆珠笔,根据题意得:2330x y,且,x y 为正整数, 变形为:3023x y ,由x 为正整数可知,302x 必须是3的整数倍, ∴当3023x ,即1y =时,13.5x =不是整数,舍去;当3026x,即2y =时,12x =是整数,符合题意; 当3029x ,即3y =时,10.5x =不是整数,舍去;当30212x ,即4y =时,9x =是整数,符合题意;当30215x ,即5y =时,7.5x =不是整数,舍去;当30218x ,即6y =时,6x =是整数,符合题意;当30221x,即7y =时, 4.5x =不是整数,舍去; 当30224x,即8y =时,3x =是整数,符合题意; 当30227x,即9y =时, 1.5x =不是整数,舍去; 故共有4种购买方案,故选:A .【点睛】本题考查了二元一次方程的应用,解题定关键是根据题意列出不定方程,然后根据实际问题对解得要求,逐一列举出来舍去不符合题意的即可.10.C解析:C【分析】根据解二元一次方程组的方法可以解答本题.【详解】解:125x y x y +=⎧⎨+=⎩①② ②﹣①,得x =4,将x =4代入①,得y =﹣3,故原方程组的解为43x y =⎧⎨=-⎩, 故选:C .【点睛】本题考查了解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.二、填空题11.31800【分析】先求出商品的进价为50元.再设商品、的进价分别为元,元,表示出商品的标价为,商品的标价为元,根据“如果同时购买、商品各两件,就免费获赠三件商品.这个优惠活动,实际上相当于把这五解析:31800【分析】先求出商品C 的进价为50元.再设商品A 、B 的进价分别为x 元,y 元,表示出商品A 的标价为54x ,商品B 的标价为75y 元,根据“如果同时购买A 、B 商品各两件,就免费获赠三件C 商品.这个优惠活动,实际上相当于把这五件商品各打七五折”列出方程,进而求出1001126050x y ++⨯的值.【详解】解:由题意,可得商品C 的进价为:80(160%)50÷+=(元).设商品A 、B 的进价分别为x 元,y 元,则商品A 的标价为5(125%)4x x +=(元),商品B 的标价为7(140%)5y y +=(元),由题意,得57572()[2()380]0.754545x y x y +=++⨯⨯, ∴5736045x y +=,5710011280()803602880045x y x y ∴+=+=⨯=, 100112605031800x y ∴++⨯=(元).答:商场购进这三种商品一共花了31800元.故答案为:31800.【点睛】本题考查了二元一次方程的应用,设商品A 、B 的进价分别为x 元,y 元,分别表示出商品A 与商品B 的标价,找到等量关系列出方程是解题的关键.本题虽然设了两个未知数,但是题目只有一个等量关系,根据问题可知不需要求出x 与y 的具体值,这是本题的难点.12.7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y解析:7件.【分析】设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品,列出关于x 、y 的二元二次方程,再根据x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x 件商品,妻子买了y 件商品.则有x 2-y 2=48,即(x 十y )(x-y )=48.∵x 、y 都是正整数,且x+y 与x-y 有相同的奇偶性,又∵x+y >x-y ,48=24×2=12×4=8×6,∴242x y x y +⎧⎨-⎩==或124x y x y +⎧⎨-⎩==或86x y x y +⎧⎨-⎩==. 解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A 买了13件商品,b 买了4件.同时符合x-y=7的也只有一种,可知B 买了8件,a 买了1件.∴C 买了7件,c 买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:76843【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.15.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键.16.98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE列出三元一次方程组,再利用加减消元法即可求得y的值.【解析:98【解析】【分析】设未知的三块面积分别为x,y,z(如图).根据S△BCF=S△ABF+S△CDF,S△ABE=S△ADE+S△BCE 列出三元一次方程组,再利用加减消元法即可求得y的值.【详解】设未知的三块面积分别为x,y,z(如图),则x+y+76=24+87+55+19+z,z+y+87=55+x+24+19+76,即x+y-z=109①,z+y-x=87②由①+②得,y=98.即图中阴影部分的面积是98﹒故答案为:98.本题主要考查了矩形的性质,解决本题的关键是理清三角形与矩形间的面积关系,列出三元一次方程组,再通过加减消元,得到阴影部分的面积.17.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.18.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.19.5【解析】根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A 的高度×2+B 的高度×3,小红搭的积木的高度=A 的高度×3+B 的高度×2,依两个等量关系列出方程组23233222x y x y +=⎧⎨+=⎩,再求解45x y =⎧⎨=⎩. 故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.20.5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为元,并且梨的总成本为元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A解析:5【分析】设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克,根据“苹果的总成本为100元,并且梨的总成本为126元”列出方程组,在解方程组的时候注意整体思想的应用,进而可得答案.【详解】解:设A 饮料a 千克,B 饮料b 千克,C 饮料c 千克,D 饮料d 千克, 根据题意,得:100223221263396 1.2a b c d a b c d ⎧+++=⎪⎪⎨⎪+++=⎪⎩, 整理得:2()(32)50()(32)35a b c d a b c d +++=⎧⎨+++=⎩, 解得:153220a b c d +=⎧⎨+=⎩, ∴3.5(64) 3.5(15202)192.5a b c d +++=⨯+⨯=,故答案为:192.5.【点睛】本题考查了二元一次方程组的应用,根据题意找到等量关系,列出方程组,解方程组时注意整体思想的应用是解决本题的关键.三、解答题21.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <, 83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;EF CD,交y轴于点F,如图所示,(3)证明:过点E作//∠=∠,则ECD CEF∠=∠,2BCE ECD∴∠=∠=∠,BCD ECD CEF33OG AB,交PE于点G,如图所示,过点O作//∠=∠,则OGP BPE∠,PE平分OPB∴∠=∠,OPE BPE∴∠=∠,OGP OPECD AB,由平移得//∴,//OG FE∴∠=∠,FEP OGP∴∠=∠,FEP OPE∠=∠+∠,CEP CEF FEP∴∠=∠+∠,CEP CEF OPE∴∠=∠-∠,CEF CEP OPE∴∠=∠-∠.BCD CEP OPE3()【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.22.(1)A种型号商品有5件,B种型号商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为2000元【分析】(1)设A、B两种型号商品各x件、y件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.23.(1)(0,4)A ,0()6,B -; (2)4(0,)D -;(3)()8,8P --【解析】【分析】(1)利用非负数的性质即可解决问题;(2)利用三角形面积求法,由ABO ACO BCO S S S ∆∆∆=+列方程组,求出点C 坐标,进而由△ACD 面积求出D 点坐标.(3)由平行线间距离相等得到20PAB EAB S S ∆∆==,继而求出E 点坐标,同理求出F 点坐标,再由GE=12求出G 点坐标,根据PGE OEF GPFO S S S ∆∆=+梯形求出PG 的长即可求P 点坐标.【详解】解:(1)40a -≥ 0≥,∴40a -=,40a ∴-=0=,4a ∴=,6b =-,()0,4A ∴,()6,0B -,(2)由BCM DOM S S ∆∆=∴ABO DOM S S ∆∆=,ABO ACD S S ∆∆∴=, 1122ABO S AO BO ∆=⨯⨯=, 如图1,连CO ,作CE y ⊥轴,CF x ⊥轴,ABO ACO BCO S S S ∆∆∆=+,即()11641222m m ⨯⨯+⨯⨯-= 53212n m n m -=⎧∴⎨-=⎩, 32m n =-⎧∴⎨=⎩, ()3,2C ∴-,而12ACD S CE AD ∆=⨯⨯, ()134122OD =⨯⨯+=, 4OD ∴=,()0,4D ∴-,(3)如图2:∵EF ∥AB ,∴20PAB EAB S S ∆∆==, ∴1202AO BE ⨯=,即()4640OE ⨯+=, 4OE ∴=,()4,0E ∴,12GE =,8GO ∴=,()8,0G ∴-,20ABF PBA S S ∆∆==,()11642022ABF S BO AF OF ∆∴=⨯⨯=⨯⨯+=, 83OF ∴=, 80,3F ⎛⎫∴- ⎪⎝⎭, PGE OEF GPFO S S S ∆∆=+梯形,11818128422323PG PG ⎛⎫∴⨯⨯=⨯+⨯+⨯⨯ ⎪⎝⎭, 8PG ∴=,()8,8P ∴--,【点睛】本题考查的是二元一次方程的应用、三角形的面积公式、坐标与图形的性质、平移的性质,灵活运用分情况讨论思想、掌握平移规律是解题的关键.24.(1)x=800,y=3;(2)334;(3)150元.【解析】【分析】(1)通过理解题意可知此题存在两个等量关系,即小丽的基本工资+提成=1400元,小华的基本工资+提成=1250元,列方程组求解即可;(2)根据小丽基本工资+每件提成×件数=1800元,求得件数即可;(3)理解题意可知,计算出甲、乙、丙各购买4件共多少钱即可.【详解】解:(1)设营业员的基本工资为x 元,买一件的奖励为y 元.由题意得20014001501250x y x y +⎧⎨+⎩== 解得8003x y ⎧⎨⎩==即x 的值为800,y 的值为3.(2)设小丽当月要卖服装z 件,由题意得:800+3z=1800解得,z=333.3由题意得,z 为正整数,在z >333中最小正整数是334.答:小丽当月至少要卖334件.(3)设一件甲为x 元,一件乙为y 元,一件丙为z 元.则可列3231523285x y z x y z ++⎧⎨++⎩== 将两等式相加得4x+4y+4z=600,则x+y+z=150答:购买一件甲、一件乙、一件丙共需150元.【点睛】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解;第三问的难点就在于思考的方向对不对,实际上,方向对了,做起来就方便多了.25.(1)4k =;(2){15x y ==,{32x y ==【解析】【分析】(1)先求出方程组的解,再代入方程210x ky -=,即可求出k 值;(2)把k 的值代入方程(k-1)x+2y=13,再求出正整数解即可.【详解】() 1方程组1327x y x y +=-⎧-=⎨⎩的解为:{12x y ==-, 将{12x y ==-代入210x ky -=得:2210k +=,解得:4k =; ()2把4k =代入方程()1213k x y -+=得:3213x y +=, 即1332x y -=, 所以关于x ,y 的方程()1213k x y -+=的正整数解为{15x y ==,{32x y ==.【点睛】本题考查了解二元一次方程组、解一元一次方程和解二元一次方程,能求出k 的值是解此题的关键.26.(1) 购甲、乙、丙三种商品各一件共需90元.(2) 小丽的说法正确. (3) 购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.【解析】分析:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列三元一次方程组求解即可;(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,根据题意列方程组,变形后用整体思想解答即可;(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,根据题意列方程组,变形后用整体思想解答即可.详解:(1)设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得: 357490471069023170x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩.解得: 203040x y z =⎧⎪=⎨⎪=⎩.∴ 90x y z ++=.答:购甲、乙、丙三种商品各一件共需90元.(2)小丽的说法正确.设购甲、乙、丙三种商品各一件分别需x 元、y 元、z 元,由题意得:3574904710690x y z x y z ++=⎧⎨++=⎩. 变形得:()()()()322490432690x y z y z x y z y z ①②⎧++++=⎪⎨++++=⎪⎩解得:①×3-②×2得:∴x +y +z =90答:购甲、乙、丙三种商品各一件共需90元.(3)设购买教学用具A 、B 、C 、D 各一件分别需a 元、b 元、c 元、d 元,由题意得: 34520185793036a b c d a b c d +++=⎧⎨+++=⎩①② ①×11-②×6得:5a +3b +2c +d =3982答:购A 教具5件、B 教具3件、 C 教具2件、D 教具1件共需3982元.点睛:本题考查了二元一次方程组的应用以及利用换元法解方程组,解题的关键是:(1)用加减消元法解三元一次方程组;(2)(3)运用了整体思想解决问题.解决该题型题目时,整体替换部分是关键.。
七年级初一数学下学期第八章 二元一次方程组单元 易错题难题测试提优卷试卷

七年级初一数学下学期第八章 二元一次方程组单元 易错题难题测试提优卷试卷一、选择题1.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-=2.我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( ). A .5352x y x y +=⎧⎨+=⎩B .5253x y x y +=⎧⎨+=⎩C .53125x y x y +=⎧⎨+=⎩D .35251x y x y +=⎧⎨+=⎩3.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( ) A .1 B .-16 C .16 D .-1 4.三元一次方程5x y z ++=的正整数解有( )A .2组B .4组C .6组D .8组5.《九章算术》中,一次方程组是由算筹布置而成的.如图1所示的算筹图,表示的方程组就是3219423x y x y +=⎧⎨+=⎩,类似地,图2所示的算筹图表示的方程组为( )A .2114322x y x y +=⎧⎨+=⎩B .2114327x y x y +=⎧⎨+=⎩C .3219423x y x y +=⎧⎨+=⎩D .264327x y x y +=⎧⎨+=⎩6.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .10011003x y x y +=⎧⎪⎨+=⎪⎩ C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩7.已知关于x 、y 的二元一次方程组434ax y x by -=⎧⎨+=⎩的解是22x y =⎧⎨=-⎩,则+a b 的值是( )A .1B .2C .﹣1D .08.已知方程组()21119x y kx k y +=⎧⎨+-=⎩的解满足 x +y =3,则 k 的值为( )A .k =-8B .k =2C .k =8D .k =﹣29.已知方程组3{ 5x y mx y +=-=的解是方程x ﹣y=1的一个解,则m 的值是( )A .1B .2C .3D .410.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何? ”译成白话文: “现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x 尺,绳子的长度为y 尺.则可列出方程组为( )A . 4.512x y yx -=⎧⎪⎨-=⎪⎩ B . 4.512y x yy -=⎧⎪⎨-=⎪⎩ C . 4.512y x yx -=⎧⎪⎨-=⎪⎩ D . 4.512x y yy -=⎧⎪⎨-=⎪⎩二、填空题11.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____. 12.某公园的门票价格如表:现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b (a ≥b ).若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则共需支付门票费为990元,那么这两个部门的人数a =_____;b =_____.13.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____.14.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.15.方程组111112 1132x yx zy z⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.16.已知关于x、y的方程组135x y ax y a+=-⎧⎨-=+⎩,给出下列结论:①当1a=时,方程组的解也是方程3x y-=的解;②当x与y互为相反数时,1a=③不论a取什么实数,2x y+的值始终不变;④若12z xy=,则z的最大值为1.正确的是________(把正确答案的序号全部都填上)17.若方程组2232x y kx y k+=-⎧⎨+=⎩的解适合x+y=2,则k的值为_____.18.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.19.如图,在长方形ABCD中,放入六个形状,大小相同的长方形(即空白的长方形),AD=12cm,FG=4cm,则图中阴影部分的总面积是 __________2cm.20.若(x ﹣y +3)2+=0,则x +y 的值为______.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.当,m n 都是实数,且满足28m n =+,就称点21,2n P m +⎛⎫- ⎪⎝⎭为“爱心点”. (1)判断点()5,3A 、()4,8B 哪个点为“爱心点”,并说明理由;(2)若点(),4A a -、()4,B b 是“爱心点”,请判断A 、B 两点的中点C 在第几象限?并说明理由;(3)已知P 、Q 为有理数,且关于x 、y 的方程组333x y p q x y p q⎧+=+⎪⎨-=-⎪⎩解为坐标的点(),B x y 是“爱心点”,求p 、q 的值.23.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.24.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由. 25.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P 为△ABC 内一点,连接AP 、BP 、CP 并延长分别交边BC 、AC 、AB 于点D 、E 、F ,则把△ABC 分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC 的面积.(3)如图4,若点P 为△ABC 的边AB 上的中线CF 的中点,求S △APE 与S △BPF 的比值.26.甲、乙两人共同解方程组51542ax y x by +=⎧⎨-=-⎩①②.解题时由于甲看错了方程①中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程②中的b ,得到方程组的54x y =⎧⎨=⎩,试计算a 2017+(110-b)2018的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】第一个式子中用x 表示y ,代入到第二个式子中即可. 【详解】解:7317x y x y +=⎧⎨+=⎩①②由①得7y x =-③,将③代入②中得3(7)17x x +-=, 故选:B . 【点睛】本题考查代入消元法解一元二次方程.熟练掌握代入消元法解一元二次方程的一般步骤是解题关键.2.A解析:A 【分析】根据大小桶所盛酒的数量列方程组即可. 【详解】∵5个大桶加上1个小桶可以盛酒3斛, ∴5x+y=3,∵1个大桶加上5个小桶可以盛酒2斛,∴得到方程组5352x y x y +=⎧⎨+=⎩,故选:A. 【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.3.C解析:C 【分析】首先根据绝对值和偶次方的非负性求出x ,y 的值,然后代入2y x 中计算即可. 【详解】解:∵()229310-++++=x y x y ,∴290310x y x y -+=⎧⎨++=⎩,解得:41x y =-=⎧⎨⎩, 所以,22(4)16yx =-=, 故选:C . 【点睛】本题主要考查了非负数的性质,即偶次方和绝对值的性质,熟练掌握相关性质是解答此题的关键.4.C解析:C 【分析】最小的正整数是1,当x=1时,y+z=4,y 分别取1,2,,3,此时z 分别对应3,2,1;当x=2时,y+z=3,y 分别取1,2,此时z 分别对应2,1;当x=3时,y+z=2,y 分别取1,此时z 分别对应1;依此类推,然后把个数加起来即可. 【详解】解:当x=1时,y+z=4,y 分别取1,2,,3,此时z 分别对应3,2,1,有3组正整数解; 当x=2时,y+z=3,y 分别取1,2,此时z 分别对应2,1,有2组正整数解; 当x=3时,y+z=2,y 分别取1,此时z 分别对应1,有1组正整数解; 所以正整数解的组数共:3+2+1=6(组). 故选:C . 【点睛】本题考查三元一次不定方程的解,解题关键是确定x 、y 、z 的值,分类讨论.5.B解析:B类比图1所示的算筹的表示方法解答即可. 【详解】解:根据图1所示的算筹的表示方法,可推出图2所示的算筹的表示的方程组为2114327x y x y +=⎧⎨+=⎩; 故选:B . 【点睛】本题考查了二元一次方程组的应用,读懂题意、正确列出方程组是关键.6.C解析:C 【分析】设大马有x 匹,小马有y 匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可. 【详解】解:设大马有x 匹,小马有y 匹,由题意得:100131003x y x y +=⎧⎪⎨+=⎪⎩故选:C . 【点睛】本题考查了二元一次方程组及其应用,首先选取两个量作为未知数,再根据已知条件列出两个方程,再将两个二元一次方程组合起来便构成了二元一次方程组.7.B解析:B 【分析】 将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩即可求出a 与b 的值; 【详解】解:将22x y =⎧⎨=-⎩代入434ax y x by -=⎧⎨+=⎩得:11a b =⎧⎨=⎩, ∴2a b +=; 故选B . 【点睛】本题考查二元一次方程组的解;熟练掌握方程组与方程组的解之间的关系是解题的关键.解析:C 【分析】方程组两方程相减表示出x+y ,代入已知方程计算即可求出k 的值. 【详解】解:()21119x y kx k y +=⎧⎪⎨+-=⎪⎩①②,②-①得:()()2218k x k y -+-=,即()()218k x y -+=, 代入x+y=3得:k-2=6, 解得:k=8, 故选:C . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.C解析:C 【解析】根据方程组的解与x-y=1的解相同,可知x+y=3与x-y=1组成的方程组的解即为它们的公共解,因此可求得x=2,y=1,代入mx-y=5,可得m=3. 故选:C.10.C解析:C 【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x ,y 的二元一次方程组,此题得解. 【详解】依题意,得: 4.512y x yx -=⎧⎪⎨-=⎪⎩, 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.二、填空题11.【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①,解得:n=6m , ②,可得: 解析:3:5【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.12.40 【分析】根据题中a 、b 的求知范围,可得a+b 的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵ ,,∴1≤b≤50,51<a≤100,若a+解析:40【分析】根据题中a、b的求知范围,可得a+b的取值范围,分两种情况讨论,由两次门票费用,分别列出方程组,及可求解.【详解】解:∵12903991313=,129031171111=,∴1≤b≤50,51<a≤100,若a+b≤100时,由题意可得:13111290 11()990b aa b+=⎧⎨+=⎩,∴60150ab=-⎧⎨=⎩(不合题意舍去),若a+b>100时,由题意可得13111290 9(990b aa b+=⎧⎨+=⎩),∴7040 ab=⎧⎨=⎩,故可70,40.【点睛】本题主要考查二元一次方程组的应用,根据题意找到等量关系式是解题的关键.13.13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x袋,乙种干果y袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解解析:13∶30【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x袋,乙种干果y袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比.【详解】解:设1克巴旦木成本价m元,和1克黑加仑成本价n元,根据题意得10(0.04 +m+n) ×(1+30%)=5.2解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y解得:1330 xy=故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.14.62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)解析:62【分析】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为非负整数,即可求出x,y的值,进而可得出(x+y+2y)的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x ,y 的非负整数解,是解题的关键.15.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭, 所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴=综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.16.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤,即若12z xy则z的最大值为1,∴④正确,综上说述,正确的有:①③④,故答案为:①③④.【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.17.3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.解析:3【解析】分析:根据等式的性质,可得关于k的方程,根据解方程,可得答案.详解:两式相加,得3(x+y)=3k-3, 由x+y=2, 得3k-3=6,计算得出k=3,故答案为:3.点睛:本题考查了二元一次方程组的解,利用等式的性质得出3(x+y)=3k-3是解答本题的关键.18.14【解析】分析: (1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18解析:14 54【解析】分析:(1)根据F(n)的定义式,分别将n=241和n=635代入F(n)中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.19.48【解析】设小长方形的长为x cm,宽为y cm,根据图形可得①-②得4y=8,所以y=2,代入②得x=6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得3124x y x y +=⎧⎨-=⎩,①,② ①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=482cm .故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 20.1【解析】试题分析:根据非负数的性质,可得二元一次方程组,解方程组可得,故x+y=-1+2=1.故答案为:1.解析:1【解析】试题分析:根据非负数的性质,可得二元一次方程组30{20x y x y -+=+=,解方程组可得12x y =-⎧⎨=⎩,故x+y=-1+2=1. 故答案为:1.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,依题意,得:23123417x y x y +=⎧⎨+=⎩,解得:32x y ==⎧⎨⎩. 故答案为:1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨. (2)①依题意,得:3m+2n =21,∴m =7﹣23n . 又∵m ,n 均为非负整数,∴19m n =⎧⎨=⎩或36m n =⎧⎨=⎩或53m n ==⎧⎨⎩或70m n =⎧⎨=⎩. 答:共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车. ②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)()5,3A 为爱心点,理由见解析;(2)第四象限,理由见解析;(3)0p =,q =23- 【分析】(1)分别把A 、B 点坐标,代入(m ﹣1,22n +)中,求出m 和n 的值,然后代入2m =8+n 检验等号是否成立即可;(2)把点A (a ,﹣4)、B (4,b )各自代入(m ﹣1,22n +)中,分别用a 、b 表示出m 、n ,再代入2m =8+n 中可求出a 、b 的值,则可得A 和B 点的坐标,再根据中点坐标公式即可求出C 点坐标,然后即可判断点C 所在象限;(3)解方程组,用q 和p 表示x 和y ,然后代入2m =8+n 可得关于p 和q 的等式,再根据p ,q 为有理数,即可求出p 、q 的值.【详解】解:(1)A 点为“爱心点”,理由如下:当A (5,3)时,m ﹣1=5,22n +=3, 解得:m =6,n =4,则2m =12,8+n =12,所以2m =8+n ,所以A (5,3)是“爱心点”;当B (4,8)时,m ﹣1=4,22n +=8, 解得:m =5,n =14,显然2m ≠8+n ,所以B 点不是“爱心点”; (2)A 、B 两点的中点C 在第四象限,理由如下:∵点A (a ,﹣4)是“爱心点”,∴m ﹣1=a ,22n +=﹣4, 解得:m =a +1,n =﹣10. 代入2m =8+n ,得2(a +1)=8﹣10,解得:a =﹣2,所以A 点坐标为(﹣2,﹣4);∵点B (4,b )是“爱心点”,同理可得m =5,n =2b ﹣2,代入2m =8+n ,得:10=8+2b ﹣2,解得:b =2.所以点B 坐标为(4,2).∴A 、B 两点的中点C 坐标为(2442,22-+-+),即(1,﹣1),在第四象限. (3)解关于x ,y的方程组3x y q x y q⎧+=+⎪⎨-=-⎪⎩,得:2x q y q ⎧=-⎪⎨=⎪⎩. ∵点B (x ,y )是“爱心点”,∴m ﹣1﹣q ,22n +=2q , 解得:m﹣q +1,n =4q ﹣2.代入2m =8+n ,得:﹣2q +2=8+4q ﹣2,整理得﹣6q =4.∵p ,q 为有理数,若使p ﹣6q 结果为有理数4,则P =0,所以﹣6q =4,解得:q =﹣23. 所以P =0,q =﹣23. 【点睛】本题是新定义题型,以“爱心点”为载体,主要考查了解二元一次方程组、中点坐标公式等知识以及阅读理解能力和迁移运用能力,正确理解题意、熟练掌握二元一次方程组的解法是关键.23.(1)α∠和β∠的度数分别为70︒和110︒;(2)见解析;(3)40C ∠=︒【分析】根据2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,解二元一次方程组,求出α∠和β∠的度数; 根据平行线判定定理,判定//AB CD ;由“AE 是CAB ∠的平分线”:2CAB α∴∠=∠,再根据平行线判定定理,求出C ∠的度数.【详解】解:(1)①+②,得5350α∠=︒,70α∴∠=︒,代入①得110β∠=︒α∴∠和β∠的度数分别为70︒和110︒.(2)180αβ∠+∠=︒//AB EF ∴//CD EF ,//AB CD ∴(3)AE ∵是CAB ∠的平分线2140CAB α∴∠=∠=︒//AB CD ,180C CAB ∴∠+∠=︒40C ∴∠=︒【点睛】本题运用二元一次方程组给出已知条件,熟练掌握二元一次方程组的解法以及平行线相关定理是解题的关键.24.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【解析】【分析】(1)由点A 和点C 在y 轴上确定出向右平移3个单位,再根据△ACD 的面积求出向上平移的单位,然后写出点C 、D 的坐标即可.(2)①根据线段EF 平行于线段OM 且等于线段OM ,得出2a +1=﹣2b +3,|a ﹣b |=1,解答即可;②首先根据题意求出点P 的坐标为(,2),设点E 在F 的左边,由EF ∥x 轴得出a +b =1,求出△PEF的面积=(b﹣a)×|2a+1﹣2|=2,得出(b﹣a)|2a﹣1|=4,当EF在点P 的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+b=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF在点P的下方时,(b﹣a)(1﹣2a)=4,与a+=1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)得:E(﹣,0)、F(,0),或E(,4)、F(﹣,4);综上所述,存在△PEF的面积为2,点E、F两点的坐标为E(﹣,0)、F(,0),或E (,4)、F(﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.(1)19a;(2)315;(3)2 3 .【解析】【分析】(1)首先根据题意,求得S△A1BC=2S△ABC,同理可求得S△A1B1C=2S△A1BC,依此得到S△A1B1C1=19S△ABC,则可求得面积S1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解.【详解】解:(1)连接A 1C ,∵B 1C=2BC ,A 1B=2AB , ∴122BCA ABC SS a ==,122BCA ABC S S a ==,1112A B C BCA S S =, ∴1144A B C ABC SS a ==, ∴1166A B B ABC S S a ==,同理可得出:11116A AC CB C S S a ==,∴S 1=6a+6a+6a+a=19a ;故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCE S PE CG ∆==, ∴1·7022135·2BPCPCE BP CG S S PE CG ∆∆===. ∴2BP EP=,即2BP EP =.同理,APB APE S BP S PE ∆∆=. 2APB APE S S ∆∆∴=.842x y ∴+=.①8440APB BPD S AP xS PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩, 315ABC S ∆∴=. (3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==.PCE S m n ∆∴=-.BPC APB APE PCE S S BP S S PE∆∆∆∆==, ∴2m m n m n=-. 2()m m n mn ∴-=,0m ≠,22m n n ∴-=.∴23n m =. ∴23APE BPF S S ∆∆=. 【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.26.0【解析】分析: 把甲的结果代入②求出b 的值,把乙的结果代入①求出a 的值,代入原式计算即可得到结果.详解:根据题意,将31x y =-⎧⎨=-⎩代入②,将54x y =⎧⎨=⎩代入①得: 12252015b a -+=-⎧⎨+=⎩解得:110a b =-⎧⎨=⎩, 则原式=(-1)2017+(110-×10)2018=-1+1=0. 点睛: 此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.。
人教版七年级初一数学下学期第八章 二元一次方程组单元 易错题难题测试提优卷试题

人教版七年级初一数学下学期第八章二元一次方程组单元易错题难题测试提优卷试题一、选择题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩2.已知22xy=-⎧⎨=⎩是方程kx+2y=﹣2的解,则k的值为()A.﹣3 B.3 C.5 D.﹣53.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.44.已知∠A、∠B互余,∠A比∠B大30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.18030x yx y+=⎧⎨=-⎩B.180+30x yx y+=⎧⎨=⎩C.9030x yx y+=⎧⎨=-⎩D.90+30x yx y+=⎧⎨=⎩5.由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=-3D.x+y=-96.甲、乙、丙三种商品,若购买甲3件、乙2件、丙1件,共需315元钱,购甲1件、乙2件、丙3件共需285元钱,那么购甲、乙、丙三种商品各一件共需多少钱() A.128元B.130元C.150 元D.160元7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.; B.; C.; D.8.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩9.已知关于x,y的方程组232x y ax y a-=-⎧⎨+=⎩,其中﹣2≤a≤0.下列结论:①当a=0时,x,y的值互为相反数;②2xy=⎧⎨=⎩是方程组的解;③当a=﹣1时,方程组的解也是方程2x﹣y=1﹣a的解;其中正确的是()A.①②B.①③C.②③D.①②③10.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩二、填空题11.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.12.某餐厅以A、B两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A、200克B;乙产品每份含200克A、100克B.甲、乙两种产品每份的成本价分别为A、B两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A、B两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.13.若m1,m2,…,m2019是从0,1,2,这三个数中取值的一列数,m1+m2+…+m2019=1525,( m1-1)2+(m2-1)2+…+(m2019-1)2=1510,则在m1,m2,…,m2019中,取值为2的个数为___________.14.已知a、b、c分别是一个三位数的百位、十位、个位上的数字,且a、b、c满足(|a ﹣2|+|a﹣4|)(|b|+|b﹣3|)(|c﹣1|+|c﹣6|)=60,则这个三位数的最大值为_____.15.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____.16.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.17.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价)18.王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问王虎油菜籽、西红柿、萝卜籽各买了_______包. 19.若(x ﹣y +3)2+=0,则x +y 的值为______.20.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________三、解答题21.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --+-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.23.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n . (3)若AM =BN ,MN =43BM ,求m 和n 值.24.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由; (3)求C ∠的度数。
七年级初一数学第二学期第六章 实数单元 易错题难题测试提优卷试卷

七年级初一数学第二学期第六章 实数单元 易错题难题测试提优卷试卷一、选择题1.对一组数(x,y)的一次操作变换记为P 1(x,y),定义其变换法则如下:P 1(x,y)=(x+y,x-y),且规定P n (x,y)=P 1(P n-1(x,y))(n 为大于1的整数),如:P 1(1,2)=(3,-1),P 2(1,2)= P 1(P 1(1,2))= P 1(3,-1)=(2,4),P 3(1,2)= P 1(P 2(1,2))= P 1(2,4)=(6,-2),则P 2017(1,-1)=( ).A .(0,21008)B .(0,-21008)C .(0,-21009)D .(0,21009)2.下列说法正确的是( )A .有理数是整数和分数的统称B .立方等于本身的数是0,1C .a -一定是负数D .若a b =,则a b = 3.下列结论正确的是( )A .64的立方根是±4B .﹣18没有立方根 C .立方根等于本身的数是0D .327-=﹣34.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个 B .2个 C .3个 D .4个 5.等边△ABC 在数轴上的位置如图所示,点A 、C 对应的数分别为0和-1,若△ABC 绕顶点沿顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为1,则连续翻转2019次后,则数2019对应的点为( )A .点AB .点BC .点CD .这题我真的不会6.2222是2的算术平方根;④122<<.正确的是( )A .①④B .②④C .①③④D .①②③④7.381的值( )A .在6和7之间B .在5和6之间C .在4和5之间D .在7和8之间8.下列说法正确的个数是( ).(1)无理数不能在数轴上表示(2)两条直线被第三条直线所截,那么内错角相等(3)经过一点有且只有一条直线与已知直线平行(4)两点之间线段最短A .0个B .1个C .2个D .3个9.在下列实数:2π、227、﹣1.010010001…中,无理数有( ) A .1个 B .2个 C .3个 D .4个10.下列说法:①±3都是27的立方根;②116的算术平方根是±142;±4;⑤﹣9是81的算术平方根,其中正确的有( )A .1个B .2个C .3个D .4个二、填空题11.观察下列算式:16+4=20;40+4=44;…__________12.=__________.13.对于这样的等式:若(x +1)5=a 0x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则﹣32a 0+16a 1﹣8a 2+4a 3﹣2a 4+a 5的值为_____.14.任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,1=,现对72进行如下操作:72→=8→2=→=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.15.2(2)0x -=,则y x -的平方根_________.16.3是______的立方根;81的平方根是________2=__________.17.设a ,b 都是有理数,规定 *=a b ()()48964***-⎡⎤⎣⎦=__________.18.下列说法: -10=;②数轴上的点与实数成一一对应关系;③两条直线被第三条直线所截,同位角相等;④垂直于同一条直线的两条直线互相平行;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,其中正确的个数有 ___________19.===,……请你将发现的规律用含自然数n (n≥1)的等式表示出来__________________.20.如图所示的运算程序中,若开始输入的x 值为7,我们发现第1次输出的结果为10,第2次输出的结果为5,……,第2019次输出的结果为_____.三、解答题21.如图,用两个面积为2200cm 的小正方形拼成一个大的正方形.(1)则大正方形的边长是___________;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长宽之比为5:4,且面积为2360cm ?22.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =.例如:因为328=,所以()3(8)23g g ==, 因为1021024=,所以()10(1024)210g g ==. (1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=-⎪⎝⎭. 根据运算性质解答下列各题:①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫ ⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫ ⎪⎝⎭的值. 23.观察下列等式: ①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯. 24.概念学习 规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2, (﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n a a a a a ÷÷÷÷个(a≠0)记作a ,读作“a 的圈n 次方”.初步探究 (1)直接写出计算结果:2③=________,1)2-(⑤=________; (2)关于除方,下列说法错误的是________ A .任何非零数的圈2次方都等于1; B .对于任何正整数n ,1=1; C .3④=4③ D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数.深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式.(﹣3)④=________;5⑥=________;1)2-(⑩=________. (2)想一想:将一个非零有理数a 的圈n 次方写成幂的形式等于________;(3)算一算:()3242162÷+-⨯④. 25.(1)计算:3231927|25(2)-++-;(2)若21x -的平方根为2±,21x y +-的立方根为2-,求2x y -的算术平方根.26.阅读材料,回答问题:(1)对于任意实数x ,符号[]x 表示“不超过x 的最大整数”,在数轴上,当x 是整数,[]x 就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,如[]33=,[]22-=-,[]2.52=,[]1.52-=-,则[]3.4=________,[]5.7-=________.(2)2015年11月24日,杭州地铁1号线下沙延伸段开通运营,极大的方便了下沙江滨居住区居民的出行,杭州地铁收费采用里程分段计价,起步价为2元/人次,最高价为8元/人次,不足1元按1元计算,具体权费标准如下:①若从下沙江滨站到文海南路站的里程是3.07公里,车费________元,下沙江滨站到金沙湖站里程是7.93公里,车费________元,下沙江滨站到杭州火东站里程是19.17公里,车费________元;②若某人乘地铁花了7元,则他乘地铁行驶的路程范围(不考虑实际站点下车里程情况)?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:用定义的规则分别计算出P1,P2,P3,P4,P5,P6,观察所得的结果,总结出规律求解.详解:因为P1(1,-1)=(0,2);P2(1,-1)=P1(P1(1,-1))=P1(0,2)=(2,-2);P3(1,-1)=P1(P2(2,-2))=(0,4);P4(1,-1)=P1(P3(0,4))=(4,-4);P5(1,-1)=P1(P4(4,-4))=(0,8);P6(1,-1)=P1(P5(0,8))=(8,-8);……P2n-1(1,-1)=……=(0,2n);P2n(1,-1)=……=(2n,-2n).因为2017=2×1009-1,所以P2017=P2×1009-1=(0,21009).故选D.点睛:对于新定义,要理解它所规定的运算规则,再根据这个规则进行相关的计算;探索数字的变化规律通常用列举法,按照一定的顺序列举一定数量的运算过程和结果,从运算过程和结果中归纳出运算结果或运算结果的规律.2.A解析:A【分析】根据有理数的定义、立方的性质、负数的性质、绝对值的性质对各项进行分析即可.【详解】A. 有理数是整数和分数的统称,正确;B. 立方等于本身的数是-1,0,1,错误;C. a -不一定是负数,错误;D. 若a b =,则a b =或=-a b ,错误;故答案为:A .【点睛】本题考查了判断说法是否正确的问题,掌握有理数的定义、立方的性质、负数的性质、绝对值的性质是解题的关键.3.D解析:D【分析】利用立方根的定义及求法分别判断后即可确定正确的选项.【详解】解:A 、64的立方根是4,原说法错误,故这个选项不符合题意;B 、﹣18的立方根为﹣12,原说法错误,故这个选项不符合题意; C 、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;D =﹣3,原说法正确,故这个选项符合题意;故选:D .【点睛】本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.4.C解析:C【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级提优练习一.选择361、221x x x++-+-的最小值是().A、4B、3C、2D、12、若m<0,n>0,m+n<0,则m,n,-m,-n这四个数的大小关系是()A、m>n>-n>-mB、-m>n>-n>mC、m>-m>n>-nD、-m>-n>n>m3、若0ab≠,则a ba b+的取值不可能是()A、0B、1C、2D、-24.绝对值不大于4的整数的积是()A.16 B.0 C.576 D.﹣15.五个有理数的积为负数,则五个数中负数的个数是()A.1 B.3 C.5 D.1或3或56.负实数a的倒数是()A.﹣a B.C.﹣D.A7.甲小时做16个零件,乙小时做18个零件,那么()A.甲的工作效率高B.乙的工作效率高C.两人工作效率一样高D.无法比较8.下列说法错误的是()A.两个互为相反数的和是0B.两个互为相反数的绝对值相等C.两个互为相反数的商是﹣1D.两个互为相反数的平方相等9.计算(﹣1)2005的结果是()A.﹣1 B.1 C.﹣2005 D.200510.计算(﹣2)3+()﹣3的结果是()A.0 B.2 C.16 D.﹣1611.下列说法中正确的是()A.平方是它本身的数是正数B.绝对值是它本身的数是零C.立方是它本身的数是±1 D.倒数是它本身的数是±112.若a3=a,则a这样的有理数有()个.A.0个 B.1个 C.2个 D.3个13.若(﹣ab)103>0,则下列各式正确的是()A.<0 B.>0 C.a>0,b<0 D.a<0,b>014.如果n是正整数,那么[1﹣(﹣1)n](n2﹣1)的值()A.一定是零B.一定是偶数C.是整数但不一定是偶数D.不一定是整数15.﹣22,(﹣1)2,(﹣1)3的大小顺序是()A.﹣22<(﹣1)2<(﹣1)3B.﹣22<(﹣1)3<(﹣1)2C.(﹣1)3<﹣22<(﹣1)2D.(﹣1)2<(﹣1)3<﹣2216.最大的负整数的2005次方与绝对值最小的数的2006次方的和是()A.﹣1 B.0 C.1 D.217.若a是有理数,则下列各式一定成立的有()(1)(﹣a)2=a2;(2)(﹣a)2=﹣a2;(3)(﹣a)3=a3;(4)|﹣a3|=a3.A.1个 B.2个 C.3个 D.4个18.a为有理数,下列说法中,正确的是()A.(a+)2是正数B.a2+是正数C.﹣(a﹣)2是负数D.﹣a2+的值不小于19.下列计算结果为正数的是()A.﹣76×5 B.(﹣7)6×5 C.1﹣76×5 D.(1﹣76)×5 20.下列说法正确的是()A.倒数等于它本身的数只有1B.平方等于它本身的数只有1C.立方等于它本身的数只有1D.正数的绝对值是它本身21.下列说法正确的是()A.零除以任何数都得0B.绝对值相等的两个数相等C.几个有理数相乘,积的符号由负因数的个数决定D.两个数互为倒数,则它们的相同次幂仍互为倒数22.(﹣2)100比(﹣2)99大()A.2 B.﹣2 C.299D.3×29923.1118×1311×1410的积的末位数字是()A.8 B.6 C.4 D.224.下列各数中正确的是()A.平方得64的数是8 B.立方得﹣64的数是﹣4 C.43=12 D.﹣(﹣2)2=425.下列结论中,错误的是()A.平方得1的有理数有两个,它们互为相反数B.没有平方得﹣1的有理数C.没有立方得﹣1的有理数D.立方得1的有理数只有一个26.已知(x+3)2+|3x+y+m|=0中,y为负数,则m的取值范围是()A.m>9 B.m<9 C.m>﹣9 D.m<﹣927.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米28.﹣2.040×105表示的原数为()A.﹣204000 B.﹣0.000204 C.﹣204.000 D.﹣2040030.绝对值小于3的所有整数的和与积分别是()A.0,﹣2 B.0,0 C.3,2 D.0,231.计算48÷(+)之值为何()A.75 B.160 C.D.9032.下列式子中,不能成立的是()A.﹣(﹣2)=2 B.﹣|﹣2|=﹣2 C.23=6 D.(﹣2)2=433.用四舍五入法得到的近似数是2.003万,关于这个数下列说法正确的是()A.它精确到万分位B.它精确到0.001 C.它精确到万位 D.它精确到十位34.已知a=12.3是由四舍五入得到的近似数,则a的可能取值范围是()A.12.25≤a≤12.35 B.12.25≤a<12.35 C.12.25<a≤12.35 D.12.25<a<12.3535.某汽车厂上半年一月份生产汽车200辆,由于另有任务,每月上班人数不一定相等,上半年各月与一月份的生产量比较如下表(增加为正,减少为负).则上半年每月的平均产量为()36.某商店出售三种不同品牌的大米,米袋上分别标有质量如下表:现从中任意拿出两袋不同品牌的大米,这两袋大米的质量最多相差()二.填空301.若|a|=3,则a的值是_________.2.若x的相反数是3,|y|=5,则x+y的值为()A.﹣8 B.2 C.8或﹣2 D.﹣8或23.若=﹣1,则a为()A.a>0 B.a<0 C.0<a<1 D.﹣1<a<04.﹣|﹣2|的绝对值是_________.5.已知a是有理数,且|a|=﹣a,则有理数a在数轴上的对应点在()A.原点的左边B.原点的右边C.原点或原点的左边D.原点或原点的右边6.若ab>0,则++的值为()A.3 B.﹣1 C.±1或±3 D.3或﹣17.已知a是最小的正整数,b是最大的负整数,c是绝对值最小的有理数,那么a+b+|c|等于()A.﹣1 B.0 C.1 D.28.已知|a|=3,|b|=5,且ab<0,那么a+b的值等于()A.8 B.﹣2 C.8或﹣8 D.2或﹣29.已知a,b,c的位置如图,化简:|a﹣b|+|b+c|+|c﹣a|=_________.10.﹣9,6,﹣3三个数的和比它们绝对值的和小______.11.已知a、b互为相反数,且|a﹣b|=6,则b﹣1=______.12.比﹣3大,但不大于2的所有整数的和为_________,积为_________.13.已知四个数:2,﹣3,﹣4,5,任取其中两个数相乘,所得积的最大值是.14.﹣0.5的相反数是_________,倒数是_________,绝对值是_________.15.倒数是它本身的数是_________,相反数是它本身的数是_________.16.(2008•十堰)观察两行数根据你发现的规律,取每行数的第10个数,求得它们的和是(要求写出最后的计算结果)_________.77.我们平常的数都是十进制数,如2639=2×103+6×102+3×10+9,表示十进制的数要用10个数码(也叫数字):0,1,2,3,4,5,6,7,8,9.在电子数字计算机中用二进制,只要两个数码0和1.如二进制数101=1×22+0×21+1=5,故二进制的101等于十进制的数5;10111=1×24+0×23+1×22+1×2+1=23,故二进制的10111等于十进制的数23,那么二进制的110111等于十进制的数_________.18.若n为自然数,那么(﹣1)2n+(﹣1)2n+1=_________.19.平方等于的数是_________.20.0.1252007×(﹣8)2008=_________.21.已知x2=4,则x=_________.22、一个数加上—12得—5,这个数为。
23、若|a|=3,|b|=2,则|a+b|= 。
24、若|x|=3,|y|=7,则x—y= 。
25、若|m|=3,|n|=4,且m>n,则m—n= 。
26、与—3的差为-2的数是。
27、小华记录了一天的温度:早上的气温是—5°C,中午又上升了10°C,半夜又下降了8°C,则半夜的温度是°C。
22.一家饭店,地面上18层,地下1层,地面上1楼为接待处,顶楼为公共设施处,其余16层为客房;地面下1楼为停车场.(1)客房7楼与停车场相差_________层楼;(2)某会议接待员把汽车停在停车场,进入该层电梯,往上14层,又下5层,再下3层,最后上6层,那么他最后停在层;(3)某日,电梯检修,一服务生在停车场停好汽车后,只能走楼梯,他先去客房,依次到了8楼、接待处、4楼,又回接待处,最后回到停车场,他共走了_________层楼梯23.某人用400元购买了8套儿童服装,准备以一定价格出售.他以每套55元的价格为标准,将超出的记作正数,不足的记作负数,记录如下:+2,﹣3,+2,+1,﹣2,﹣1,0,﹣2(单位:元)他卖完这八套儿童服装后是______,盈利或亏损了元.24、一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸的毫米;最小不低于标准尺寸的毫米。
25、如果海平面的高度为0米,一潜水艇在水下30米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数表示潜水艇是 米,鲨鱼的高度是 米。
26、将连续正整数按以下规律排列,则位于第七行第七列大的数x 是 。
第一列 第二列 第三列 第四列 第五列 第六列 第七列第一行 1 3 6 10 15 21 28第二行 2 5 9 14 20 27…. .第三行 4 8 13 19 26……. .第四行 7 12 18 25 …… .第五行 11 17 24…… .第六行 16 23…… .第七行 22 (X)27.如图所示的数码叫“莱布尼茨调和三角形”,它们是由整数的倒数组成的,第n 行有n 个数,且两端的数均为n 1,每个数是它下一行左右相邻两数的和,则第8行第2个数(从左向右)为 。
11 21 21 31 61 31 41 121 121 41 28、如图所示,数轴上的点A 、B 、C 、D 分别表示-3,211-,0,4。
请在数轴上描出以上4个点。
B 、C 两点间的距离是 ,A 、D 两点间的距离是 ;如果把数轴的原点取在点B 处,其余不变,那么点A 、B 、C 、D 分别表示 、 、 、 。