2012年普通高等学校招生全国统一考试(福建卷)—数学(理)解析版

合集下载

2012年福建省普通高等学校招生全国统一考试 语文试题解析

2012年福建省普通高等学校招生全国统一考试 语文试题解析

2012年福建省普通高等学校招生全国统一考试语文试题解析一、古代诗文阅读(27分)(一)默写常见的名句名篇(6分)1、补写出下列名句名篇中的空缺部分。

(6分)(1) ,三岁食贫。

(《诗经·氓》)(2)群贤毕至,。

(王羲之《兰亭集序》)(3)风急天高猿啸哀,。

(杜甫《登高》)(4) ,孰能无惑?(韩愈《师说》)(5) ,郁郁青青。

(范仲淹《岳阳楼记》)(6)浩荡离愁白日斜,。

(龚自珍《己亥杂诗》)【命题立意】本题考查考生默写常见名句名篇的能力(能力层级为A)【解析】六句话都是教材中的句子,并且都是要求背诵的篇章,需要结合上下文准确填写。

从时间来看,涉及了先秦、东晋、唐、宋、清五个时期,诗、文各占一半。

今年考试说明中新增加的两篇古诗文《岳阳楼记》和《己亥杂诗》在考试中均有体现。

近几年来,每年都有适当增加考试篇目,考生必须特别注意。

值得一提的是,今年考查的句子并非全部都是名句名篇,这就告诉未来的考生不要偷工减料,仅背名句名篇,一定要扎扎实实背诵全文,这才是考试的初衷。

本题考查识记能力,需要一字不错,考生失误在于记忆不准或书写出现错漏。

【答案】(1)自我徂尔(2)少长咸集(3)渚清沙白鸟飞回(4)人非生而知之者(5)岸芷汀兰(6)吟鞭东指即天涯(二)文言文阅读(15分)阅读下面的文言文,完成2一5题。

游龙鸣山记【明】陶安游之胜者,适其时可乐也,得其地尤可乐也,而所游又皆佳士,则所以宣其和、舒其郁、畅其心而发其文者,盖乐焉而不失乎正也。

至元丙子二月甲午.厚斋严君治酒肴,招予游龙鸣山,即无想山也。

时春霁既久,风日暄丽,耆英少俊,序齿而行,鼓吹前导。

从蓝溪东南行五六里,两山峙如双蠲,相距百步,绵亘东趋。

中夹石田,田右小路,随两山势深宵曲折。

行三四里,隘不宜田,仅可为路。

又数里,山益奇峻,轻岚暖霭,微袭襟帽。

山外崇峰复嶂,杳无穷极。

少焉,峭壁对立,状若华表,松杉万章①,夹路北转。

涧多石底,云深树茂,繁卉被岩,鸟声清碎,似非人间世。

2012年福建省高考数学试卷(理科)答案与解析

2012年福建省高考数学试卷(理科)答案与解析

2012年福建省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出分四个选项中,只有一项是符合题目要求的.===≤的充要条件是,但是4.(5分)(2012•福建)一个几何体的三视图形状都相同,大小均相等,那么这个几何体不sinx+≥(x∈R)时,不等式两边相等;sinx+6.(5分)(2012•福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()By=((﹣=取自阴影部分的概率为=7.(5分)(2012•福建)设函数,则下列结论错误的是()=(8.(5分)(2012•福建)已知双曲线﹣=1的右焦点与抛物线y2=12x的焦点重合,则B∵双曲线的右焦点与抛物线∴双曲线的一条渐近线方程为∴双曲线的焦点到其渐近线的距离等于9.(5分)(2012•福建)若函数y=2x图象上存在点(x,y)满足约束条件,B10.(5分)(2012•福建)函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图象是连续不断的;②f(x2)在[1,]上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有[f(x1)+f(x2)+f(x3)+f(x4)]其中真命题的序号是()在](≤=[f二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置.11.(4分)(2012•福建)(a+x)4的展开式中x3的系数等于8,则实数a=2.×12.(4分)(2012•福建)阅读图所示的程序框图,运行相应地程序,输出的s值等于﹣3.13.(4分)(2012•福建)已知△ABC得三边长成公比为的等比数列,则其最大角的余弦值为.据三角形三边长成公比为,aaa﹣14.(4分)(2012•福建)数列{a n}的通项公式a n=ncos+1,前n项和为S n,则S2012= 3018.cos ncos的规律,即可求出数列的规律即可求出结ncos=0ncos的每四项和为15.(4分)(2012•福建)对于实数a和b,定义运算“*”:a*b=设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是.=)轴的左边,得到,),又在,)上成立,y=(,即故答案为:三、解答题:本大题共5小题,共80分,解答题写出文字说明,证明过程或演算步骤.16.(13分)(2012•福建)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为(Ⅰ)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(Ⅱ)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(Ⅲ)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.××+3×=2.86×+2.9×××+3×=2.86××=2.7917.(13分)(2012•福建)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数.(1)sin213°+cos217°﹣sin13°cos17°(2)sin215°+cos215°﹣sin15°cos15°(3)sin218°+cos212°﹣sin18°cos12°(4)sin2(﹣18°)+cos248°﹣sin2(﹣18°)cos48°(5)sin2(﹣25°)+cos255°﹣sin2(﹣25°)cos55°(Ⅰ)试从上述五个式子中选择一个,求出这个常数;(Ⅱ)根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.﹣,可得这个常数的=++sin2,化简可得结果.sin30..++sin sin﹣sin=++()﹣﹣+cos2﹣=1﹣+.18.(13分)(2012•福建)如图,在长方体ABCD﹣A1B1C1D1中AA1=AD=1,E为CD中点.(Ⅰ)求证:B1E⊥AD1;(Ⅱ)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由.(Ⅲ)若二面角A﹣B1E﹣A1的大小为30°,求AB的长.为原点,,,为原点,,,的方向为,,,==(•.此时的法向量=⊥平面⊥,⊥=,﹣,﹣,只要⊥,即有•,有此得t=,AP=的一个法向量,此时与==|,解得19.(13分)(2012•福建)如图,椭圆E:的左焦点为F1,右焦点为F2,离心率e=.过F1的直线交椭圆于A、B两点,且△ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.,;,,∴的方程为.(Ⅱ)由===,),此时,,,,﹣),交20.(14分)(2012•福建)已知函数f(x)=e x+ax2﹣ex,a∈R.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(Ⅱ)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.==,则c=,使得四、选考题(题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分。

2012年福建省高考试题(数学理)(名师指导)

2012年福建省高考试题(数学理)(名师指导)

2012年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)第Ⅰ卷 (选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数:=i-11的共轭复数是 A. 21+21i B. 21-21i C.1-i D.1+i(2)已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是 A.15 B.30 C.31 D.64(3)在△ABC 中,∠C =90°, =(k ,1), =(2,3),则k 的值是A.5B.-5C.23 D.- 23 (4)已知直线m 、n 与平面α、β,给出下列三个命题:①若m ∥α,n ∥α,则m ∥n ; ②若m ∥α,n ⊥α,则n ⊥m ; ③若m ⊥α,m ∥β,则α⊥β. 其中真命题的个数是A.0B.1C.2D.3(5)函数f(x)=a a+b 的图象如图,其中a 、b 为常数,则下列结论正确的是 A.a >b ,b <0 B.a >1,b >0 C.0<a <1,b >0 D.0<a <1,b <0(6)函数y =sin(ωx+φ)(x ∈R ,ω>0,0≤φ<2π )的部分图象如图,则A. ω=2π,φ=4π B. ω=3π,φ=6π C. ω=4π,φ=4π D. ω=4π,φ=45π(7)已知p :|2x -3|<1,q :x (x -3) <0,则p 是q 的A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 (8)如图,长方体ABCD-A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是A 1A.arccos 515B. 4π C.arccos510 D. 2π (9)从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有 A.300种 B.240种 C.144种 D.96种(10)已知F 1、F 2是双曲线12222=-b y a x (a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是A.4+23B. 3-1C.213+ D. 3+1(11)设a ,b ∈R ,a 2+2b 2=6,则a +b 的最小值是A.-22B.-335 C.-3 D.-27(12)f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4 D5第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分。

2012年普通高等学校招生全国统一考试数学文试题(福建卷,解析版)

2012年普通高等学校招生全国统一考试数学文试题(福建卷,解析版)
2012 年普通高等学校招生全国统一考试数学文试题(福建卷,解析 版)
第 I 卷(选择题 共 60 分)
一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只
有一项是符合题目要求的。 1. 复数( 2+i ) 2 等于
A.3+4i
B.5+4i
C.3+2i
D.5+2i
力和求解能力。
11. 数列 {a n} 的通项公式
A.1006
B.2012
,其前 n 项和为 Sn,则 S2012 等于
C.503
D.0
3
12. 已知 f ( x) =x3-6x 2+9x-abc , a< b< c,且 f ( a) =f ( b) =f ( c) =0. 现给出如下结论:
①f ( 0) f ( 1)> 0;② f ( 0) f ( 1)< 0;③ f ( 0) f ( 3)> 0;④ f (0) f ( 3)< 0.
从全体运动员中抽出一个容量为
【解析】 98
56 ×28=12
98
【答案】 12
28 的样本,那么应抽取女运动员人数是
_______。
【考点定位】此题考查分层抽样的概念和具体做法,明确分层抽样的本质是关键
2
15. 已知关于 x 的不等式 x -ax +2a> 0 在 R 上恒成立,则实数 a 的取值范围是 _________。
) 的图像的一条对称轴是
4
A.x=
4
B.x=
C.x=-
2
D.x=-
4
2
9. 设
, 则 f(g( π )) 的值为
A1
B0

2012年福建高考试题文数word解析版

2012年福建高考试题文数word解析版

2012年普通高等学校招生全国统一考试(福建卷)数学(文科)第I 卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 复数2)2(i +等于( )A .i 43+B .i 45+C .i 23+D .i 25+ 答案 A解析:44)2(22++=+i i iii 43441+=++-=。

2. 已知集合}4,3,2,1{=M ,}2,2{-=N ,下列结论成立的是( )A .M N ⊆B .M N M =C .N N M =D .}2{=N M 答案 D解析:}4,3,2,1,2{-=N M ,}2{=N M 。

3. 已知向量)2,1(-=→x a ,)1,2(=→b ,则→→⊥b a 的充要条件是( )A .21-=x B .1-=x C .5=x D .0=x 答案 D解析:非零向量0=⋅⇔⊥→→→→b a b a 。

2)1(2=⇔=+-⇔x x4. 一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 答案 D解析:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

5. 已知双曲线15222=-y a x 的右焦点为)0,3(,则该双曲线的离心率等于( )xy Odrl A .31414 B .324 C .32 D .43答案 C解析:双曲线中,23325322=⇒⎩⎨⎧==⇒⎩⎨⎧=+=e c a ca c 。

6. 阅读右图所示的程序框图,运行相应的程序,输出s 值等于( ) A .3- B .10- C .0 D .2-答案 A解析: 1,1==s k ;2,1112==-⨯=k s ; 3,0212==-⨯=k s ; 4,3302=-=-⨯=k s ;结束.7. 直线023=-+y x 与圆422=+y x 相交于B A ,两点,则弦AB 的长度等于( )A .25B .23C .3D .1 答案 B解析: 图形如图所示,圆心为)0,0(,半径为2, 圆心到直线的距离1)3(1|2030|22=+-⨯+=d ,所以222d r l -=3212222=-=。

2012年普通高等学校招生全国统一考试(福建卷)数学试题 (文科)解析版

2012年普通高等学校招生全国统一考试(福建卷)数学试题 (文科)解析版
19.(本小题满分 12 分) 如图,在长方体 ABCD-A1B1C1D1 中,AB=AD=1,AA1=2,M 为棱 DD1 上的一点。
第 4页 (共 7页)
(1) (2)
求三棱锥 A-MCC1 的体积; 当 A1M+MC 取得最小值时,求证:B1M⊥平面 MAC。
A.1006
B.2012
C.503
D.0
12.已知 f(x)=x³-6x²+9x-abc,a<b<c,且 f(a)=f(b)=f(c)=0.现给出如下结论:①f(0)f (1)>0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0. 其中正确结论的序号是
第 2页 (共 7页)
A.①③
的根本。
第 1页 (共 7页)
7.直线 x+ 2 y -2=0 与圆 x2+y2=4 相交于 A,B 两点,则弦 AB 的长度等于
A. 2 5
B 2 3.
C. 3
D.1
8.函数 f(x)=sin(x- )的图像的一条对称轴是
4
A.x=
4
B.x=
2
ห้องสมุดไป่ตู้
C.x=-
4
D.x=-
2
1, x o 9.设 f (x) 0, x 0

g(x)
1,x为有理数
,则
f(g(π))的值为
1, x 0
0, x是无理数
A1
B0
C -1
D .π
【解析】因为 g(π)=0 所以 f(g(π))=f(0)=0 。 B 正确
【答案】B
【考点定位】该题主要考查函数的概念,定义域和值域,考查求值计算能力。
10.若直线 y=2x 上存在点(x,y)满足约束条件

12年高考真题——理科数学(福建卷)-推荐下载

x m

-1-/8
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置各试时类卷,管调需路控要习试在题验最到;大位对限。设度在备内管进来路行确敷调保设整机过使组程其高1在中正资,常料要工试加况卷强下安看与全22过,22度并22工且22作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年高考真题——数学理(福建卷)

2012年福建省高考理科数学第I卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出分四个选项中,只有一项是符合题目要求的。

1.若复数z满足zi=1‐i,则z等于A.‐1‐IB.1‐iC.‐1+ID.1=i2.等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为A.1B.2C.3D.43.下列命题中,真命题是A. B.C.a+b=0的充要条件是ab=‐1 D.a>1,b>1是ab>1的充分条件4.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱5.下列不等式一定成立的是A. B.C. D.6.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为A.14B.15C.16D.177.设函数则下列结论错误的是A.D(x)的值域为{0,1}B. D(x)是偶函数C. D(x)不是周期函数D. D(x)不是单调函数8.已知双曲线22214x yb−=的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于A. B. C.3 D.59.若函数y=2x图像上存在点(x,y)满足约束条件,则实数m的最大值为A.12B.1C.32D.210.函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P。

设f(x)在[1,3]上具有性质P,现给出如下命题:①f(x)在[1,3]上的图像时连续不断的;②f(x2)在上具有性质P;③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];④对任意x1,x2,x3,x4∈[1,3],有其中真命题的序号是A.①②B.①③C.②④D.③④第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题4分,共20分,把答案填在答题卡的相应位置。

11.(a+x)4的展开式中x3的系数等于8,则实数a=_________。

2012年普通高等学校招生全国统一考试(福建卷)—数学(理)解析版

2012年普通高等学校招生全国统一考试(福建卷)数学(理科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分·在每小题给出的四个选项中,只有一项是符合题目要求的·1.若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算· 难度:易·分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可·解答:iiz -=1 111)())(1(--=--=---=i i i i i i ·2.等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( ) A .1 B .2 C .3 D .4 考点:等差数列的定义· 难度:易·分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=·解答:273104211=⇒⎩⎨⎧=+=+d d a d a · 3.下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 考点:逻辑· 难度:易·分析:本题考查的知识点为复逻辑中的充要条件的判定· 解答:A 中,,R x ∈∀0>xe·B 中,22,4,2x x x x===∃,22,x x x<∃·C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=b a·D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a · 4.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 考点:空间几何体的三视图· 难度:易·分析:本题考查的知识点为空间几何体的三视图,直接画出即可· 解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆· 5.下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 考点:不等式及基本不等式· 难度:中·分析:本题考查的知识点为不等式的性质及基本不等式的性质· 解答:A 中,)410(4122x x x x x =+=≥+时,当· B 中,])1,0((sin 2sin 1sin ∈≥+x x x ;))0,1[(sin 2sin 1sin -∈-≤+x xx · C 中,)(0)1|(|1||222R x x x x ∈≥-=+-·D 中,)](1,0(112R x x ∈∈+· 6.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .41B .51C .61D .71考点:积分的计算和几何概型·难度:中·分析:本题考查的知识点为公式法计算积分和面型的几何概型· 解答:111)(=⨯=ΩS ,⎰-=10)()(dx x x A S 61|)2132(10223=-=x x · 所以61)()()(=Ω=A S S A P ·7.设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是( )A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数考点:分段函数的解析式及其图像的作法· 难度:中·分析:本题考查的知识点为分段函数的定义,单调性、奇偶性和周期性的定义和判定· 解答:A 中,)(x D 由定义直接可得,)(x D 的值域为}1,0{·B 中,)(x D 定义域为R ,)(,0,1)(x D x x x D =⎩⎨⎧=-为无理数为有理数,所以)(x D 为偶函数·C 中,)(,0,1)1(xD x x x D =⎩⎨⎧=+为无理数为有理数,所以可以找到1为)(x D 的一个周期· D 中,......1)2(,0)2(,1)1(===D D D ,所以不是单调函数·8.双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .5考点:双曲线的定义· 难度:中·分析:本题考查的知识点为双曲线的定义,焦点,渐近线,抛物线的定义· 解答:抛物线x y 122=的焦点为)0,3(· 双曲线中,5492=-=b · 双曲线渐近线方程为x y 25±=· 所以焦点到渐近线的距离5)25(12532=+=d ·9.若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21 B .1 C .23D .2 考点:线性规划· 难度:中·分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像·所以,若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则mm 23≥-,即1≤m ·10.函数)(x f 在],[b a 上有定义,若对任意],[,21b a x x ∈,有)]()([21)2(2121x f x f x x f +≤+,则称)(x f 在],[b a 上具有性质P ·设)(x f 在[1,3]上具有性质P ,现给出如下命题: ①)(x f 在]3,1[上的图像时连续不断的; ②)(2x f 在]3,1[上具有性质P ;③若)(x f 在2=x 处取得最大值1,则1)(=x f ,]3,1[∈x ; ④对任意]3,1[,,,4321∈x x x x ,有)]()()()([41)2(43214321x f x f x f x f x x x x f +++≤+++·其中真命题的序号是( )A .①②B .①③C .②④D .③④考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立· 解答:A 中,反例:如图所示的函数)(x f 的是满足性质P 的,但)(x f 不是连续不断的·B 中,反例:x x f -=)(在]3,1[上具有性质P ,22)(x x f -=在]3,1[上不具有性质P ·C 中,在]3,1[上,)]4()([21)2)4(()2(x f x f x x f f -+≤-+=, 1)(1)2()()4(1)2()()(2)4()(max max =⇒⎪⎩⎪⎨⎧==≤-==≤≥-+x f f x f x f f x f x f x f x f , 所以,对于任意1)(],3,1[,21=∈x f x x ·D 中,=+++)2(4321x x x x f )2)()((4321x x x x f +++)]()()()([41))]()((21))()((21[21)]2()2([21432121214321x f x f x f x f x f x f x f x f x x f x x f +++≤+++≤+++≤· 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分·把答案填在答题卡的相应位置·11.4)(x a +的展开式中3x 的系数等于8,则实数=a _________·【2】 考点:二项式定理· 难度:易·分析:本题考查的知识点为二项式定理的展开式,直接应用即可· 解答:4)(x a +中含3x 的一项为r rr r x aC T -+=441,令3=r ,则83434=-a C ,即2=a ·12.阅读右图所示的程序框图,运行相应地程序,输出的s 值等于_____________________·【3-】考点:算法初步· 难度:易·分析:本题考查的知识点为算法中流程图的读法,直接根据箭头的指向运算即可· 解答: 1,1==s k ;2,1112==-⨯=k s ; 3,0212==-⨯=k s ; 4,3302=-=-⨯=k s ;结束·13.已知ABC ∆_________·【42-】 考点:等比数列和余弦定理· 难度:易·分析:本题考查的知识点为等比数列的定义和余弦定理的应用· 解答:设ABC ∆三边为m c m b m a 2,2,===, 则可得C ∠所对的边最大,且22cos 222=-+=abc b a C · 14.数列}{n a 的通项公式12cos+=πn n a n ,前n 项和为n S ,则=2012S ___________·【3018】 考点:数列和三角函数的周期性· 难度:中·分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和· 解答: 1012cos )14(12)14(cos )14(14+=+⨯+=++⨯+=+ππn n n a n , 1)24(1cos )24(12)24(cos )24(24++-=+⨯+=++⨯+=+n n n n a n ππ,10123cos )34(12)34(cos )34(34+=+⨯+=++⨯+=+ππn n n a n ,14412cos )44(12)44(cos)44(44++=+⨯+=++⨯+=+n n n n a n ππ, 所以++14n a ++24n a ++34n a 644=+n a · 即30186420122012=⨯=S · 15.对于实数b a ,,定义运算“*”:⎩⎨⎧>-≤-=*ba ab b ba ab a b a ,,22,设)1()12()(-*-=x x x f ,且关于x 的方程为)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是_____·【)0,1631(-】 考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为新定义的理解,函数与方程中根的个数·解答:由题可得,⎩⎨⎧>--≤-=0),1(0),12()(x x x x x x x f可得0,21),41,0(132<=+∈x x x m , 且↑↑→||,,41132x x x m 所以41=m 时,=max 321||x x x 1631-, 所以∈m )0,1631(-·三、解答题:本大题共6小题,共84分·解答应写出文字说明,证明过程或演算步骤·16.(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿my =车中随机抽取50辆,统计书数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由· 考点:统计概率及随机变量·难度:易· 分析: 解答:(I )首次出现故障发生在保修期内的概率为2315010P +== (II )随机变量1X 的分布列为 随机变量2X 的分布列为(III )1139123 2.86255010EX =⨯+⨯+⨯=(万元) 2191.82.9 2.791010EX =⨯+⨯=(万元) 12EX EX > 所以应该生产甲品牌汽车·17.(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数· (1)02217cos 13sin 17cos 13sin -+; (2)02215cos 15sin 15cos 15sin -+;(3)02212cos 18sin 12cos 18sin -+; (4)00020248cos )18sin(48cos )13(sin --+-; (5)00020255cos )25sin(55cos )25(sin --+-·(I )试从上述五个式子中选择一个,求出这个常数;(II )根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论· 考点:三角恒等变换· 难度:中· 分析: 解答:(I )选择(2):22013sin 15cos 15sin15cos151sin 3024+-=-= (II )三角恒等式为:22003sin cos (30)sin cos(30)4αααα+---=22002222sin cos (30)sin cos(30)11sin sin )sin sin )22333sin cos 444αααααααααααα+---=++-+=+=(lby lfx )18.(本小题满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点· (Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由·(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长·考点:立体几何· 难度:中· 分析: 解答:(Ⅰ)长方体1111D C B A ABCD -中,11==AD AA 得:1111111111,,AD A D AD A B A DA B A A D ⊥⊥=⇔⊥面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ 在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A DAD O =,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x AD ==11112222222228B OE x xS x ∆=--⨯-⨯=1222x =⇔=得:2AB =19.(本小题满分13分)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e ·过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8· (Ⅰ)求椭圆E 的方程·(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q ·试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由·考点:三角恒等变换·难度:难·分析:解答:(Ⅰ)设c 则2212342c e a c a b a ==⇔=⇔= 2ABF ∆的周长为22121288482,1AB AF BF AF AF BF BF a a b c ++=⇔+++=⇔=⇔===椭圆E 的方程为22143x y += (Ⅱ)由对称性可知设000(,)(0)P x y y >与(,0)M x220031434x x y y y k y '+=⇒==⇒=- 直线00000033(1):()(4,)4x x l y y x x Q y y --=--⇒ 000003(1)0()(4)0(1)(1)(3)x M P M Q x x x y x x x x y -=⇔--+⨯=⇔-=--(*) (*)对0(2,2)x ∈-恒成立1x ⇔=, 得(1,0)M20.(本小题满分14分)已知函数R a ex ax e x f x ∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P ·考点:导数·难度:难·分析:解答:(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-由题意得:(1)200f e a e a '=+-=⇔=()01,()0x f x e e x f x x ''=->⇔><⇔<得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+令000()()()()()g x f x f x x x f x '=---;则0()0g x =切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x000()()()2()xx g x f x f x e e a x x '''=-=-+-,且0()0g x '=(1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<得:当且仅当0x x =时,min 0()()0g x g x ==由0x 的任意性,0a ≥不符合条件(lby lfx )(2)当0a <时,令00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==- ①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增()0g x ⇔=只有一个根0x②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞存在两个数0x x ''<使,0()()0g x g x ''''==得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞存在1x x ''>使()0g x ''=,与条件不符·③当0x x '<时,同理可证,与条件不符从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P21.本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分·如果多做,则按所做的前两题计分·作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框图黑,并将所选题号填入括号中·(1)(本小题满分7分)选修4-2:矩阵与变换设曲线12222=++y xy x 在矩阵 ⎝⎛=b a A 0(0)1a ⎫>⎪⎭对应的变换作用下得到的曲线为122=+y x ·(Ⅰ)求实数b a ,的值· (Ⅱ)求2A 的逆矩阵·解:(Ⅰ)设曲线12222=++y xy x 上任一点(,)P x y 在矩阵A 对应变换下的像是(,)P x y ''' 则220()()11x a x ax x ax ax bx y y b y bx y y bx y''=⎛⎫⎛⎫⎛⎫⎛⎫⎧==⇔⇒++=⎨ ⎪ ⎪⎪ ⎪''+=+⎝⎭⎝⎭⎝⎭⎝⎭⎩ 得:222222()212,221,1a b x bxy y a b b a b +++=⇒+==⇔==(Ⅱ)由(Ⅰ)得:21010101011111121A A ⎛⎫⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21101()21A A -⎛⎫=⇒= ⎪-⎝⎭【考点定位】本题主要考查矩阵与变换等基础知识,考查运算求解能力,考查转化化归思想.(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为几点,x 轴的正半轴为极轴建立极坐标系·已知直线l上两点N M ,的极坐标分别为)2,332(),0,2(π,圆C 的参数方程θθθ(sin 23cos 22⎩⎨⎧+-=+=y x 为参数)·(Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程;(Ⅱ)判断直线l 与圆C 的位置关系·【解析】(Ⅰ)由题意知(2,0),M N ,因为P 是线段MN中点,则P因此OP 直角坐标方程为:.y x =(Ⅱ)因为直线l 上两点(2,0),(0,3M N∴l 30y -=,圆心(2,,半径2r =.32d ∴==<r ,故直线l 和圆C 相交. 【考点定位】本题主要考查极坐标与参数方程的互化、圆的参数方程等基础知识,考查运算求解能力,考查转化化归思想·(3)(本小题满分7分)选修4-5:不等式选讲已知函数R m x m x f ∈--=|,2|)(,且0)2(≥+x f 的解集为]1,1[-·(Ⅰ)求m 的值;(Ⅱ)若R c b a ∈,,,且m cb a =++31211,求证:932≥++c b a · 【解析】(1)∵(2)f x m x x +=-≥0,≤∴m ,∴0m m x m >⇒-<< (2)0111f x x m +≥⇔-≤≤⇒= (2)由(1)知1111,,,23a b c R a b c++=∈,由柯西不等式得(lby lfx ) 11123(23)()23a b c a b c a b c +++++++29≥= 【考点定位】本题主要考查绝对值不等式、柯西不等式等基本知识,考查运算求解能力,考查化归转化思想。

2012年全国高考福建理科数学试题详细解析


S′ 1 x 2 x2 1 2 1 1 − ) = − = ,点 P 恰好取自阴影部分的概率 p = = . 【解析】 S ′ = ∫ ( x − x)dx = ( 0 3 2 0 3 2 6 S 6 2
【点评】本题考查微积分基本原理,定积分.同时考察学生正确运算微积分的能力,正确写出原函数,是 解决本题的关键.本题考查微积分基本原理,定积分.同时考察学生正确运算微积分的能力,正确写出原 函数,是解决本题的关键.
7.设函数 D ( x) =
1, x为有理数 ,则下列结论错误的是: 0, x为无理数
B. D( x) 是偶函数 D. D( x) 不是单调函数
A. D( x) 的值域为 {0, 1} C. D( x) 不是周期函数 【答案】C
【解析】显然,A,D 是对的;若 x 是无理数,则 − x 也是无数理,则 D(− x) = D( x) ,所以 D( x) 是偶函 数,同理,对于任意有理数 T , f ( x + T ) = f ( x) (若 x 是无理数,则 x + T − x 也是无理数;若 x 是有理 数,则 x + T 也是有理数)
【答案】 −3 【解析】进入循环体,第一次, s = 1 , k = 2 ;第二次, s = 0 , k = 3 ;第三次, s = −3 , k = 4 . 然后,退出循环,输出 s = −3 . 【点评】本题考查了程序框图的阅读.考察学生的逻辑运算能力.一一推导是解决本题的前提.处理程序 框图问题,要耐着性子,按流程线的方向逐一演算,合理取舍. 13.已知△ABC 得三边长成公比为 2 的等比数列,则其最大角的余弦值为_____.
2012 年高考福建理科数学- 2 -
【点评】主要考查函数的概念、定义域、值域、单调性、周期性、奇偶性,全面掌握很关键,能利用定义法 求解问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试(福建卷)数学(理科)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分·在每小题给出的四个选项中,只有一项是符合题目要求的·1、若复数z 满足i zi -=1,则z 等于( )A .i --1B .i -1C .i +-1D .i +1 考点:复数的运算· 难度:易·分析:本题考查的知识点为复数的计算,直接套用复数运算公式即可·解答:iiz -=1 111)())(1(--=--=---=i i i i i i ·2、等差数列}{n a 中,7,10451==+a a a ,则数列}{n a 的公差为( ) A .1 B .2 C .3 D .4 考点:等差数列的定义· 难度:易·分析:本题考查的知识点为复等差数列的通项公式d n a a n )1(1-+=·解答:273104211=⇒⎩⎨⎧=+=+d d a d a · 3、下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件 考点:逻辑· 难度:易·分析:本题考查的知识点为复逻辑中的充要条件的判定· 解答:A 中,,R x ∈∀0>xe·B 中,22,4,2x x x x===∃,22,x x x<∃·C 中,⎩⎨⎧≠=+00b b a 的充要条件是1-=b a·D 中,1,1>>b a 可以得到1>ab ,当1>ab 时,不一定可以得到1,1>>b a · 4、一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可以是( )A .球B .三棱锥C .正方体D .圆柱 考点:空间几何体的三视图· 难度:易·分析:本题考查的知识点为空间几何体的三视图,直接画出即可· 解答:圆的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形; 圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆· 5、下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 考点:不等式及基本不等式· 难度:中·分析:本题考查的知识点为不等式的性质及基本不等式的性质· 解答:A 中,)410(4122x x x x x =+=≥+时,当· B 中,])1,0((sin 2sin 1sin ∈≥+x x x ;))0,1[(sin 2sin 1sin -∈-≤+x xx · C 中,)(0)1|(|1||222R x x x x ∈≥-=+-·D 中,)](1,0(112R x x ∈∈+· 6、如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( )A .41B .51C .61D .71考点:积分的计算和几何概型·难度:中·分析:本题考查的知识点为公式法计算积分和面型的几何概型· 解答:111)(=⨯=ΩS ,⎰-=10)()(dx x x A S 61|)2132(10223=-=x x · 所以61)()()(=Ω=A S S A P ·7、设函数⎩⎨⎧=为无理数为有理数x x x D ,0,1)(,则下列结论错误的是( )A .)(x D 的值域为}1,0{B .)(x D 是偶函数C .)(xD 不是周期函数 D .)(x D 不是单调函数考点:分段函数的解析式及其图像的作法· 难度:中·分析:本题考查的知识点为分段函数的定义,单调性、奇偶性和周期性的定义和判定· 解答:A 中,)(x D 由定义直接可得,)(x D 的值域为}1,0{·B 中,)(x D 定义域为R ,)(,0,1)(x D x x x D =⎩⎨⎧=-为无理数为有理数,所以)(x D 为偶函数·C 中,)(,0,1)1(xD x x x D =⎩⎨⎧=+为无理数为有理数,所以可以找到1为)(x D 的一个周期· D 中,......1)2(,0)2(,1)1(===D D D ,所以不是单调函数·8、双曲线22214x y b-=的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于( )A .5B .24C .3D .5考点:双曲线的定义· 难度:中·分析:本题考查的知识点为双曲线的定义,焦点,渐近线,抛物线的定义· 解答:抛物线x y 122=的焦点为)0,3(· 双曲线中,5492=-=b · 双曲线渐近线方程为x y 25±=· 所以焦点到渐近线的距离5)25(12532=+=d ·9、若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21 B .1 C .23D .2 考点:线性规划· 难度:中·分析:本题考查的知识点为含参的线性规划,需要画出可行域的图形,含参的直线要能画出大致图像·所以,若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则mm 23≥-,即1≤m ·10、函数)(x f 在],[b a 上有定义,若对任意],[,21b a x x ∈,有)]()([21)2(2121x f x f x x f +≤+,则称)(x f 在],[b a 上具有性质P ·设)(x f 在[1,3]上具有性质P ,现给出如下命题: ①)(x f 在]3,1[上的图像时连续不断的; ②)(2x f 在]3,1[上具有性质P ;③若)(x f 在2=x 处取得最大值1,则1)(=x f ,]3,1[∈x ; ④对任意]3,1[,,,4321∈x x x x ,有)]()()()([41)2(43214321x f x f x f x f x x x x f +++≤+++·其中真命题的序号是( )A .①②B .①③C .②④D .③④考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为函数定义的理解,说明一个结论错误只需举出反例即可,说明一个结论正确要证明对所有的情况都成立· 解答:A 中,反例:如图所示的函数)(x f 的是满足性质P 的,但)(x f 不是连续不断的·B 中,反例:x x f -=)(在]3,1[上具有性质P ,22)(x x f -=在]3,1[上不具有性质P ·C 中,在]3,1[上,)]4()([21)2)4(()2(x f x f x x f f -+≤-+=, 1)(1)2()()4(1)2()()(2)4()(max max =⇒⎪⎩⎪⎨⎧==≤-==≤≥-+x f f x f x f f x f x f x f x f , 所以,对于任意1)(],3,1[,21=∈x f x x ·D 中,=+++)2(4321x x x x f )2)()((4321x x x x f +++)]()()()([41))]()((21))()((21[21)]2()2([21432121214321x f x f x f x f x f x f x f x f x x f x x f +++≤+++≤+++≤· 第Ⅱ卷(非选择题 共100分)二、填空题:本大题共4小题,每小题4分,共16分·把答案填在答题卡的相应位置·11、4)(x a +的展开式中3x 的系数等于8,则实数=a _________·【2】 考点:二项式定理· 难度:易·分析:本题考查的知识点为二项式定理的展开式,直接应用即可· 解答:4)(x a +中含3x 的一项为r rr r x aC T -+=441,令3=r ,则83434=-a C ,即2=a ·12、阅读右图所示的程序框图,运行相应地程序,输出的s 值等于_____________________·【3-】考点:算法初步· 难度:易·分析:本题考查的知识点为算法中流程图的读法,直接根据箭头的指向运算即可· 解答: 1,1==s k ;2,1112==-⨯=k s ; 3,0212==-⨯=k s ; 4,3302=-=-⨯=k s ;结束·13、已知ABC ∆_________·【42-】 考点:等比数列和余弦定理· 难度:易·分析:本题考查的知识点为等比数列的定义和余弦定理的应用· 解答:设ABC ∆三边为m c m b m a 2,2,===, 则可得C ∠所对的边最大,且22cos 222=-+=abc b a C · 14、数列}{n a 的通项公式12cos+=πn n a n ,前n 项和为n S ,则=2012S ___________·【3018】 考点:数列和三角函数的周期性· 难度:中·分析:本题考查的知识点为三角函数的周期性和数列求和,所以先要找出周期,然后分组计算和· 解答: 1012cos )14(12)14(cos )14(14+=+⨯+=++⨯+=+ππn n n a n , 1)24(1cos )24(12)24(cos )24(24++-=+⨯+=++⨯+=+n n n n a n ππ,10123cos )34(12)34(cos )34(34+=+⨯+=++⨯+=+ππn n n a n ,14412cos )44(12)44(cos)44(44++=+⨯+=++⨯+=+n n n n a n ππ, 所以++14n a ++24n a ++34n a 644=+n a · 即30186420122012=⨯=S · 15、对于实数b a ,,定义运算“*”:⎩⎨⎧>-≤-=*ba ab b ba ab a b a ,,22,设)1()12()(-*-=x x x f ,且关于x 的方程为)()(R m m x f ∈=恰有三个互不相等的实数根321,,x x x ,则321x x x 的取值范围是_____·【)0,1631(-】 考点:演绎推理和函数· 难度:难·分析:本题考查的知识点为新定义的理解,函数与方程中根的个数·解答:由题可得,⎩⎨⎧>--≤-=0),1(0),12()(x x x x x x x f可得0,21),41,0(132<=+∈x x x m , 且↑↑→||,,41132x x x m 所以41=m 时,=max 321||x x x 1631-, 所以∈m )0,1631(-·三、解答题:本大题共6小题,共84分·解答应写出文字说明,证明过程或演算步骤·16、(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿my =车中随机抽取50辆,统计书数据如下:将频率视为概率,解答下列问题:(I )从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (II )若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙品牌轿车的利润为2X ,分别求1X ,2X 的分布列;(III )该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由· 考点:统计概率及随机变量·难度:易· 分析: 解答:(I )首次出现故障发生在保修期内的概率为2315010P +== (II )随机变量1X 的分布列为 随机变量2X 的分布列为(III )1139123 2.86255010EX =⨯+⨯+⨯=(万元) 2191.82.9 2.791010EX =⨯+⨯=(万元) 12EX EX > 所以应该生产甲品牌汽车·17、(本小题满分13分)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数· (1)02217cos 13sin 17cos 13sin -+; (2)02215cos 15sin 15cos 15sin -+;(3)02212cos 18sin 12cos 18sin -+; (4)00020248cos )18sin(48cos )13(sin --+-; (5)00020255cos )25sin(55cos )25(sin --+-·(I )试从上述五个式子中选择一个,求出这个常数;(II )根据(Ⅰ)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论· 考点:三角恒等变换· 难度:中· 分析: 解答:(I )选择(2):22013sin 15cos 15sin15cos151sin 3024+-=-= (II )三角恒等式为:22003sin cos (30)sin cos(30)4αααα+---=22002222sin cos (30)sin cos(30)11sin sin )sin sin )22333sin cos 444αααααααααααα+---=++-+=+=(lby lfx )18、(本小题满分13分)如图,在长方体1111D C B A ABCD -中,11==AD AA ,E 为CD 中点· (Ⅰ)求证:11AD E B ⊥;(Ⅱ)在棱1AA 上是否存在一点P ,使得//DP 平面AE B 1?若存在,求AP 的长;若不存在,说明理由·(Ⅲ)若二面角11A E B A --的大小为030,求AB 的长·考点:立体几何· 难度:中· 分析: 解答:(Ⅰ)长方体1111D C B A ABCD -中,11==AD AA 得:1111111111,,AD A D AD A B A DA B A A D ⊥⊥=⇔⊥面11A B CD1B E ⊂面11A B CD 11B E AD ⇒⊥(Ⅱ)取1AA 的中点为P ,1AB 中点为Q ,连接PQ 在11AA B ∆中,111111//,////////22PQ A B DE A B PQ DE PD QE PD ⇒⇒⇒面AE B 1 此时11122AP AA == (Ⅲ)设11A DAD O =,连接AO ,过点O 作1OH B E ⊥于点H ,连接AH1AO ⊥面11A B CD ,1O H B E ⊥1A H B E⇒⊥ 得:AHO ∠是二面角11A E B A --的平面角30AHO ο⇒∠=在Rt AOH ∆中,30,90,2AHO AOH AH OH οο∠=∠==⇒=在矩形11A B CD 中,1,CD x AD ==11112222222228B OE x xS x ∆=--⨯-⨯=1222x =⇔=得:2AB =19、(本小题满分13分)如图,椭圆)0(1:2222>>=+b a by a x E 的左焦点为1F ,右焦点为2F ,离心率21=e ·过1F 的直线交椭圆于B A ,两点,且2ABF ∆的周长为8· (Ⅰ)求椭圆E 的方程·(Ⅱ)设动直线m kx y l +=:与椭圆E 有且只有一个公共点P ,且与直线4=x 相交于点Q ·试探究:在坐标平面内是否存在定点M ,使得以PQ 为直径的圆恒过点M ?若存在,求出点M 的坐标;若不存在,说明理由·考点:三角恒等变换·难度:难·分析:解答:(Ⅰ)设c 则2212342c e a c a b a ==⇔=⇔= 2ABF ∆的周长为22121288482,1AB AF BF AF AF BF BF a a b c ++=⇔+++=⇔=⇔===椭圆E 的方程为22143x y += (Ⅱ)由对称性可知设000(,)(0)P x y y >与(,0)M x220031434x x y y y k y '+=⇒==⇒=- 直线00000033(1):()(4,)4x x l y y x x Q y y --=--⇒ 000003(1)0()(4)0(1)(1)(3)x M P M Q x x x y x x x x y -=⇔--+⨯=⇔-=--(*) (*)对0(2,2)x ∈-恒成立1x ⇔=, 得(1,0)M20、(本小题满分14分)已知函数R a ex ax e x f x ∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间;(Ⅱ)试确定a 的取值范围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P ·考点:导数·难度:难·分析:解答:(Ⅰ)2()()2x x f x e ax ex f x e ax e '=+-⇒=+-由题意得:(1)200f e a e a '=+-=⇔=()01,()0x f x e e x f x x ''=->⇔><⇔<得:函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(,1)-∞(Ⅱ)设00(,())P x f x ; 则过切点P 的切线方程为000()()()y f x x x f x '=-+令000()()()()()g x f x f x x x f x '=---;则0()0g x =切线与曲线只有一个公共点P ()0g x ⇔=只有一个根0x000()()()2()xx g x f x f x e e a x x '''=-=-+-,且0()0g x '=(1)当0a ≥时,00()0,()0g x x x g x x x ''>⇔><⇔<得:当且仅当0x x =时,min 0()()0g x g x ==由0x 的任意性,0a ≥不符合条件(lby lfx )(2)当0a <时,令00()2()()20ln(2)x x x h x e e a x x h x e a x x a ''=-+-⇒=+=⇔==- ①当0x x '=时,00()0,()0h x x x h x x x ''>⇔><⇔<当且仅当0x x =时,0()()0()g x g x g x ''≥=⇒在x R ∈上单调递增()0g x ⇔=只有一个根0x②当0x x '>时,()0,()0h x x x h x x x ''''>⇔><⇔<得:0()()0g x g x '''<=,又,(),,()x g x x g x ''→+∞→+∞→-∞→+∞存在两个数0x x ''<使,0()()0g x g x ''''==得:00()0()()0g x x x x g x g x '''''<⇔<<⇒<=又,()x g x '→+∞→+∞存在1x x ''>使()0g x ''=,与条件不符·③当0x x '<时,同理可证,与条件不符从上得:当0a <时,存在唯一的点(ln(2),(ln(2))P a f a --使该点处的切线与曲线只有一个公共点P21、本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分·如果多做,则按所做的前两题计分·作答时,先用2B 铅笔在答题卡上把所选题目对应题号右边的方框图黑,并将所选题号填入括号中·(1)(本小题满分7分)选修4-2:矩阵与变换设曲线12222=++y xy x 在矩阵 ⎝⎛=b a A 0(0)1a ⎫>⎪⎭对应的变换作用下得到的曲线为122=+y x ·(Ⅰ)求实数b a ,的值· (Ⅱ)求2A 的逆矩阵·解:(Ⅰ)设曲线12222=++y xy x 上任一点(,)P x y 在矩阵A 对应变换下的像是(,)P x y ''' 则220()()11x a x ax x ax ax bx y y b y bx y y bx y''=⎛⎫⎛⎫⎛⎫⎛⎫⎧==⇔⇒++=⎨ ⎪ ⎪⎪ ⎪''+=+⎝⎭⎝⎭⎝⎭⎝⎭⎩ 得:222222()212,221,1a b x bxy y a b b a b +++=⇒+==⇔==(Ⅱ)由(Ⅰ)得:21010101011111121A A ⎛⎫⎛⎫⎛⎫⎛⎫=⇒== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭21101()21A A -⎛⎫=⇒= ⎪-⎝⎭【考点定位】本题主要考查矩阵与变换等基础知识,考查运算求解能力,考查转化化归思想、(2)(本小题满分7分)选修4-4:坐标系与参数方程在平面直角坐标系中,以坐标原点O 为几点,x 轴的正半轴为极轴建立极坐标系·已知直线l上两点N M ,的极坐标分别为)2,332(),0,2(π,圆C 的参数方程θθθ(sin 23cos 22⎩⎨⎧+-=+=y x 为参数)·(Ⅰ)设P 为线段MN 的中点,求直线OP 的平面直角坐标方程;(Ⅱ)判断直线l 与圆C 的位置关系·【解析】(Ⅰ)由题意知(2,0),M N ,因为P 是线段MN中点,则P因此OP 直角坐标方程为:.y x =(Ⅱ)因为直线l 上两点(2,0),(0,3M N∴l 30y -=,圆心(2,,半径2r =、32d ∴==<r ,故直线l 和圆C 相交、 【考点定位】本题主要考查极坐标与参数方程的互化、圆的参数方程等基础知识,考查运算求解能力,考查转化化归思想·(3)(本小题满分7分)选修4-5:不等式选讲已知函数R m x m x f ∈--=|,2|)(,且0)2(≥+x f 的解集为]1,1[-·(Ⅰ)求m 的值;(Ⅱ)若R c b a ∈,,,且m cb a =++31211,求证:932≥++c b a · 【解析】(1)∵(2)f x m x x +=-≥0,≤∴m ,∴0m m x m >⇒-<< (2)0111f x x m +≥⇔-≤≤⇒= (2)由(1)知1111,,,23a b c R a b c++=∈,由柯西不等式得(lby lfx ) 11123(23)()23a b c a b c a b c +++++++29≥= 【考点定位】本题主要考查绝对值不等式、柯西不等式等基本知识,考查运算求解能力,考查化归转化思想。

相关文档
最新文档