工力学课件 02第二章基本理论
大物《动力学》课件

为了减小碰撞和冲击对人员和设备的 损害,需要采取相应的防护措施,如 安全带、气囊、减震器等。
冲击载荷
在工程领域中,冲击载荷对结构的破 坏作用也是非常重要的,如车辆碰撞、 地震等自然灾害中的冲击载荷。
05
习题与解答
习题
一、选择题
1
2
1. 关于牛顿第二定律,以下说法正确的是( )
3
A.加速度与力成正比,与质量成反比
习题
B.质量与力成反比,与加速度成正比
D.力、质量、加速度三者之间没有关 系
C.加速度与质量成反比,与力成正比
习题
2.关于牛顿第一定律,以下说法 错误的是( )
A.不受外力作用的物体将保持静 止状态
B.在水平面上运动的物体,无论 怎样不受外力作用,都不可能慢
慢停下来
习题
C.不受外力作用的物体将做匀速直线运动 D.物体的运动状态发生变化时,必定受到外力的作用
答案与解析
2.【答案】20
【解析】根据加速度的定义式$a = frac{Delta v}{Delta t}$得:$a = frac{v_{t} - v_{0}}{t} = frac{20 - 10}{5}m/s^{2} = 2m/s^{2}$,则$v_{10} = v_{t} + at = 10 + 2 times 5m/s = 20m/s$。故答案为:$20$。
大物《动力学》课件
目录
• 引言 • 动力学基本概念 • 动力学基本定理 • 动力学应用 • 习题与解答 • 参考文献
01
引言
课程简介
01
动力学是研究物体运动变化规律 的学科,是物理学的一个重要分 支。
02
本课程将介绍动力学的基本概念 、原理和方法,以及其在各个领 域的应用。
第二章-风力机的基本理论及工作原理

4)风杯式阻力差风力机 两个半球面杯对称安装在转轴两 侧,球面方向相反。一个凸面向 风,另一个凹面向风,显然在相 同风力下后者对风的阻力比前者 大。
叶轮由两片垂直的叶片阻成,叶片 截面为流线型的对称翼型,以相反方 向安装在转轴两侧。
17
达里厄风力机在低风速下运转困难, 要在较高的风力下,风轮转速达到 叶尖速比为3.5以上才可能正常运 转,在尖速比为4-6可获较高的功 率输出。下图为达里厄风力机的功 率系数与叶尖速比的关系曲线。
达里厄风力机对叶片截面 形状(翼型)选择与外表光洁 度要求比较高。达里厄风力机 不能单靠风力自起动,必须依 靠外力起动使叶尖速比达到 3.5以上时才能依靠升力运转。 典型的达里厄风力机翼片不是 直的,而是弯成弧形,两翼片 合成一个φ形。
关系到叶片的攻角,是分析
风力机性能的重要参数。
10
实度比
▪ 风力机叶片的总面积与风通过风轮的面积(风轮扫掠面积) 之比称为实度比(容积比),是风力机的一个参考数据。
▪ 左图为水平轴风力机叶轮,S为每个叶片对风的投影面积, B为叶片个数,R为风轮半径,σ为实度比,
▪ σ=BS/πR2
11
▪ 右图为升力型垂直轴风力机叶轮,C为叶片弦长, B为叶片个数,R为风轮半径,L为叶片长度,σ 为实度比。垂直轴风力机叶轮的扫掠面积为直径 与叶片长度的乘积,
32
风轮的轮毂比(Dh/D):风轮轮毂直径Dh
与风轮直径之比。
U(1-a)
多体系统动力学基本理论

第2章多体系统动力学基本理论本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。
通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。
2.1 多体系统动力学研究状况多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。
从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。
本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。
2.1.1 多体系统动力学研究的发展机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。
计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。
数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。
计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。
两者共同构成计算机辅助工程(CAE)技术的重要内容。
多体系统是指由多个物体通过运动副连接的复杂机械系统。
多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。
它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。
第2章多体系统动力学基本理论.

第2章多体系统动力学基本理论本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。
通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。
2.1 多体系统动力学研究状况多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。
从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。
本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。
2.1.1 多体系统动力学研究的发展机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。
计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。
数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。
计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。
两者共同构成计算机辅助工程(CAE)技术的重要内容。
多体系统是指由多个物体通过运动副连接的复杂机械系统。
多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。
它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。
【2019年整理】第2章多体系统动力学基本理论

多刚体系统动力学是基于经典力学理论的,多体系统中最简单的情况——自由质点和一般简单的情况——少数多个刚体,是经典力学的研究内容。多刚体系统动力学就是为多个刚体组成的复杂系统的运动学和动力学分析建立适宜于计算机程序求解的数学模型,并寻求高效、稳定的数值求解方法。由经典力学逐步发展形成了多刚体系统动力学,在发展过程中形成了各具特色的多个流派。
在国内召开的关于多体系统动力学方面的重要会议主要有:
1986年由中国力学学会一般力学专业委员会在北京主持召开“多刚体系统动力学”研讨会。
1988年在长春召开“柔性多体系统动力学研讨会”。
1992年在上海召开“全国多体系统动力学—理论、计算方法与应用学术会议”。
1996年由中国力学学会一般力学专业委员会与中国空间学会空间机械委员会联合在山东长岛召开“全国多体系统动力学与控制学术会议”。
变分方法是不同于矢量力学或分析力学的另一类分析方法,高斯最小拘束原理是变分方法的基本原理,保保夫和里洛夫从这一原理出发发展了两种不同风格的计算方法。该方法有利于结合控制系统的优化进行综合分析,而且由于其不受铰的约束数目的影响,适用于带多个闭环的复杂系统。
这几种方法构成了早期多刚体系统动力学的主要内容,借助计算机数值分析技术,可以解决由多个物体组成的复杂机械系统动力学分析问题。但是多体系统动力学在建模与求解方面的自动化程度,相对于结构有限元分析的成熟来说相差甚远。正是为了解决多体系统动力学建模与求解的自动化问题,美国Chace和Haug于80年代提出了适宜于计算机自动建模与求解的多刚体系统笛卡尔建模方法,这种方法不同于以罗伯森-维滕堡方法为代表的拉格朗日方法,它是为以系统中每个物体为单元,建立固结在刚体上的坐标系,刚体的位置相对于一个公共参考基进行定义,其位置坐标统一为刚体坐标系基点的笛卡尔坐标与坐标系的方位坐标,再根据铰约束和动力学原理建立系统的数学模型进行求解。
《动力学基础》课件

动力学研究物体之间的能量转化过程,例如动能转化为势能。
工作和功
力在物体上所做的功,用于描述能量的转移和转化。
动力学方程和解析解
动力学方程是用于描述物体运动的数学方程,通过解析解可以计算物体的位 置、速度和加速度随时间的变化。
运动状态和轨迹描述
运动状态
位置、速度和加速度是描述物体运动状态的关键参数。
牛顿力学与运动定律
1
第一定律
任何物体在受力平衡的情况下,将保持静止或匀速直线运动。
2
第二定律
物体运动的加速度与作用力成正比,与物体质量成反比。
3
第三定律
对于每一个作用力,存在一个大小相等、方向相反的反作用力。
动力学中的力和能量
力的分类
重力、摩擦力、弹力、电磁力等,作用于物体上的力会影响其运动状态。
《动力学基础》PPT课件
本PPT课件将介绍动力学基础的定义和概述,牛顿力学与运动定律,动力学中 的力和能量,动力学方程和解析解,运动状态和轨迹描述,动力学应用举例, 以及结论和总结。
动力学基础:定义和概述
动力学是研究物体运动的学科,涵盖了力、速度、加速度等关键概念。本节将介绍动力学的基本定义,并概述其在 物理学中的重要性。
轨迹描述
物体的轨迹可以是直线、曲线、圆周等各种形状。
动力学应用举例
1 机械系统
2 天体运动
3 生物力学
动力学理论在机械工程中的 应用,如车辆运动和机械结 构设计。
通过动力学模型解,如人体运动和力学特性 研究。
结论和总结
本次《动力学基础》PPT课件系统地介绍了动力学的定义和概述,牛顿力学与 运动定律,动力学中的力和能量,动力学方程和解析解,运动状态和轨迹描 述,动力学应用举例,并总结了课件内容。感谢各位的聆听!
大学精品课件:动力学2-2

质点系的动量(momentum of particle system)
n
p mi vi i 1
矢量和,没有涉及 动量的位置
m
v r
r
2v 2
质心的运动 相对质心的运动?
2mm
作用力的位置?
1
2
动量的‘位置’ 、力的‘位置’
mv
mv
5m
5m
3
动量矩 Moment of momentum (Angular momentum)
yivix )
7
平移刚体的动量对O点之矩 有无意义?
n
mi
v
vC
Lo (ri mi vi ) i 1 n
z
ri rC
(ri mi vC ) i 1 n
( miri ) vC i 1
o
y
x
(mrC ) vC
rC (mvC )
8
定轴转动刚体的动量矩
zik rxy
ri
O
n
n
Lo (ri mi v) miri (k ri )
i 1
i 1
n
n
ri '(miaC ) ( miri) aC
i 1
i 1
17
例:半径为R,质量为m的均质圆盘,静止放在光滑地面上,其 上作用有力偶,如图所示,求在力偶作用下质心的加速度,角加 速度。
y
F C
xF
解:由质心运动定理
maC 0 vC 0 rC 0
由相对质心的动量矩定理
i 1
i 1
ri zk rxy k ri k rxy
n
Lo mi (zkk rxy) (k rxy )
多体系统动力学基本理论

The orientation cosine matrix is A A1 A2 A3 (i j k i3 j3 k3 )
k 2 (k3 ) k (k1 )
j3
j2
1
i
j
k i1 k2 k k1 sin j2 cos k2 sin (sin i3 cos j3 ) cos k3 i1 i2 cos i3 sin j3 k2 k3
i1 j1 k1
cos sin 0 A1 sin cos 0 0 0 1
i
i1 (i2 ) i3
j
i1 j1 k1
i1 i2 j j 1 A2 2 , k1 k 2
(i1 )
i2 j2 k2
0 0 1 A2 0 cos sin 0 sin cos
i2 j2 k2
(k 2 )
i3 j3 k3
i2 i3 cos sin 0 j2 A3 j3 , A3 sin cos 0 k 2 k3 0 0 1 i i1 i2 i3 j j j j A1 1 A1 A2 2 A1 A2 A3 3 k k1 k 2 k3
Name DADS ADAMS Formulation method Newton Euler First Lagrange Results Time history Animation Time history Animation Frequency Response Time history
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
若求解的结果为正,所设指向正确;为负则指向与假设相反。
28
返回主目录
回顾:约束力
1)可确定约束力方向的约束
柔性约束:
光滑约束:
约束力只能是沿柔 性体自身的拉力。
约束反力是沿接触 处的公法线且指向 物体的压力。
FT1
FT2
W
W
G1
G2
O
FN
G FN1
FN1
FN2
滚动支承(滚动铰):
反力作用线过铰链中心且垂直于支承面,指向待定
FA
FB
滚动 支座
A
A
B
C
滚动(铰)支承
可动铰
FC
24
(实际约束中F方向也可以向下)
约束力方向与所能限制的物体运动方向相反。
2)可确定约束反力作用线的约束
滑道、导轨:
约束反力垂直于滑道、导轨,指向亦待定。
滑道 滑块
FN
FN
导轨 滑套
A FA
且可求得: F1=940N, F2=342N 。
10
例2.3 求图示作用在O点之共点力系的合力。
解:取坐标如图。 合力在坐标轴上的投影为:
FRx=Fx=-400+250cos45-200×4/5 =-383.2 N
FRy=Fy=250cos45-500+200×3/5 =-203.2N
y F4=200N F3=500N
➢力偶的作用效果
改变刚体转动状态 引起变形体扭曲
力和力偶视作力学中表征物体相互机械作用的二个基本要素。
力偶的性质
(1)保持力偶矩矢量不变,分别改变力和力 偶臂大小,其作用效果不变。
(2)只要保持力偶矩矢量不变,力偶可在作 用面内任意移动,其对刚体的作用效果不变。
F F´
F
F´
(3)只要保持力偶矩矢量大小和方向不变,力偶可 在与其作用面平行的平面内移动。
26
约束力方向与所能限制的物体运动方向相反。
4)几种常见约束
FAy
空间
A
FAz
FAx
球铰
FAy
FBy
FAz
A FAx FBz
一对轴承
FAy My
Mz B FAz
A Mx
固定端
空间球铰 一对轴承 固定端
反力是过球铰中心的FAx、FAy、FAz 3个分力。
共5个反力。允许绕 x 轴转动;x方向有间隙。
17
c)平面力偶系的合成
h1
h2
F1
ห้องสมุดไป่ตู้
F2
h1
F1+
F2h2 h1
M=F1h1+F2h2
合力偶定理
若干个力偶组成的力偶系,可以合成为一个合 力偶。平面力偶系的合力偶之矩等于力偶系中 各力偶之矩的代数和。
M=Mi
18
力和力偶视作力学中表征物体相互机械作用的二个基本要素。
比较: 力
力偶
使物体沿力的作用 线移动。
1)可确定约束力方向的约束 柔性约束:
约束力只能是沿柔性体自身的拉力。
FT1
FT2
FT1
FT1
W
FT2
FT2
绳索约束 皮带约束
结论:柔性约束的约束反力通过连接点,沿柔索的
中心线而背离物体的拉力。
21
约束力方向与所能限制的物体运动方向相反。
1)可确定约束反力方向的约束
光滑约束:
约束反力是沿接触处的公法线且指向物体 的压力。
34
例 2.5 连杆滑块机构如图,受力偶 M和力F作用, 试画出其各构件和整体的受力图。
解: 研究系统整体、杆AB、BC(二力杆)及滑块C。
B
FAy
M
A
FAx
C F
FC
FBC
B
B
FAy
M FBC
A FAx
FCB
CF
F2
F1
a b cx 合力的投影
合力: FR = FR2x FR2y =
2
Fx
2
Fy
y
tan = FRy = Fy
FRx
Fx
表示合力FR与 x轴所夹的锐角,
合力的指向由FRx、FRy的符号判定。
FRx
FRy FR
x
9
例2.1 图中固定环上作用着二个力F1和F2,若希望
得到垂直向下的合力F=1kN,又要求力F2尽
使物体在其作用平面 内转动。
力是矢量 (滑移矢)
力偶是矢量(自由矢) 平面力偶是代数量
共点力系可合成为 一个合力。
平面力偶系可合成 为一个合力偶。
合力投影定理有:
FRx=F1x+F2x+…+Fnx=Fx FRy=F1y+F2y+…+Fny=Fy
合力偶定理: M=Mi
19
返回主目录
2.3 约束与约束力
5
3
4
O
FR
F2=250N 45 F1=400N
x
y
合力为: FR = FR2x FR2y=433.7N;
=arctan(203.2/383.2)=27.9 在第三象限,如图所示。
F2
F1
FR
Ox
F4 F3
11
3. 二力平衡:
若刚体在二个力的作用下处于平衡,则此二力必大 小相等、方向相反、且作用在两受力点的连线上。
1
一般问题
(复杂问题)
抽象与简化 分析求解
验证
基本问题:
(1)受力分析—分析作用在物体上的各种力 弄清被研究对象的受力情况。
(2)平衡条件—建立物体处于平衡状态时, 作用在其上各力组成的力系 所应满足的条件。
(3)应用平衡条件解决工程中的各种问题。
2
返回主目录
第二章 刚体静力学基本概念与理论
2.1 力 2.2 力偶 2.3 约束与约束反力 2.4 受力图 2.5 平面力系的平衡条件
量小,试确定q角和F1、F2的大小。
解:力三角形如图。有
F1/sinq=F/sin(180-20-q)
F2/sin20=F/sin(180-20-q) 由F2最小的条件,还有
F2 q FR
F2
20
q FR
F1 20
F1
dF2/dq=-Fsin20cos(160-q)/sin2(160-q)=0
故可知: q=70时, F2最小。
F
Fy
O
Fx
x
Fy O Fx
x
Fy
x
O
Fx
O Fx x
分力Fx=?
可见, 力 F在垂直坐标轴 x、y上的投影分量与沿轴
分解讨的论分:力大力小的相投等影。与分量
力 F在相互不垂直的轴 x、y'上的投影分 量与沿轴分解的分力大小是不相等的。
力在任一轴上的投影大小都不大于力的大小。 而分力的大小却不一定都小于合力。
二力杆
FC
B
C
G
二力构件: 二力沿作用点连线,指向亦待定。 25
约束力方向与所能限制的物体运动方向相反。 3)可确定作用点的约束
固定铰链: 约束反力FRA,过铰链中心。 大小和方向待定,用FAx、FAy表示。
y
FAy
FA FAy
A
FAx x A
FAx
固定铰链
C
FCx
FCy 中间铰
中间铰: 约束力可与固定铰同样表示。
非自由体: 运动受到限制的物体。
吊重、火车、传动轴等
FT
。
W
约束:
限制物体运动的周围物体。如绳索、铁轨、轴承。
约束力: 约束作用于被约束物体的力。
是被动力,大小取决于作用于物体的主动力。
作用位置在约束与被约束物体的接触面上。
作用方向与约束所能限制的物体运动方向相反。
20
返回主目录
约束力方向与所能限制的物体运动方向相反。
力是矢量: 力的作用效果,取决于大小、方向、作用点。
单刚位体:--N不o考r 虑kN内;效应;则力可沿其作用线滑移。 力三不要可素直成接为度力量的。大可小以、度方量向的和是作其用效线应。, 作因用此效,应对相于同刚,体则而力言系,等力效是。滑移矢。
力作的用合力成和满反足作矢用量力加:法规力则是。成对出现的,作用在 若不干同个的共物点体力上,,可等以值合、成反为向一、个共合线力。。
6
解析法(投影求和法)
力F在任一轴 x 上的投影, 等于力的大小乘以力与轴正 向夹角的余弦。 有:
Fx=Fcos
力的投影是代数量。
F
Fx
x
力在任一轴上的投影
或者:力在任一轴上投影的大小等于力的大小乘 以力与轴所夹锐角的余弦,其正负则由从力矢量 起点到终点的投影指向与轴是否一致确定。
7
y
F
y
F
y
F
一对轴承
FAy My
Mz B FAz
A Mx
固定端
FAy 平面 A
FAx
FAy
FBy
A FAx
B
FAy
MA A FAx 固定端
约束力方向与所能限制的物体运动方向相反。
指向不能确定的约束反力,可以任意假设。
若求解的结果为正,所设指向正确;为负则指向与假设相32反。
返回主目录
2.4 受力图
画受力图是对物体进行受力分析的第一步, 也是最重要的一步。
W
G1
G2
O
G
FN
FN1
FN1 FN2
FN2
FN3
光滑约束(接触面法向压力)
FN
22
约束力方向与所能限制的物体运动方向相反。