《电机及拖动(第5版_许晓峰)PPT课件51486(按节编辑) 7.5 微型同步电动机

合集下载

电机及拖动课件PPT

电机及拖动课件PPT

已知总槽数Z、极对数p和相数m为,则
电机绕组: 产生感应电势、产生磁势
电角度表示,定义为360°空间电角度。
每一相绕组都有首端,又有末端,以A相为例,则三相绕组A-X、B-Y、C-Z、在空间上分布为A-Z-B-X-C-Y共有六部分,即总的绕组应
分为六部分,分属AZBXCY,每一部分在每极下占有的电角度称为相带,一般用600相带
定义( n0- n )为转差,把转差与同步转速n0 之比的百分值 叫做转差率S。即:
S= ( n0 -n )/ n0 *100%
N
如果用一原动机或其它
T
转矩去拖动异步电动机,
使它的转速超过同步转速,
n >n0 ,S<0,旋转磁场切割转
n0
子导体的
n
方向相反,导体中的电动势与电流方向都反向。由左手 定则知电磁力与旋转磁场和转子的旋转方向相反,这是制动 转矩。这时原动机对异步电动机输入机械功率,而通过电磁 感应由定子向电网输送电功率,电动机处在发电机状态。
• 每个极面下每相占有的槽数。已知总槽数Z、 极对数p和相数m为,则
q Z 2 pm
q>1——分布绕组 整数槽绕组——q为整数 分数槽绕组——q为分数
槽距角
• 相邻两槽之间的电角度
已知总槽数Z、极对数p:α=(P×360)/Z
N
S
N
S
α
A Z B X C Y A ZB X C Y
槽电动势星形图
E E 0
所以该电机被称为异步机q1,也叫感y应1 电机。
E y1
E y1(q
1)
Eq1 qEy1kq1
一个线圈组电动势的有效值为 9异步电动机的参数测定
绘出短路特性曲线IK =f(UK)和PK = f(UK)。

机电传动控制(第五版)完整及其复习ppt课件

机电传动控制(第五版)完整及其复习ppt课件
总复习
第一章 概述
• 定义:以电动机为原动机(动力源)驱动生产机 械的系统的总称。
• 目的:将电能转换为机械能,实现生产机械的启 动、停止及速度调节,满足各种生产工艺过程的 要求,保证生产过程的正常进行。
编辑版pppt
1
机电传动技术的发展
• 动力源:蒸汽机,内燃机,电动机 • 机电传动方式:
成组拖动:一台电机拖动多台设备,老方式,传 动机构复杂,效率低。 单电机拖动:一台电机拖动一台设备,比成组方 式进步。 多电机拖动:多台电机拖动一台设备,现代的传 动方法。
编辑版pppt
15
2、机电系统稳定运行的条件
1) 必要条件
☞ 电动机的输出转矩TM和负载转矩TL大小相等,
方向相反。
☞ 从T—n 坐标上看,就是电动机的机械特性曲线 n =f(TM)和生产机械的机械特性曲线n =f(TL)
必须有交点,交点被称为平衡点。
编辑版pppt
16
2) 充分条件
☞ 系统受到干扰后,要具有恢复到原平衡状态的 能力,即:
编辑版pppt
12
直线型负载特性
☞ 直线型负载的负载转矩TL的大小与转速n的大小
成正比,即 :
TLCn
其中:C为常数。
特性曲线如图所示。
编辑版pppt
13
恒功率型负载特性
☞ 恒功率型负载的负载转矩TL的大小与转速n的
大小成反比,即
TL
C n
其中:C为常数。例如机床。
特性曲线如图所示。
☞ 实际应用中,负载可能是单一类型的,也可以是几种 类型的复合。
☞ 正转时,在第一象限; 反转时,在第三象限。
编辑版pppt
23
2、人为机械特性

电机及拖动基础(第5版)课件:控制电机

电机及拖动基础(第5版)课件:控制电机
当控制电压Uc=0时,Ic=0,电磁转矩T=0,
电动机立即停转。保证了电动机无“自转”
现象,所以直流伺服电动机是自动控制系 统中一种很好的执行元件。
电枢控制
《电机及拖动基础》(第5版) 控制电机
一、直流伺服电动机

机械特性
n UC Ra T Ce CeCT 2

调节特性 T一定时的n=f(Uc)
交流伺服电动机的原理图
自转现象:
当转子转动起来以后,控 制信号消失,即断开控制 绕组,变成单相时,电动 机仍然能够转动。
《电机及拖动基础》(第5版) 控制电机
“自转”的消除:增加伺服电动机的转子电阻。
变成单相后,电磁转矩>0, 与转速的方向相同,电动 机仍然能够转动。
变成单相后,电磁转矩<0, 与转速的方向相反,制动 作用,电动机立即停传。
不同T时的调 特族是线性的
与他励 直流电 动机改 变电枢 电压时 的人为 机特相 似。
不同Uc时的机 特族是线性的
始 动 电 T1 压
T一定 Uc越大 n越高
控制电压UC越大,则n=0时对应 的起动转矩T也越大,越利于起动。
控制电压UC<始动电压Uc0,电 动机不转—“失灵区”。同样的 T下,失灵区越小,灵敏度越高。
生一个旋转电动势Erq,其有效值为:
Erq CqΦd n
转子绕组中将产生
交流电流Irq
Irq产生 Φq ( kErq )
略电抗, 两者同相
E2 4.44 f1N2KN2Φq 即 E2 C1n
结论:异步测速发电机输出 绕组N2中所产生的感应电动 势E2的大小与转速n成正比。
《电机及拖动基础》(第5版) 控制电机
自控系统对测发的主要要求:

合肥工业大学顾绳谷《电机及其拖动基础》第五章ppt讲义

合肥工业大学顾绳谷《电机及其拖动基础》第五章ppt讲义
f2 = 60 = 60 ns = sf1
f2为转差频率,转子电流形成的转子磁 为转差频率,转子电流形成的转子磁 动势F 的旋转方向与F 的旋转方向相同, 动势 2的旋转方向与 1的旋转方向相同, 它相对于转子的转速为∆n, 它相对于转子的转速为 ,而相对于定 子的转速为∆n+n=ns 子的转速为
机电系 3
(二)磁动势平衡 转子磁动势F 与定子磁动势F 相对静止,得到合成磁动势F 转子磁动势 2与定子磁动势 1相对静止,得到合成磁动势 1+F2
& 负载时 F1 + F2 = Fm → Bm (Φ m )
& 空载时 F10 = Fm 0 → Bm 0 (Φ m 0 )
电动机从空载到负载,定子绕组的感应电动势的变化很小, 电动机从空载到负载,定子绕组的感应电动势的变化很小,差不 多和电源电压相平衡。所以, 多和电源电压相平衡。所以,可以近似认为
X2 X s = arctg 2 R2 / s R2
R2 上产生的功耗,实质上表征了异步电动机的 在附加电阻 上产生的功耗, s 机械功率
(二)绕组归算 由转子磁动势不变
0.9 m1 N1kW 1 & m N k & ′ I 2 = 0.9 2 2 W 2 I 2 2 p 2 p
′ I2 =
1 I2 ki
励磁支路的电动势方程式
& & E1 = − I m Z m
机电系 13
几种异步电动机的典型运行情况 1、空载运行 、
s≈0
1− s ′ R2 → ∞ s
2、额度负载下运行 s N ≈ 0.05 、 转子电路基本上是电阻性的,功率因数较高。 转子电路基本上是电阻性的,功率因数较高。 3、起动时的情况 、

电机及拖动基础(第5版)课件:变压器

电机及拖动基础(第5版)课件:变压器

电力变压器的I0主要是用于建立空载磁场的感性无功 电小流,漏,阻其值抗很压小降,I一0Z般1很<小2%略IN去,而, 电电动力势变平压衡器方的程漏式阻可抗近Z1似也为很:
变压器
《电机及拖动基础》(第5版) 变压器
变压器
变压器是一种静止的交流电气设备,它利用电磁 感应原理,将一种等级的交流电压和电流转变成同频 率的另一种等级的交流电压和电流。它对电能的经济 传输、灵活分配和安全使用具有重要的意义;同时, 它在电气的测试、控制和特殊用电设备上也有广泛的 应用。
本章主要叙述一般用途的电力变压器有工作原 理、分类、结构和运行特性。
解:
I1N
SN 560103 32.33A 3U1N 3 10000
I2N
SN
560 103
A 808.29A
3U2N 3 400
《电机及拖动基础》(第5版) 变压器
第二节 单相变压器的空载运行
一般电工惯例来规定图
一、空载运行时的物理状况 中各物理量的正方向
1)同一条支路中,电压
变压器的一次绕组接在额定电压 u的正方向与电流i的
《电机及拖动基础》(第5版) 变压器
1.铁心
立体卷铁心
立体卷铁心 三维立体卷铁心层间没有接
缝,磁通方向与硅钢片晶体取向完全一致,没 有接缝处磁通密度的畸变现象。具有空载电流 低,空载损耗小,噪声低、结构紧凑与占地面 积小等优点。
《电机及拖动基础》(第5版) 变压器
2.绕组 变压器中的电路部分,小型变压器一般用具有 绝缘的漆包圆铜线绕制而成,对容量稍大的变 压器则用扁铜线绕制。
(3)波纹片 图3-2b中的波纹片是特殊的一种碳钢材料,它即 是连接油箱的散热管片(道)又可起到热胀冷缩作用,其热胀冷 缩作用可取代图3-2a中的储油柜作用。所以目前2000KV.A及 下,10/0.4kV的油浸式电力变压器均采用波纹片式的,储油 柜(油枕)式已很少生产。 (4)分接开关 变压器运行时,输出电压可控制在允许的变 化范围内,通过分接开关改变一次绕组匝数,使输出电压

第7章电力拖动自动控制系统运动控制系统第5版ppt课件

第7章电力拖动自动控制系统运动控制系统第5版ppt课件
矢量控制系统通过矢量变换和按转 子磁链定向,得到等效直流电动机 模型,然后模仿直流电动机控制。
直接转矩控制系统利用转矩偏差和 定子磁链幅值偏差的符号,根据当 前定子磁链矢量所在的位置,直接 选取合适的定子电压矢量,实施电 磁转矩和定子磁链的控制。
内容提要
异步电动机动态数学模型的性质 异步电动机三相数学模型 坐标变换 异步电动机在正交坐标系上的动态数学
7.3.1 坐标变换的基本思路
当观察者也站到铁心上和绕组一起旋转 时,在他看来,d和q是两个通入直流而 相互垂直的静止绕组。
如果控制磁通的空间位置在d轴上,就和 直流电动机物理模型没有本质上的区别 了。
绕组d相当于励磁绕组,q相当于伪静止 的电枢绕组。
7.3.1 坐标变换的基本思路
图7-4 静止两相正交坐标系和旋转正交坐标系 的物理模型
7.3.1 坐标变换的基本思路
图7-3 三相坐标系和两相坐标系物理模型
7.3.1 坐标变换的基本思路
两相绕组,通以两相平衡交流电流,也 能产生旋转磁动势。
当三相绕组和两相绕组产生的旋转磁动 势大小和转速都相等时,即认为两相绕 组与三相绕组等效,这就是3/2变换。
7.3.1 坐标变换的基本思路
虽然电枢本身是旋转的,但由于换向器和电 刷的作用,闭合的电枢绕组分成两条支路。 电刷两侧每条支路中导线的电流方向总是相 同的。
7.3.1 坐标变换的基本思路
当电刷位于磁极的中性线上时,电枢磁动势 的轴线始终被电刷限定在q轴位置上,其效 果好象一个在q轴上静止的绕组一样。
但它实际上是旋转的,会切割d轴的磁通而 产生旋转电动势,这又和真正静止的绕组不 同。
7.3.2 三相-两相变换 (3/2变换)
三相绕组A、B、C和两相绕组之间的 变换,称作三相坐标系和两相正交坐 标系间的变换,简称3/2变换。

概述电机及其拖动PPT课件

概述电机及其拖动PPT课件

(1—3)
磁场强度单位为安/米(A/m)。
第14页/共26页
(4)磁动势F
F I W (1—4)
磁动势的方向由产生它的线圈电流按右手螺旋定则确定。磁动势的单位是安匝或 安。
(5)磁阻Rm 磁阻与磁路的平均长l,磁路截面S及磁路的磁导率μ有关,即
(1—5)
R
l
S
第15页/共26页
2.磁性材料 可分为磁性材料与非磁性材料两大类。
描述磁场强弱及方向的物理量是 磁感应强度B。
第13页/共26页
(2)磁通
用Φ表示 Φ=BS 及 B=Φ/S (1—1)
当截面S与不垂直,S的法线与B的夹角
为α,则 BS cos
(1—2)
磁通的单位为韦伯(Wb) 1T=1Wb/m2
(3)磁场强度H
导介率质μ中之某比点。H的磁感B应强/ 度B与介质磁

m
F
i f
(1—11)
式中:Rm为l段的磁阻,单位为1/H;
Rm l / S, m 1/ Rm
为l段的磁导,单位为H。
第21页/共26页
m
6.电磁感应定律 当感应电动势的正方向与产生它的磁通正方向符合右手螺旋定则时,见图1-6(a)及
图1-7。感应电动势e可用下式表示: (1—12)
e W d dt

式中,将1穿入闭合面的2 磁
3
通取正号,穿出闭合面的
磁通取负号。
1 2 3 0
(1—8)
称为磁路基尔霍夫第一定
律 。 0
第20页/共26页
(2)磁路基尔霍夫第二定律
(1—9)
称为磁路基尔霍夫第二定律。
F
Hl

5.磁路的欧姆定律

电机及拖动基础优秀PPT完整PPT

电机及拖动基础优秀PPT完整PPT
电机及拖动基础
iax I m
转子绕组作“两并一串”联接, 并且通入直流后所建立的磁动 势和磁场的基波分布图
iby
1 2
Im
icz
1 2
Im
绕线转子异步电动机的转子绕组通入直流电流 后,就成为一个电磁铁。
不论旋转磁极与电磁铁在起始时的相对位置如 何,结果总是旋转磁极的N极和S极分别与电磁铁 的S极和N极相吸。旋转磁极以同步转速旋转,则 必然拉着电磁铁也以同步转速旋转。这时异步电 动机就作同步运行。
恒功率、变励磁、不 计凸极效应时同步电 动机的电动势相量图
(二)转速特性及起动步骤
无平均电磁 转矩的情况
(s)t0
Te(t)
m UE0
Xds
sins
t
0
m U2
2s
1 Xq
1 Xd
sin2s
t
0
T
平均电磁转矩 Teav 0 Te(t)dt 0
第二节 无换向器电动机——自控式同步电动机 一、分类
串并联式
涡轮式
永磁同步电动机的转子结构图
2、磁路与参数问题 永磁体为横向结构的永磁同步电动机磁路示意图
3、起动问题
永磁同步电动机起动特性
1——异步转矩 2——发电机制动转矩 3——磁阻转矩 4——合成转矩
三、步进电动机
三相反应式步进电动机示意图
位置一
位置二
位置三
三相反应式步进电动 机的典型结构示意图
有最大电 磁转矩
无电磁转矩
有最大电 磁转矩
三、特点
1、维护简便 2、调速范围宽 3、控制方便 4、电动机能够使用于条件较恶劣的场合 5、快速性好
第三节 其他同步电动机
一、磁阻同步电动机
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小结
教学重点: 1 掌握永磁式同步电动机不能自起动的原因 2 掌握反应式同步电动机何时进入异步运行 3 掌握磁滞式同步电动机自起动能力
教学难点: 磁滞转矩和涡流转矩的作用
作 业: P217:7.11
7.5.1 永磁式同步电动机
微型同步电动机根据转子型式的不同,主要有永磁式、反应 式和磁滞式三种类型。 定子结构:三种形式的定子结构相同 ⑴ 三相绕组通入三相交流电 ⑵ 两相绕组通入两相电流(单相电源通过电容分相) ⑶ 单相罩极式 目的:产生旋转磁场; 区别:转子的结构形式和材料差别很大
由于这三种电机的转子上没有励磁绕组,也不需要电刷和 滑环,因而具有结构简单、运行可靠、维护方便等优点。
步转矩,电动机因失步而进入异步运行状态。
2.反应式同步电动机不能自起动 采取措施:转子上设供异步起动用的笼型绕组作起动绕组。
3.反应式同步电动机的特点 优点:结构简单、成本低廉、运行可靠; 缺点:功率因数较低,不能自行起动。
第7章 微特电机
7.5.3 磁滞式同步电动机
磁滞式同步电动机的转子铁心用硬磁材料做成,结构为隐极式。
1.磁滞式同步电动机的工作原理:
定子旋转磁场相对转子转动以后,转子磁分子也随着一起旋转。
第7章 微特电机
2.磁滞式同步电动机的特点:
优点:具有自起动能力,结构简单,工作可靠,运行 噪 声低,既可同步运行,又能异步运行。
缺点:效率和功率因数低,材料利用率低,电机重量和尺 寸大,价格较高。
第7章 微特电机
3.永磁式同步电动机的特点:出力大,体积小,耗电小,结构 简单可靠,在自动控制系统中得到广泛应用。
第7章 微特电机
7.5.2 反应式同步电动机
第7章 微特电机
1.反应式同步电动机即磁阻转
矩而工作的,又称为磁阻电动机。 最大同步转矩发生在δ=45°时,当负载转矩大于最大同
第7章 微特电机
*7.5 微型同步电动机
教学内容: 7.5.1 永磁式同步电动机
7.5.2 反应式同步电动机 7.5.3 磁滞式同步电动机 7.5.4 微型同步电动机的应用
教学目的与要求:
1 了解微型同步电动机的基本结构 2 掌握微型同步电动机的工作原理及其特点 3 了解微型同步电动机的实际应用
第7章 微特电机
第7章 微特电机
转子由永久磁钢制成,可以做成两极,也可做成多极。
1.永磁式同步电动机的工作原理
定子旋转磁场吸引转子磁极,带动转子一 起旋转。转子转速为:
n n1 60 f / p( r / min)
2.永磁式同步电动机不能自起动原因: ⑴ 转子本身存在惯性; ⑵ 定转子磁场之间转速相差过大。
永磁式同步电动机的工作原理
相关文档
最新文档