信号与系统8.离散时间信号的复频域分析
离散时间信号与系统的复频域分析——z变换ppt

其他特 VIP专享精彩活动
权
VIP专属身份标识
开通VIP后可以享受不定期的VIP随时随地彰显尊贵身份。
专属客服
VIP专属客服,第一时间解决你的问题。专属客服Q全部权益:1.海量精选书免费读2.热门好书抢先看3.独家精品资源4.VIP专属身份标识5.全站去广告6.名
6.6.1 数字滤波器的概念
与模拟滤波器相对应,在离散系统中 广泛应用数字滤波器。它的作用是利用离 散时间系统的特性对输入信号波形或频谱 加工处理。或者说,把输入的数字信号通 过一定的运算关系变成所需要的输出数字 信号。
数字滤波器一般可以用两种方法来实 现:一种方法是用数字硬件装配成一台专 门的设备,这种设备称为数字信号处理机; 另一种方法就是将所需要的运算编制成程 序利用计算机软件来实现。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
档消耗一个共享文档下载特权。
年VIP
月VIP
连续包月VIP
享受100次共享文档下载特权,一次 发放,全年内有效
赠每的送次VI的发P类共放型的享决特文定权档。有下效载期特为权1自个V月IP,生发效放起数每量月由发您放购一买次,赠 V不 我I送 清 的P生每 零 设效月 。 置起1自 随5每动 时次月续 取共发费 消享放, 。文一前档次往下,我载持的特续账权有号,效-自
第6章 离散时间信号与系统的复 频域分析——z变换
6.1 z 变 换 的 定 义 6.2 常 用 序 列 的 z 变 换 6.3 z 变 换 的 性 质 6.4 逆 z 变 换 6.5 离散系统的z域分析 6.6 数 字 滤 波 器 6.7 用MATLAB进行z域分析
数字信号处理知识点总结

数字信号处理知识点总结《数字信号处理》辅导一、离散时间信号和系统的时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:是连续信号的特例。
时间和幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间和幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。
注意正弦周期序列周期性的判定(课本第10页)2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即()()i x n x n iL ∞=-∞=-∑当L N ≥时,()()()N x n x n R n =当L N <时,()()()N x n x n R n ≠(4)序列的分解序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+-1()[()()]2o x n x n x M n *=--(4)序列的运算 1)基本运算2)线性卷积:将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求和——翻转、移位、相乘、求和定义式:1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积的计算:A 、图解B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求和(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3.22进行练习(5)序列的功率和能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑(6)相关函数——与随机信号的定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统的输入分别为1()x n 和2()x n ,输出分别为1()y n 和2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统的输对于任意给定的常数a、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
期末复习资料(信号与系统)

《信号与系统》期末复习材料一、考核目标和范围通过考核使学生了解和掌握信号与系统的基本原理、概念和方法,运用数学分析的方法解决一些简单问题,使学生在分析问题和解决问题的能力上有所提高,为学生进一步学习后续课程打下坚实的基础。
课程考核的命题严格限定在教材第1—8章内,对第9、10章不做要求。
二、考核方式三、复习资源和复习方法(1)教材《信号与系统》第2版,陈后金,胡健,薛健编著,清华大学出版社,北方交通大学出版社,2003年。
结合教材习题解答参考书(陈后金,胡健,薛健,钱满义,《信号与系统学习指导与习题精解》,清华大学出版社,北京交通大学出版社,2005)进行课后习题的练习、复习。
(2)离线作业。
两次离线作业题目要熟练掌握。
(3)复习方法:掌握信号与系统的时域、变换域分析方法,理解各种变换(傅里叶变换、拉普拉斯变换、Z变换)的基本内容、性质与应用。
特别要建立信号与系统的频域分析的概念以及系统函数的概念。
结合习题进行反复练习。
四、期末复习重难点第1章信号与系统分析导论1. 掌握信号的定义及分类。
2. 掌握系统的描述、分类及特性。
3. 重点掌握确定信号及线性非时变系统的特性。
第2章信号的时域分析1.掌握典型连续信号与离散信号的定义、特性及其相互关系。
2.掌握连续信号与离散信号的基本运算。
3.掌握信号的分解,重点掌握任意连续信号分解为冲激信号的线性组合,任意离散信号分解为单位脉冲序列的线性组合。
第3章系统的时域分析1.掌握线性非时变连续时间系统时域描述。
2.掌握用卷积法计算连续时间系统的零状态响应3.掌握离散时间系统的时域描述。
4.掌握用卷积法计算离散时间系统的零状态响应。
第4章周期信号的频域分析1.掌握连续周期信号的频域分析方法。
2.掌握离散周期信号的频域分析方法。
第5章非周期信号的频域分析1.掌握常见连续时间信号的频谱,以及Fourier变换的基本性质及物理含义。
2.掌握连续非周期信号的频域分析。
3.掌握离散非周期信号的频域分析。
信号与系统课件--第6章 离散信号与系统的频域分析

fN(k)2 1nN F(ej n0)ej0n
k 0
09.01.2021
f(k)21 2F(ej)ejkd
信号与系统
第6章 离散信号与系统的频域分析
f (k) 1 F(ej)ejkd
2 2
F(ej)
f (k)e jk
k
f (k)
k
09.01.2021
F(ej)F(ej)ej()
信号与系统
1
F (ej)
1-a
F (ej) 1 1+a
1 1+a
1 1-a
- 2
-
o
- 2
-
o
arctan
a 1-a 2
arctan
a
1-a 2
- 2
-
o
- arctan
a
1-a 2
09.01.2021
(a )
- 2
-
o
图 6.2-2 akε(k)及其频谱
- arctan
a
1-a 2
信号与系统
(b )
(6.1-11)
n=0, ±N, ±2N, …
第6章 离散信号与系统的频域分析
据式(6.1 - 11)就可画出f(k)的频谱图,但此频谱图的绘制比较
困难。为了更方便地绘制f(k)的频谱图,我们采用与连续时间
矩形脉冲信号频谱绘制相似的方法, 先分析Fn的包络。 为
此,将(6.1 - 11)式中的 2 n 用连续变量ω来代换, 即有 N
2
第6章 离散信号与系统的频域分析 5. f(k)=1
2 12 n ( 2 n) e j k d 2 1 () e j k d 2 1
由此可见, 1
对应的离散时间傅里叶变换为 (2n) ,因
信号与系统刘树棠课后答案

信号与系统刘树棠课后答案【篇一:信号与系统复习指导】>本课程是电子信息与电气类专业本科生的一门重要的专业基础课程。
它主要讨论信号、线性时不变系统的分析方法,并通过实例分析,向学生介绍工程应用中的重要方法。
通过这门课程的学习,提高学生的分析问题和解决问题的能力,为学生今后进一步学习信号处理、网络分析综合、通信理论、控制理论等课程打下良好的基础。
本课程需要较强的数学基础,其主要任务是运用相关数学方法进行信号与线性时不变系统分析。
注重结合工程实际。
先修课程:“高等数学”、“大学物理”、“电路分析”等。
□ 课程的主要内容和基本要求1. 信号与系统的基本概念(1) 掌握信号的基本描述方法、分类及其基本运算。
(2) 掌握系统的基本概念和描述方法,掌握线性时不变系统的概念。
2. 信号与系统的时域分析(1) 掌握卷积积分的概念及其性质。
(2) 掌握卷积和的概念及计算。
(3) 掌握连续信号的理想取样模型及取样定理。
3. 连续时间信号与系统的频域分析 (1) 掌握周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(3) 掌握信号的频谱的概念及其特性。
(4) 掌握系统对信号响应的频域分析方法。
(5) 掌握系统的频域传输函数的概念。
(6) 掌握理想低通滤波器特性,了解系统延时、失真、因果等概念。
(7) 掌握线性系统的不失真传输条件。
4.离散时间信号与系统的频域分析 (1) 理解周期信号的傅里叶级数展开。
(2) 掌握傅里叶变换及其基本性质。
(4) 掌握系统的频率响应。
(5) 掌握系统对信号响应的频域分析方法。
5. 连续时间信号与系统的复频域分析(1) 掌握单边拉普拉斯变换的定义和性质。
(2) 掌握拉普拉斯反变换的计算方法(部分分式分解法)。
(3) 掌握系统的拉普拉斯变换分析方法。
(4) 掌握系统函数的概念。
(5) 掌握系统极零点的概念及其应用。
(6) 掌握系统稳定性概念。
(7) 掌握系统的框图与信号流图描述。
第2章 时域离散信号和系统的频域分析

3、 非周期离散信号的傅里叶变换:频率函数是周期的连续函数 4、 离散周期序列的傅里叶变换:具有既是周期又是离散的频谱,即
时域和频域都是离散的、周期的 规律:一个域的离散就必然造成另一个域的周期延拓。 1、如果信号频域是离散的,则该信号在时域就表现为周期性的时间函 数。 2、在时域上是离散的,则该信号在频域必然表现为周期性的频率函 数。 3、如果时域信号离散且是周期的,由于它时域离散,其频谱必是周期 的,又由于时域是周期的,相应的频谱必是离散的, 4、离散周期序列一定具有既是周期又是离散的频谱,即时域和频域都 是离散周期的。
对于,将以为周期进行周期延拓,得到所示的周期序列, 周期为16, 求的DFS。 可以看出,在时,处频谱的幅度和处是一样的。也就是说,点数越多, 频谱越精确。
..2 离散周期序列的傅里叶变换 各种形式的傅里叶变换 1、 非周期实连续时间信号的傅里叶变换: 频谱是一个非周期的连续
函数 2、 周期性连续时间信号的傅里叶变换: 频谱是非周期性的离散频率
例:设, f0=50 Hz,以采样频率对进行采样, 得到采样信号和时域离 散信号, 求)、和的傅里叶变换的FT。
2.5 序列的Z变换 双边Z变换的定义:序列x(n)的Z变换定义为: 式中:z是一个复变量,它所在的复平面称为z平面。 注意在定义中,对 n求和是在±∞之间求和,可以称为双边Z变换。
为单边Z变换: 适用于因果序列,如果不特别强调,均用双边Z变换对信号进行分析和 变换。 Z变换成立条件: Z变量取值的域称为收敛域。 一般收敛域用环状域表示
在模拟系统中, 的傅里叶变换为 对于时域离散系统中, ,它的傅立叶变换 对于
(
例:求对进行的周期延拓后的周期序列的傅立叶变换FT 注意:对于同一个周期信号, 其DFS和FT分别取模的形状是一样的, 不同的是FT用单位冲激函数表示(用带箭头的竖线表示)。 因此周期序列 的频谱分布用其DFS或者FT表示都可以,但画图时应注意单位冲激函数 的画法。 例:设 ,为有理数,求其FT 物理含义:的FT是在处的单位冲激函数,强度为π,且以2π为周期进行 延拓。
信号与系统—信号的频域分析

2. 指数形式傅立叶级数
连续时间周期信号可以用指数形式傅立叶级数表示为
f (t) Cn e jn0t
n =
其中
Cn
1 T
T 2 T
fT (t)e jn0t dt
2
n 1 两项的基波频率为f0,两项合起来称为信号的基波分量 n 2 的基波频率为2f0,两项合起来称为信号的2次谐波分量
n N 的基波频率为Nf0,两项合起来称为信号的N次谐波分量
3.卷积性质
若f1(t)和f2(t)均是周期为T0的周期信号,且 f1(t) C1n , f2 (t) C2n
则有 f1(t) * f2 (t) T0C1n C2n
4. 微分特性
若
则有
f (t) Cn
f '(t) jn0Cn
5. 对称特性
(1)若f(t)为实信号
则 | Cn || Cn | n n
• 周期信号f(t)可以分解为不同频率虚指数信号之和
fT (t) Cn e jn0t
n =
不同的时域信号,只是傅里叶级数的系数Cn不同, 因此通过研究傅里叶级数的系数来研究信号的特性。
Cn是频率的函数,它反映了组成信号各正弦谐波 的幅度和相位随频率变化的规律,称频谱函数。
2、频谱的表示
直接画出信号各次谐波对应的An、 Cn线状 分布图形,这种图形称为信号的频谱图。
)
例2 试计算图示周期三角脉冲信号的傅立叶级数展开式。
f (t)
-2 1 0 2
t
解: 该周期信号f (t)显然满足狄里赫勒的三个条件,Cn存在
Cn
1 T
T 2 T
f (t)e jn0t dt 1 ( 0 te jn0t dt 2 1
第五章 离散时间信号与系统的频域分析

❖ CTFT ( the Continuous -Time Fourier Transforms ): 连续时间傅立叶变换
❖ DTFT ( the Discrete -Time Fourier Transforms ): 离散时间傅立叶变换
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
RX (e j ) tg1 a sin 1 a cos
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
A eg
j 2 (k r )n N
k
n N
nN k N
Agk
j 2 (k r )n
eN
k N n N
j2 (kr)n N
Q eN
nN
0
k r
kr
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
g
Ar
1 N
j 2 rn
x(n)e N
nN
x(n)
离散时间周期信号的频谱具有周期性。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
三 . DFS的收敛:
DFS是一个有限项的级数,确定
g
Ak
的关系式也
是有限项的和式,因而不存在收敛问题,也不会产生
Gibbs现象。
DFS表明:周期序列可以而且只能分解成 N 个独立 的复指数谐波分量。
Gibbs现象。
第五章:离散时间信号与系统的频域分析
主讲教师:阎鸿森 教授 王 霞 副教授
5.3 非周期信号与离散时间傅立叶变换:
(Aperiodic Signals & Discrete-Time Fourier Transform)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用单边序列的z变换
Z {ku[k ]}
z 1
z
2
2
1 z 1 z 1
za
证明:
Z { k u [ k ] } k z k ?
k0
1
Z {u[k ]}
z 1 即
1 z 1
zk
1
k0
1 z 1
两边对z 求导 -1
k
s域到z域的映射关系:z esT
P4
江西财经大学
Jiangxi University of Finance and Economics
单边z变换的定义
z变换的定义
双边z变换
X (z)
x[k ]z k
k
z反变换
1
x[k ]
X (z )z k1dz
P8
江西财经大学
Jiangxi University of Finance and Economics
z变换的定义
常用单边序列的z变换
P9
江西财经大学
Jiangxi University of Finance and Economics
常用单边序列的z变换
Z { [k ]} 1, z 0
单边z变换的反变换
幂级数展开和长除法
由X(z)的定义,将其展开为幂级数
X ( z )
x [ k ] z k x [ 0 ] x [1 ] z 1 x [ 2 ] z 2 ....
k0
展开式中 z-k 项的系数即为x[k]。当X(z)是有
理函数时,可以通过长除的方法将其展开为
4z 2 3z 3
4z 2 8z 3 4z 4
初值定理与终值定理
P2
江西财经大学
Jiangxi University of Finance and Economics
z变换的定义
单边z变换的定义
P3
江西财经大学
Jiangxi University of Finance and Economics
单边z变换的定义
z变换的推导
理想抽样信号的拉普拉斯变换
2 πj c
物理意义:将离散信号分解为不同频率复指 数esTk的线性组合。
符号表示 x [ k ] z X ( z )
X(z)=Z{x[k]} x[k] =Z-1{X(z)}
P5
江西财经大学
Jiangxi University of Finance and Economics
z变换的定义
(2)
x[k ] 0
其它
解:
(1) X ( z )
k0
a k z k
1
1 az 1
ROC : z a
(2) X ( z ) N 1 z k 1 z N
k0
1 z 1
ROC : z 0
有限长序列 z 变换的收敛域为|z|>0
Z { k u[k ]}
1
z
1 z 1 z a
za
Z {u[k ]}
1
z
1 z 1 z 1
z 1
Z {ku[k ]}
z 1
z
2
2
1 z 1 z 1
za
P10
江西财经大学
Jiangxi University of Finance and Economics
信号与系统
制作:软件与通信工程学院《信号与系统》课程组 单位:江西财经大学
离散时间信号的复频域分析
(36)z变换的定义
单边z变换的定义
单边z变换及其收敛域
常用单边序列的z变换
(37)单边z变换的反变换
(38)单边z变换的性质
位移特性
卷积特性
z域微分特性
指数加权特性
单边z变换的反变换
定义
1
x[k ]
X (z )z k1dz
2 πj c
C为X(z) 的ROC中的一条环绕z平面原点的一 条逆时针方向的闭合曲线。
计算方法
幂级数展开和长除法
部分分式展开
留数计算法
P13
江西财经大学
Jiangxi University of Finance and Economics
x sam ( t ) x ( t ) ( t kT )
x ( kT ) ( t kT )
k
k
X sam ( s ) L [ x sam ( t )]
x ( kT ) e ksT
k
z e sT
x[k]zk X (z)
z Rx
Im z
ROC
Im z |z|=1 单位圆
R
x
Re z
Re z
1
1
P7
江西财经大学 z平Jia面ngxi University of Finance and Economics
单边z变换及其收敛域
例:求以下序列的Z变换及收敛域。
(1) x[k ] a k u[k ]
1 0 k N 1
单边z变换及其收敛域
P6
江西财经大学
Jiangxi University of Finance and Economics
单边z变换及其收敛域
单边z变换
X (z)
x[k ]z k
k 0
收敛域(ROC)
使上式级数收敛的所有z的范围。
一般右边序列的收敛域为z平
江西财经大学
Jiangxi University of Finance and Economics
例1:X z z
z 1 ,求x[k]。
z2 2z 1
解: z 2 2z 1
z 1 2z 2 3z 3 4z 4
z
z 2 z 1 2 z 1 2 4z 1 2z 2 3z 1 2z 2 3z 1 6z 2 3z 3
k
k0
k 1
z 1
1 1 z 1 2
两边同乘z-1
k
z 1
k
z 1
2
k0
1 z 1
P11
江西财经大学
Jiangxi University of Finance and Economics
单边z变换的反变换
单边z反变换
P12
江西财经大学
Jiangxi University of Finance and Economics