液力偶合器与电机尺寸
液力耦合器

液力耦合器液力耦合器液力耦合器fluid coupling以液体为工作介质的一种非刚性联轴器﹐又称液力联轴器。
液力耦合器(见图液力耦合器简图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔﹐泵轮装在输入轴上﹐涡轮装在输出轴上。
动力机(内燃机﹑电动机等)带动输入轴旋转时﹐液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转﹐将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮﹐形成周而复始的流动。
液力耦合器靠液体与泵轮﹑涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩﹐所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系﹐工作构件间不存在刚性联接。
液力耦合器的特点是﹕能消除冲击和振动﹔输出转速低于输入转速﹐两轴的转速差随载荷的增大而增加﹔过载保护性能和起动性能好﹐载荷过大而停转时输入轴仍可转动﹐不致造成动力机的损坏﹔当载荷减小时﹐输出轴转速增加直到接近于输入轴的转速﹐使传递扭矩趋于零。
液力耦合器的传动效率等于输出轴转速与输入轴转速之比。
一般液力耦合器正常工况的转速比在0.95以上时可获得较高的效率。
液力耦合器的特性因工作腔与泵轮﹑涡轮的形状不同而有差异。
它一般靠壳体自然散热﹐不需要外部冷却的供油系统。
如将液力耦合器的油放空﹐耦合器就处于脱开状态﹐能起离合器的作用。
变频器调速与液力耦合器调速的优缺点比较(一)[摘要]在风机,水泵类负载进行调速节能,先期应用的液力耦合器较多,高压变频器技术成熟后,也越来越多地得到了应用。
对于这两种调速节能的装置进行其优缺点的比较,提高对调速节能领域的了解。
[关键词]调速变频器液力耦合器一、引言风机、水泵是量大面广的普通机械,其耗电量占发电总量的30%左右,而高压电机拖动的大中型风机水泵的耗电量约占风机水泵耗电总量的50%。
目前大中型风机水泵基本上采用档板或阀门来调节风量或流量,以满足负荷变化的要求,其浪费电能相当严重,如若采用改变电机转速来实现调节风量或流量,无疑对节约能源,提高设备工作效率意义非常重大。
化工设备基础知识-液力耦合器

• 充液范围为耦合器总容积的40~80%,不
允许超出此范围,更不允许充满,因为充液 量超出容积80%,耦合器转动时,因过载而 急剧升温升压,工作液体积膨胀,耦合器内 压增大,破坏密封,引起漏液,甚至造成耦 合器壳体开裂、机械损坏。 • 而充液量少于容积的40%,轴承可能润滑不 足,耦合器得不到充分利用,且体积大,无 甚意义,建议选小一规格型号。
液力耦合器的 泵轮和涡轮组成一 个可使液体循环流 动的密闭工作腔, 泵轮装在输入轴上, 涡轮装在输出轴上。 动力机(内燃机、电 动机等)带动输入轴 旋转时,液体被离 心式泵轮甩出。
14
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传 递给输出轴。最后液体返回泵轮,形成周而复始的流动。
15
21
• 液力耦合器一般采用油介质。工作液推荐使
用32号汽轮机油、6号液力传动油、8号液力 传动油。 • 拧下注液塞,用80-100目滤网过滤工作液, 按量注入耦合器内,旋紧注液塞进行试车。 当注油塞口旋至距垂直中心线最高点约55 ,腔内工作液刚好流出时可视为耦合器能传 递较高的额定功率的较佳油位。 • 项目开车时,将由设备厂家(德国福伊特) 和开车试运小组根据实际工作负载的大小及 22 工况要求来调整充油量的多少。
大刻度之间)。 • 7、检查电源电压是否正确连接到电力系统及 传输/过程信号。 • 8、使用水/油换热器,打开水侧阀门,排空 油冷器水侧气体并检查流量。 • 9、通过VEHS位置控制单元和执行机构勺管 位置从0%到100%,检查设定值(信号420mA)。 • 10、勺管位置处在0%。 40 • 11、检查整个系统是否为运行做好准备。
17
• 旋转油环靠自身旋转所形成的压头,当遇
到勺管头时,工作液体便由勺管导出。于 是通过电动执行器操纵勺管的伸缩程度, 便可以改变导管腔内的油环厚度。由于导 管腔与工作腔连通,所以也就改变了工作 腔内的充液度,实现无级调速。勺管排出 的油通过回油三通重新回到油箱。 • 由于勺管吸油和油泵的进、出油口均与耦 合器的转向有关。所以油泵转子与勺管安 装方向要与耦合器转向相适应。也就是说 ,第一,勺头开口方向必须迎着导管腔油 18
4X562SVTL12液力耦合器讲解

>0.3bar
>1.2bar >1.2bar <1.0bar >1.2bar >1.8bar <1.5bar <0.3bar
>0.6bar 按照以上提及数值及测量点
液力耦合器的运行参数
工作油流量and执行机构
工作油流量
工作油额定流量
调速偶合器润滑油压力在 0.3bar 时
外部单元润滑油额定流量 ·全部(1.5bar,60℃)
液力耦合器讲解
仪表设备精品课程
作者——杨冠林
目录
一、液力耦合器的组成 二、液力耦合器的运行参数 三、液力耦合器的工作原理 四、常见故障排查
液力耦合器的组成
图1.1液力耦合器结构图
1.油箱壳体:调速耦合器的箱体采取整体式设计,壳体和油 箱合为一体; 2.泵轮轴和3.泵轮直接连接,泵轮轴连接电机; 4.涡轮轴和5.涡轮直接连接,涡轮轴连接泵; 6.转动外壳:泵轮上的法兰连接转动外壳使涡轮封闭于其中; 7.工作油腔:涡轮与泵轮的机械能传递在工作油腔中进行; 8.勺管腔:勺管和勺管腔是一体的,置于耦合器壳体内;
易熔塞
如果油温升至 160℃,易熔塞熔毁,工作油将从工作油腔被排入箱 体中,此时,功率传递停止,泵也停止运行。
图1.1液力耦合器结构图
液力耦合器的工作原理
转速调节
如图所示:
1.执行机构 2.勺管杆 3.勺管
4.转动外壳 5.勺管0%位 6.勺管100%位
通过改变勺管的位置来改变偶合器的工作油量可以达到无级变速的目的。 勺管位置在偶合器勺管油腔的最深处时(0%位),循环工作油量最小, 输出转速最小。 勺管位置在偶合器油腔的最外延时(100%位),循环工作油量最大, 输出转速最大。
液力耦合器

液力耦合器液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来,靠液体动量矩的变化传递力矩的液力传动装置。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
基本信息•中文名:液力耦合器•外文名:Fluid Coupling•优点:起步平稳,减少冲击等介绍液力耦合器又称液力联轴器,是一种用来将动力源(通常是发动机或电机)与工作机连接起来传递旋转动力的机械装置。
曾应用于汽车中的自动变速器,在海事和重工业中也有着广泛的应用。
液力耦合器正在加载电厂用液力耦合器动态模拟以液体为工作介质的一种非刚性联轴器,又称液力联轴器。
液力耦合器(见图)的泵轮和涡轮组成一个可使液体循环流动的密闭工作腔,泵轮装在输入轴上,涡轮装在输出轴上。
动力机(内燃机、电动机等)带动输入轴旋转时,液体被离心式泵轮甩出。
这种高速液体进入涡轮后即推动涡轮旋转,将从泵轮获得的能量传递给输出轴。
最后液体返回泵轮,形成周而复始的流动。
液力耦合器靠液体与泵轮、涡轮的叶片相互作用产生动量矩的变化来传递扭矩。
它的输出扭矩等于输入扭矩减去摩擦力矩,所以它的输出扭矩恒小于输入扭矩。
液力耦合器输入轴与输出轴间靠液体联系,工作构件间不存在刚性联接。
液力耦合器的特点是:能消除冲击和振动;输出转速低于输入转速,两轴的转速差随载荷的增大而增加;过载保护性能和起动性能好,载荷过大而停转时输入轴仍可转动,不致造成动力机的损坏;当载荷减小时,输出轴转速增加直到接近于输入轴的转速。
液力耦合器的传动效率等于输出轴转速乘以输出扭矩(输出功率)与输入轴转速乘以输入扭矩(输入功率)之比。
液力耦合器型号等

Y2-180L-4 22KW
Φ 48*110 键14
同上
6
3426
NSE100*17m
粉煤灰斗 提
YOX360 970RPM-7.5KW-6.5L DCYK200-71-Ⅲ-S编号0936-6021 同上 BSP 注:液偶安装在 编号912409 电动机轴端
Φ 35*80 键12
GC-D45130 咸阳超越 同上 离合器公 司
Y315L1-4 160kw 1500rpm
Φ 80*170 键22
同上
11
2401
N-TGD 800*118.92m
生粉入窑 斗提
YOX500
B3DH11-50 波特 KZ88-M100LB3-W兰 3KW(两台)
Φ 50*90 键14
FLEND ER
Y315S-4(两 台) 110kw 1500rpm
Φ 80*170 键22
同上
Φ 65*140 键18
同上
CKF-
8 35139 NSE150*13.25m 微粉斗提
YOX360
DCYK224-63-Ⅲ-S- Φ 40*110 A50150咸 同上 同上 阳超越离 BSP编号Z912407 键12
合器公司
Y2-160L4,15kw 1460rpm,30A
Φ 42*110 键12
Y2-160M-6 7.5kw970rpm 17A
Φ 42*110 键12
同上
7
3501
NSE200*54.98m
水泥入库 斗提
YOX450
同上
DCYK315-63-Ⅲ-S- Φ 55*110 BSP编号 键16
CKFA70190咸 阳超越离 合器公司
液力偶合器

液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。
液力耦合器演示课件

6、安装调速机构的扇形齿轮时,必须使指针在刻 度板上处于“0”位置时,勺管咀的中心至基准面 距离为138mm,处于“100”位置时,勺管咀的 中心至基准面距离为31mm。 7、安装调速机构的偏心轮时,必须使指针在刻度 板上处于“55”位置时,最大偏心外缘处于最位 置,并调节螺栓,使其顶端至基准面距离为10mm。
11
液力偶合器
静止
工作液集中在液力偶 合器的较低部分。
12
液力偶合器
起动
叶轮通过增加输入转 速加速工作液,形成 一个液流循环。
13
液力偶合器
额定运行
这样的结果是固定的 液流循环。
14
液力偶合器
七、液力偶合器的运行 :
偶合器一般可在转速比i= 20-98%范围内工作,可 实际上转速比在40%以下时偶合器中的工作油温上 升很快,偶合器运行不稳定。这是因为转速比小, 工作油油量少,工作油在泵轮里获得的升压值小, 于是排放至冷油器的油量就小,不足以冷却偶合 器的发热,致使油温上升。
8
液力偶合器
四、基本概念:
5、滑差:偶合器正常工作时,必然是涡轮转速 小于泵轮转速。泵轮、涡轮转速之差与泵轮转 速之比称为液力偶合器的转差率,又称滑差s。 s=1-i. 6、 为了使液力偶合器在长期运转中具有良好 的经济性,滑差s不应大于0.04。换句话说,从 偶合器本身来讲,应该长期处于高传动比下工 作,才能获得最佳经济效益。
15
液力偶合器
八、液力偶合器的特点:
a) 在输入轴转速不变的情况下,可获得无级变 化的输出轴转速。 b) 空载启动。离合方便,向偶合器循环园冲油 即可进行传递扭矩,平稳升速;排油即可脱离, 方便离合,可实现空载启动。 c) (相对于摩擦离合)无磨损,不怕发热,坚固 结实,安全可靠,寿命长。
液力耦合器

液力偶合器一、设备概述;液力耦合器是安装在电动机与泵之间的一种传递部件,从电机至液力偶合器和偶合器至水泵之间是采用绕性联轴器连接,而偶合器与一般的联轴器不同之处是,它是通过工作油来传递和转换能量的。
它主要由主动轴、泵轮、涡轮、从动轴以及防止漏油的旋转内套等组成,泵轮与涡轮分别装在主动轮和从动轮上,它们之间无机械联系。
旋转外套在其外缘法兰处用螺栓与泵轮相连接。
泵轮与涡轮的轴心线相重合,内腔相对布置,两轮侧板的内腔形状和几何尺寸相同,轮内装有许多径向辐射形叶片,两轮端面留有适当的间隙。
构成一个液流通道,叫工作腔,工作腔的轴面投影称为流道。
运转时,在夜里偶合器中充满工作油,当主动轮带动泵轮回转时,泵轮流道中的工作油因离心力的作用,沿着径向流道由泵轮内侧(进口)流向外缘(出口)形成高压高速油。
在出口处以径向相对速度与泵轮出口圆周速度形成合速,冲入涡轮的进口径向流道,并沿着流道由工作油动量矩的改变去推动涡轮,使其跟随泵轮作同方向旋转。
但它们的转速不可能完全相同,因液体不具有刚性,假使它们在同一转数下旋转,则工作油就不会再冲击涡轮,因而就不会发生动力传递。
一般泵轮与涡轮的转差率为3%-4% 。
油在涡轮流道中由外缘(入口)流向内侧(出口)的过程中减压减速,在出口中又以径向相对速度与涡轮出口圆周形成合速。
冲入泵轮的进口径向流道,重新在泵轮中获得能量。
如此周而复始,构成工作油在泵轮和涡轮两者间的自然环流。
在这种循环中,泵轮将输入的机械功转化为工作油的动能和压力能,而涡轮则将工作油的动能和势能转换为输出的机械功。
从而实现电动机到水泵之间的动力传递。
工作油越多,则传递的动力愈大,也就增加了涡轮的传递。
而工作油减少时,情况正与上述相反。
工作油量靠勺管来调节的,二、液力偶合器构造现以德国voith公司生产的R15K-2.E型液力偶合器为例,主要部件有;箱体、传动齿轮和轴、液力偶合器、轴承、油泵、勺管调节装置、冷油器、油滤网等。