2018年广东省普通高中学业水平考试数学科考试大纲
2018年广东省普通高中学业水平考试数学科考试大纲

2018年广东省普通高中学业水平考试数学科考试大纲Ⅰ.考试性质广东省普通高中学业水平考试是衡量普通高中学生是否达到高中毕业要求的水平测试.考试成绩可作为普通高中学生毕业、高中同等学力认定和高职院校分类提前招生录取的依据.Ⅱ.命题指导思想命题以中华人民共和国教育部2003年颁布的《普通高中数学课程标准(实验)》和本大纲为依据.试题适用于使用经全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生.试题符合水平性的考试规律和要求,体现普通高中新课程的理念,反映数学学科新课程标准的整体要求,突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识及方法分析问题、解决问题的能力.关注数学学科的主干知识和核心内容,关注数学学科及社会的联系,贴近学生的生活实际.Ⅲ.考核目标及要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序及步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等.(3)掌握:要求能够对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形及图表等手段形象地揭示问题的本质.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找及设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明. 应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合及灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.IV.考试范围、考试内容及要求依据《课程标准》,确定数学学业水平考试的范围为必修课程的五个模块和选修课程系列1,以考查必修课程内容为主.具体如下:1.集合(1)集合的含义及表示① 了解集合的含义、元素及集合的属于关系.② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系① 理解集合之间包含及相等的含义,能识别给定集合的子集. ② 在具体情境中,了解全集及空集的含义.(3)集合的基本运算① 理解两个集合的并集及交集的含义,会求两个简单集合的并集及交集.② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③ 能使用韦恩图(Venn)表达集合的关系及运算.2.函数概念及基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.② 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③ 了解简单的分段函数,并能简单应用.④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤ 会运用函数图像理解和研究函数的性质.(2)指数函数① 了解指数函数模型的实际背景.② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(3)对数函数① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念;理解对数函数的单调性,掌握对数函数图像通过的特殊点.③ 了解指数函数y=a x及对数函数y=log a x互为反函数(a?0,a?1). (4)幂函数① 了解幂函数的概念.,y=x1/2的图像,了解它们的变化情况.(5)② 结合函数y=x,y=x2,y=x3,y=1x函数及方程① 结合二次函数的图像,了解函数的零点及方程根的联系,判断一元二次方程根的存在性及根的个数.3.立体几何初步(1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影及中心投影两种方法,画出三视图及直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图及直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式.2)点、直线、平面之间的位置关系① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点在此平面内.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边及另一个角的两边分别平行,那么这两个角相等或互补.② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质及判定定理.理解以下判定定理.◆如果平面外一条直线及此平面内的一条直线平行,那么该直线及此平面平行.◆如果一个平面内的两条相交直线及另一个平面都平行,那么这两个平面平行.◆如果一条直线及一个平面内的两条相交直线都垂直,那么该直线及此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理.◆如果一条直线及一个平面平行,经过该直线的任一个平面及此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行. ◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面内垂直于它们交线的直线及另一个平面垂直.③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.4.平面解析几何初步(1)直线及方程① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③ 能根据两条直线的斜率判定这两条直线平行或垂直.④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式及一次函数的关系.⑤ 能用解方程组的方法求两直线的交点坐标.⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆及方程① 掌握确定圆的几何要素,掌握圆的标准方程及一般方程.② 能根据给定直线、圆的方程,判断直线及圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③ 能用直线和圆的方程解决一些简单的问题.④ 初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系① 了解空间直角坐标系,会用空间直角坐标表示点的位置.② 会推导空间两点间的距离公式.5.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差.③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.6.概率(1)事件及概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率及概率的区别.② 了解两个互斥事件的概率加法公式.(2)古典概型① 理解古典概型及其概率计算公式.② 会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数及几何概型① 了解随机数的意义,能运用模拟方法估计概率.② 了解几何概型的意义.7.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制① 了解任意角的概念.② 了解弧度制概念,能进行弧度及角度的互化.(2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义.② 能利用单位圆中的三角函数线推导出,πα±的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及及x 轴的交点等).理解正切函数在区间的单调性.④ 理解同角三角函数的基本关系式:22sin cos 1x x +=,⑤ 了解函数sin(x )y A ωϕ=+的物理意义;能画出sin(x )y A ωϕ=+的图像,了解参数A ,ω,ϕ对函数图像变化的影响.⑥ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.8.平面向量(1)平面向量的实际背景及基本概念① 了解向量的实际背景.② 理解平面向量的概念,理解两个向量相等的含义. ③ 理解向量的几何表示.(2)向量的线性运算① 掌握向量加法、减法的运算,并理解其几何意义.② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.③ 了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示① 了解平面向量的基本定理及其意义.② 掌握平面向量的正交分解及其坐标表示.③ 会用坐标表示平面向量的加法、减法及数乘运算.④ 理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积① 理解平面向量数量积的含义及其物理意义.② 了解平面向量的数量积及向量投影的关系.③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用① 会用向量方法解决某些简单的平面几何问题.② 会用向量方法解决简单的力学问题及其他一些实际问题.9.三角恒等变换(1)和及差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式.② 能利用两角差的余弦公式导出两角差的正弦、正切公式.③ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).10.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些及测量和几何计算有关的实际问题.11.数列(1)数列的概念和简单表示法① 了解数列的概念和几种简单的表示方法(列表、图像、通项公式).② 了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列① 理解等差数列、等比数列的概念.② 掌握等差数列、等比数列的通项公式及前n项和公式.③ 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④ 了解等差数列及一次函数、等比数列及指数函数的关系.12.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景. (2)一元二次不等式① 会从实际情境中抽象出一元二次不等式模型.② 通过函数图像了解一元二次不等式及相应的二次函数、一元二次方程的联系.③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组及简单线性规划问题① 会从实际情境中抽象出二元一次不等式组.② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:0,0)2a b a b +≥≥≥ ① 了解基本不等式的证明过程.② 会用基本不等式解决简单的最大(小)值问题.13.常用逻辑用语(1)命题及其关系① 理解命题的概念.② 了解“若p ,则q”形式的命题及其逆命题、否命题及逆否命题,会分析四种命题的相互关系.③理解必要条件、充分条件及充要条件的意义。
2018年考试大纲(数学)

《考试大纲》对考试内容分别冠以“了解”、“理解”、“掌握”、“”和“会、能”四种不同的要求,这实际上也表明了考试内容的重要程度。
了解一般性知道即可,对于某个概念、公式只需要知道这这是在哪个地方的,是哪个问题当中的概念,达到这样的程度就行了,这叫了解。
理解这要比了解高一个层次了,我们不仅仅要知道这个概念,而且要知道来龙去脉,另外要知道解决什么问题,。
掌握是所有要求中级别最高的,我们不但知道这个概念、公式或定理,而且要知道它们的来龙去脉,如何推倒出来的,对于这些概念、公式或定理应该不但知道将来能解决什么问题,而且在出现不同题型考察这个知识点时要回灵活运用,达到熟练解决问题的程度。
会、能这样的词出来之后,这主要是对于某一个概念会用,对某一个结论会用,对某一个公式会用,我光会用这个结论、概念、公式就够了,而对这个概念是怎么来的,对结果是怎么推来的,不追究它的来历,只要会用就可以了,比方说这个公式只要会用了,可以拿它解决问题就可以了,至于是怎么来的不关心。
第一部分代数1.集合(1)理解集合的概念,理解集合元素的确定性和互异性,掌握集合的表示法,掌握集合之间的关系(子集、真子集、相等),掌握集合的交、并、补运算.(2)理解符号∈、∉、⊆、⊇、⊆/、⊇/、⊂=/、⊃= / 、∩、∪、U A、⇒、⇔的含义,并能用这些符号表示元素与集合、集合与集合、命题与命题之间的关系.(3)了解子集与推出的关系,能正确区分充分、必要、充要条件.2.方程与不等式(1)掌握配方法,会用配方法解决有关问题。
(2)会解一元二次方程,会用根与系数的关系解决有关问题。
(3)理解不等式的性质,会用作差比较法证明简单不等式。
(4)会解一元一次不等式(组)。
(5)会解形如|ax+b|≥c或|ax+b|<c的含有绝对值的不等式。
(6)会解一元二次不等式,会用区间表示不等式的解集。
(7)能利用不等式的知识解决有关的实际问题3.函数(1)理解函数的有关概念及表示法,会求一些常见函数的定义域。
2018年广东省初中学业水平考试数学学科考试大纲

2018年广东省初中学业水平考试数学学科考试大纲一、考试性质初中学业水平考试数学学科考试是义务教育阶段数学学科的终结性考试, 目的是全面、准确地反映初中毕业生的数学学业水平. 考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据, 也是高中阶段学校招生的重要依据之一。
二、指导思想(一)初中学业水平考试数学学科考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念, 有利于引导数学教学全面落实《标准》所设立的课程目标, 有利于改善学生的数学学习方式, 有利于减轻过重的学业负担。
(二)初中学业水平考试数学学科考试既要重视对学生学习数学知识与技能的结果和过程的评价, 也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价, 还应当重视对学生数学认识水平的评价。
(三)初中学业水平考试数学学科考试命题应当面向全体学生, 根据学生的年龄特征、个性特点和生活经验编制试题, 力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的“课程内容”为基本依据, 不拓展知识与技能的考试范围, 不提高考试要求, 选学内容不列入考试范围。
(二)试题主要考查如下方面: 基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查, 注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况, 对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例: 代数约占60分;几何约占50分;统计与概率约占10分。
2018年广东省普通高中学业水平考试数学科考试大纲

2018年广东省普通高中学业水平考试数学科考试大纲Ⅰ.考试性质广东省普通高中学业水平考试是衡量普通高中学生是否达到高中毕业要求的水平测试.考试成绩可作为普通高中学生毕业、高中同等学力认定和高职院校分类提前招生录取的依据.Ⅱ.命题指导思想命题以中华人民共和国教育部2003年颁布的《普通高中数学课程标准(实验)》和本大纲为依据.试题适用于使用经全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生.试题符合水平性的考试规律和要求,体现普通高中新课程的理念,反映数学学科新课程标准的整体要求,突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力.关注数学学科的主干知识和核心内容,关注数学学科与社会的联系,贴近学生的生活实际。
Ⅲ.考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能。
各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明。
对知识的要求依次是了解、理解、掌握三个层次。
(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识内容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力. 这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等.(3)掌握:要求能够对所列的知识内容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。
2018年高考数学考纲与考试说明解读

2018年高考数学考纲与考试说明解读专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议全国课标卷考查内容分析(考什么)(一)结论:考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用函数的概念:函数的定义域、值域、解析式(分段函数);函数的性质:函数的奇偶性、单调性、对称性、周期性;函数的图象:包含显性与隐性;导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值与零点;结合函数的单调性解不等式或证明不等式、求参数范围.(二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分.(三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题”进行考查;解答题均放置于“压轴”位置.小题考点可总结为八类:(1)分段函数;(2)函数的性质;(3)基本函数;(4)函数图像;(5)方程的根(函数的零点);(6)函数的最值;(7)导数及其应用; (8)定积分。
解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题; (2)证明不等式的问题;(3)方程的根(函数的零点)问题; (4)函数的最值与极值问题; (5)导数的几何意义问题; (6)存在性问题。
考点:题型1 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 x ≥0-1 x <0表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0. 其中正确判断的序号是________.题型2 函数的概念、性质、图象和零点(2017年全国新课标Ⅰ卷理科第8题) 例 2、已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B. 13C. 12D. 1 C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+, 设()11eex x g x --+=+,则()()21111111e 1eeee e x x x x x x g x ---+----=-=-=',当()0g x '=时, 1x =;当1x <时, ()0g x '<,函数()g x 单调递减;当1x >时, ()0g x '>,函数()g x 单调递增,当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点,即21a -⨯=-,解得12a =.故选C. 例3、(2012理科)(10) 已知函数1()ln(1)f x x x=+-;则()y f x =的图像大致为( )B(1)定义域 (2)奇偶性 (3)对称性 (4)单调性(求导) (5)周期性 (6)特征点 (7)变化趋势1.考查角度(1)以指、对、幂函数为载体考查函数的单调性、奇偶性等性质; (2)考查分段函数的求值以及指数、对数的运算;(3)函数图象的考查主要是函数图象的识别及应用;(4)高考一般不单独考查函数零点的个数以及函数零点所在区间,有时在导数中考查函数的零点问题;(5)函数与方程的考查既可以是结合函数零点存在性定理或函数图象判断零点的存在性,也可以是利用函数零点的存在性求参数的值、范围或判断零点所在区间. 2.题型及难易度选择题或填空题.难度:中等或偏上.2求函数定义域常见结论:(1)分式的分母不为零;(2)偶次根式的被开方数不小于零;(3)对数函数的真数必须大于零; (4)指数函数和对数函数的底数大于零且不等于1; (5)正切函数y =tan x ,x ≠k π+ (k ∈Z ); (6)零次幂的底数不能为零;(7)实际问题中除要考虑函数解析式有意义外,还应考虑实际问题本身的要求. 题型3、函数、方程、不等式及导数的综合应用 例3(2013理科)若函数=的图像关于直线2x =-对称,则的最大值是______. 16知识点:函数的奇偶性、对称性和导数的应用 数学思想:考查转化、数形结合体现了多角度、多维度、多层次 题型4 函数、方程、不等式及导数的综合应用 例4、已知函数()f x =x ﹣1﹣alnx .(1)若()0f x ≥ ,求a 的值;11+)2n )(﹤=-+22a ⎪⎭调递减,在(),+a ∞单调递增,故x=a 是()f x 在()0,+x ∈∞的唯一最小值点. 由于()10f =,所以当且仅当a=1时,()0f x ≥. 故a=1(2)由(1)知当()1,+x∈∞时,1>0x ln x --(1)(3)8(1)(5)15f f a f f b -=-=⎧⎧⇒⇒⎨⎨=-=⎩⎩法一:导数求最值问题(6)复习重点函数作为几大主干知识之一,其主体知识包括1个工具:导数研究函数的单调性、极值、最值和证明不等式; 1个定理:零点存在性定理; 1个关系:函数的零点是方程的根; 2个变换:图象的平移变换和伸缩变换;2大种类:基本初等代数函数(正比例函数、反比例函数、一次函数、二次函数、三次函数、指数函数、对数函数、幂函数)和基本初等函数的复合函数(对勾函数、双曲函数、分段函数和其它函数); 2个最值:可行域背景下的二元函数最值和均值不等式背景下的一元函数最值; 2个意义:导数的几何意义和定积分的几何意义; 3个要素:定义域、值域、解析式;3个二次:二次函数、二次方程、二次不等式;5个性质:单调性、奇偶性、周期性、凸凹性、对称性. (2016年Ⅱ卷理21)(本小题满分12分)(Ⅰ)讨论函数2()e 2xx f x x -=+的单调性,并证明当0x >时,(2)e 20x x x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2e ()=(0)x ax ag x x x -->有最小值.设()g x 的最小值为()h a ,求函数()h a 的值域. 解:(Ⅰ)略(Ⅱ)【零点分布和运用极值点满足等式】33(2)e (2)(2)'()(())x x a x x g x f x a x x -+++==+.由(Ⅰ)知,()f x a +单调递增,对任意[0,1)a ∈,(0)10f a a +=-<,(2)0f a a +=≥.因此存在唯一0(0,2]x ∈,使得0()0f x a +=,即0'()0g x =.当00x x <<,0()0f x a +<,0'()0g x <,()g x 单调递减; 当0x x >,0()0f x a +>,0'()0g x >,0()g x 单调递增. 因此()g x 在0x x =处取得最小值,最小值为000000022000e (1)e ()(1)e ()=2x x x a x f x x g x x x x -+-+==+. 于是()h a 00e 2x x =+,由000200(1)e e ()02(2)x x x x x +'=>++,00e 2x x +单调递增. 所以,由0(0,2]x ∈,得002201()2022224x e e e e h a x =<=≤=+++.【以上是稳定,后面是新意】因为2x e x +单调递增,对任意21(,]24e λ∈,存在唯一的0(0,2]x ∈,0()[0,1)af x =-∈,使得(),h a λ=所以()h a 的值域是21(,]24e .综上,当[0,1)a ∈时,()g x 有最小值()h a ,()h a 的值域是21(,]24e .【注】由,得,常理是用去表示,办不到,我们只能用去表示,00002e ()2x x a f x x -==-+.可以由第Ⅰ问2e 2x x a x -=+在(0,)x ∈+∞单调递减,再由第Ⅰ问的不等式“当0x >时,0()0f x a +=0002e 2xx a x +=--a 0x 0x a(2)e 20x x x -++>”启发,有结论.从而的值域就是00()((0,2])g x x ∈的值域.这个0(0,2]x ∈不是前面试根得到的范围,而是由[0,1)a ∈与0002e 2x x a x -=+单调得出的,这个方向很重要!教学思考与建议 (一)必拿的分数 1.必拿分数的知识内容选择填空题中的中等题,此类问题主要考查函数的概念(函数的定义域、值域、解析式)、函数的性质(函数的奇偶性、单调性)、函数的图象、导数的应用:导数的概念及其几何意义(求切线问题);2.拿分策略(1)定义域优先原则; (2)重点对分段函数、函数的奇偶性与单调性简单应用、函数的图象、求切线问题进行题组训练; (3)由于所有基本问题的讨论都涉及函数的基本性质,而函数的图象的直观表达函数性质的最佳方式,因此,作出函数的图象是解决函数与导数的重要途径.应通过具体实例让学生掌握作函数的图象的步骤:第1步:确定定义域;第2步:求导数和导函数的零点;第3步:列表(含自变量取值、导数符号、函数增减与极值);第4步:确定特殊点(图象与坐标轴的交点、极值点);第5步:确定图象的渐近线;第6步:画图象.从另一个角度考虑,应灵活应用函数的图象的平移与对称变换.(4)在选择填空题中,应注意数形结合思想的应用;应关注特殊与一般思想的应用. (二)争取拿的分数1.争取拿分数的知识内容选择填空题中的压轴题(函数的性质的综合应用,涉及到对称性、周期性)、解答题中的第Ⅰ问,函数的单调性(如导数求单调区间、极值、最值与零点)、切线的应用; 2.争取拿分策略(1)熟练掌握函数的周期性及对称性的相关结论,并应用. (2)调整心态,大胆准确的求导(正确求导1~2分); (3)关注分类与整合思想的应用,合理的进行分类; (三)希望能拿的分数1.希望能拿分数的知识内容解答题的第Ⅱ问,结合函数的单调性解不等式或证明不等式、求参数范围. 2.拿分策略(1)根据函数图象的性态,利用化归与转化思想,转化为熟悉的问题进行解决(函数的单调性、极值、最值问题);(2)了解常见解题思路:运用零点分布和运用极值点满足等式方法、找分界点方法与极值点偏离方法.2018年高考数学(文)(函数与导数)2018年普通高等学校招生全国统一考试大纲已于2017年12月新鲜出炉,它是高考命题的规范性文件和标准,是考试评价、复习备考的指明灯,为考生努力的方向指明了道路. 与《2017年高考文科数学考试大纲》相比,《2018年高考文科数学考试大纲》在考核目标、考试范围与要求等方面都没有明显变动.无论是知识内容及其要求的三个层次(了解、理解、掌握),还是能力(空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力、应用意识和创新意识)要求、个性品质要求和考查要求都没有变化.这说明2018年高考数学学科的命题仍然保持相对的稳定.下面对2018年考纲中函数与导数部分进行综合解读:函数与导数,一般在高考中至少三个小题,一个大压轴题,分值在30分左右。
2018年广东省初中毕业生数学学科学业考试大纲 考纲解读(一)

2018年广东省初中毕业生数学学科学业考试大纲一、考试性质初中毕业生数学学科学业考试(以下简称为“数学学科学业考试”)是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一.二、指导思想(一)数学学科学业考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担.(二)数学学科学业考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价.(三)数学学科学业考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展,三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》.(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》.(三)广东省初中数学教学的实际情况,四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围.(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等.(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查.(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分.六、考试方式和试卷结构(一)考试方式采用闭卷、笔答形式.(二)试卷结构1.由地级市组织命题的试卷,其结构由组织单位自行确定.2.广东省教育考试院命制的试卷,结构如下:(1)考试时间为100分钟.全卷满分120分.(2)试卷结构:选择题10道,共30分;填空题6道,共24分;解答题(一)3道,共18分;解答题(二)3道,共21分;解答题(三)3道,共27分.五类合计25道题.选择题为四选一型的单项选择题;填空题只要求直接填写结果.解答题(一)(二)包括:计算题[在下列四种形式中任选:数值计算、代数式运算、解方程(组)、解不等式(组)];计算综合题[在下列四种形式中任选:方程(不等式)计算综合题、函数综合题、几何计算综合题、统计概率计算综合题];证明题(在下列两种形式中任选:几何证明、简单代数证明);简单应用题[包括实际应用和非实际应用.在下列三种形式中任选:方程(组)应用题、不等式应用题、解三角形应用题、函数应用题];作图题仅限尺规作图.解答题(三)包括:“代数综合题”“几何综合题”和“代数与几何综合题”,各1道.解答题都应根据题目的要求,写出文字说明、演算步骤或推证过程.(3)试卷分为试题和答题卡,分开印刷,试题不留答题位置,答案必须填涂或写在答题卡上.答题方式由各地级市确定并公布.五、考试内容第一部分数与代数1.数与式(1)有理数①理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小.②借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母).③理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步为主).④理解有理数的运算律,并能运用运算律简化运算.⑤能运用有理数的运算解决简单的问题.(2)实数①了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根.②了解乘方与开方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.③了解无理数和实数的概念,知道实数与数轴上的点一一对应.能求实数的相反数与绝对值.④能用有理数估计一个无理数的大致范围.⑤了解近似数;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值.⑥了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算.能掌握形如:,的化简与运算(分母有理化).【知识汇总】1.实数的分类2.数轴(1)数轴的三要素:原点、正方向、单位长度;(2)用数轴表示数,实数和数轴上的点是一一对应的.3.相反数(1)a的相反数是-a;(2)若a,b互为相反数,则a+b=0.4.绝对值(1)定义:在数轴上,一个数所对应的点到原点的距离叫这个数的绝对值.(2)用式子表示a的绝对值.不论有理数a取何值,它的绝对值总是非负数.即 |a| ≥0.5.倒数除以一个数的商,叫做这个数的倒数,实数a,b互为倒数,则ab=1.注意0没有倒数. 6.实数的运算混合运算顺序(1)先算乘方,再算乘除,最后算加减;(2)若有括号,先算括号里面的;(3)同级运算,从左到右进行.7.实数的大小比较(1)正数大于零,负数小于零;两个正数,绝对值大的较大;两个负数,绝对值大的较小.(2)设a,b是任意两个有理数,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b.8.科学记数法把一个整数或有限小数记成a×10n的形式,其中 1≤|a|<10 ,n为整数,这种记数法叫做科学记数法. (1)原数的绝对值大于10时,利用科学记数法, 写成a×10n 形式,注意1≤|a|<10,n等于原数的整数位数减1,也是小数点向左移动的位数,如:3 800=3.8×103.(2)原数的绝对值小于1时,利用科学记数法,写成 a×10-n 形式,注意1≤|a|<10,n等于原数左边第一个非0的数字前的所有0的个数(包括小数点前的0),也是小数点向右移动的位数,如:0.000 38=3.8×10-4 .9.近似数与有效数字一个近似数,精确度最低到哪一位,就说这个近似数精确到哪一位.这时,从左边第一个不是0的数字起,到最后一个数字为止,所有的数字都叫这个数的有效数字.10.开方11.二次根式的有关概念(1)形如(a≥0)的式子叫做二次根式,二次根式有意义,a的取值范围是a≥0,当a<0时,在实数范围内没有意义.(2)最简二次根式必须同时满足以下两个条件:①被开方数不含分母;②被开方数(或式)中不含能开得尽方的因数或因式.[JP2](3)同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.12.二次根式的性质13.二次根式的运算(1)二次根式的加减法:一般先把二次根式化为最简二次根式再把同类的二次根式合并.(2)二次根式的乘法:逆用公式即得二次根式的乘法法则:(a≥0,b≥0).(3)二次根式的除法:逆用公式(a≥0,b>0).即得二次根式的除法法则:(a≥0,b>0).(3)代数式①能借助现实情境了解代数式,进一步理解用字母表示数的意义.②能分析简单问题的数量关系,并用代数式表示.③会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算.(4)整式与分式①了解整数指数幂的意义和基本性质,会用科学计数法表示数(包括在计算器上表示).②了解整式的概念,掌握合并同类项和去括号法则,会进行简单的整式加法和减法运算;能进行简单的整式乘法(其中的多项式相乘仅指一次式之间以及一次式与二次式相乘).③会推导乘法公式:(a+b)(a-b)=a2-b2,(a±b)2 =a2±2ab+b2,了解公式的几何背景,并能利用公式进行简单的计算.④会用提取公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).⑤了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分,会进行简单的分式加、减、乘、除运算.【知识汇总】1.代数式的概念用基本运算符号(加、减、乘、除、乘方、开方等)把数与字母连接而成的式子叫代数式.单独的数字与单独的字母是(是或不是)代数式.2.代数式的值用具体数代替代数式中的字母,按运算顺序计算出的结果叫代数式的值.求代数式的值分两步:代数,计算.要充分利用“整体”思想求代数式的值.3.整式分类整式分为单项式和多项式.4.单项式与多项式(1)由数与字母的乘积构成的代数式叫做单项式,单独的一个数或一个字母也是单项式. (2)一个单项式中,所有字母的指数和叫做这个单项式的次数. (3)几个单项式的和叫做多项式.(4)一个多项式中,次数最高的项的次数,叫做这个多项式的次数.5.同类项所含字母相同,并且相同字母的指数也分别相同的项叫同类项.6.整式加减的一般步骤(1)如果有括号先去括号;(2)合并同类项:只把系数相加减,所含字母及字母的指数不变.7.幂的运算性质(1)有理数的乘方:①= a n.②性质:正数的任何次幂都是正数;负数的偶次幂是正数,奇次幂是负数;0的任何次幂(0除外)都是0;任何数a的偶次幂为非负数.(2)a m a n=a m+n (m,n为整数,a≠0);(3)(a m)n=a mn (m,n为整数,a≠0);(4)(ab)n=a n b n(n为整数,ab≠0);(5)a m÷a n=a m-n (m,n为整数,a≠0).8.乘法公式(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.9.分解因式的基本方法(1)提公因式法:ma+mb+mc=m(a+b+c).(2)运用公式法:平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a2±2ab+b2=(a±b)2.10.分解因式的基本步骤(1)先看各项有没有公因式,若有,则先提公因式;(2)再考虑运用公式法;(3)分解因式必须进行到每一个多项式因式都不能再分解为止,简记为一“提”、二“套”、三“检查”.11.分式的基本概念(1)整式A除以整式B,可以表示成的形式,如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.(2)分式中,①若分式有意义 B≠0;②若分式无意义 B=0;③若分式=0 B=0.12.分式的基本性质(1)分式的基本性质:(2)分式的变号法则:13.分式的运算(1)加减运算①同分母分式相加减法则:;②异分母分式相加减法则:.(2)乘除运算①乘法法则:;②除法法则:;③乘方运算:.(3)分式的混合运算顺序:先算乘方,再算乘除,最后算加减,若有括号,先算括号里面的.2.方程与不等式(1)方程与方程组①能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型.②经历估计方程解的过程.③掌握等式的基本性质.④会解一元一次方程、可化为一元一次方程的分式方程(方程中的分式不超过两个).⑤掌握代入消元法和加减消元法,能解二元一次方程组.⑥理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程.⑦会用一元二次方程根的判别式判别方程是否有实数根和两个根之间是否相等.⑧能根据具体问题的实际意义,检验方程的解是否合理.【知识汇总】1.一元一次方程的有关概念(1)只含有一个未知数,并且未知数的次数是一次的整式方程,叫一元一次方程.其一般形式是ax+b=0(a,b为常数,且 a≠0 ).(2)使方程左右两边的值相等的未知数的值叫做方程的解.一元一次方程的解又叫做方程的根.2.一元一次方程的解法(1)解法依据是等式的基本性质,性质①:若a=b,则 a±m =b±m;性质②:若a=b,则am=bm;若 a=b ,则(d≠0).(2)解法步骤一般是:①去分母;②去括号;③移项;④合并同类项;⑤未知数的系数化为1.3.方程的应用(1)解应用题的步骤:①审清题意;②找等量关系; ③设 未知数;④列方程;⑤解方程;⑥验根;⑦作答.(2)解应用题的常见题型①工作(或工程)问题:工作量=工作效率×工作时间;②利息问题:利息=本金×利率×期数;本息和=本金+利息;③行程问题:路程=速度×时间;其中,相遇问题:S 甲+S 乙=S 总.追及问题:同地异时:前者走的路程=追者走的路程.异地同时:前者走的路程+两地间的距离=追者走的路程.④航行问题:v 顺=v 静+v 水;v 逆=v 静-v 水.⑤利润问题:利润=卖价-进价;利润率=[SX(]利润[]进价[SX)]×100%.⑥数字问题:两位数=10×十位数字+个位数字. 三位数=100×百位数字+10×十位数字+个位数字.⑦增长率问题:增长后的量=基础量×(1+增长率).4.二元一次方程组(1)二元一次方程组的定义:形如都是二元一次方程组.(2)二元一次方程组的解法①代入法解二元一次方程组的一般步骤:a.从方程组中任选一个方程,将方程中的一个未知数用含有另一个未知数的代数式表示出来;b.将这个代数式代入另一个方程,消去一个未知数,得到含有一个未知数的一元一次方程;c.解这个一元一次方程,求出一个未知数的值;d.将所求得的这个未知数的值代入原方程组的任一方程中,求出另一个未知数的值,从而得到方程组的解.②加减法解二元一次方程组的一般步骤:a.方程组的两个方程中,如果同一个未知数的系数不互为相反数又不相等,就用适当的数去乘方程的两边,使它们中同一个未知数的系数相等或互为相反数;b.把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程;c.解这个一元一次方程;d.将求出的未知数的值代入原方程组的任意一个方程,求出另一个未知数,从而得到方程组的解.6.一元二次方程(1)概念:只含有一个未知数,未知数的最高次数是二次,且系数不为0的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2叫做二次项,bx叫做一次项,c叫做常数项,a,b分别是二次项、一次项的系数,注意a≠0.7.一元二次方程的解法(1)基本思路:解一元二次方程的基本思路是降次.(2)方法:①直接开平方法:(x+m)2=n(n≥0)的根是;②配方法:将ax2+bx+c=0(a≠0)化成形式,当b2-4ac≥0时,用直接开平方法求解.③公式法:ax2+bx+c=0(a≠0)的求根公式为.④因式分解法:将方程右边化为0,左边化为两个一次因式的积,令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程就得到原方程的解.8.一元二次方程根的判别式ax2+bx+c=0(a≠0)的根的判别式是b2-4ac.(1)当b2-4ac>0时,方程有两个不相等的实数根;(2)当b2-4ac=0时,方程有两个相等的实数根;(3)当b2-4ac<0时,方程无实数根.[4.一元二次方程的根与系数的关系一元二次方程的一般形式为ax2+bx+c=0(a≠0),方程的两根为,则x1+x2=,x1·x2=.9.根与系数的关系(韦达定理)的应用(1)已知一根求另一根及未知系数;(2)求与方程的根有关的代数式的值;(3)已知两根求作方程;(4)已知两数的和与积,求这两个数;(5)确定根的符号.应用根与系数的关系时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把求作方程的二次项系数设为1,即以x1、x2为根的一元二次方程为x2-(x1+x2)x+x1x2=0;求字母系数的值时,需使二次项系数a≠0,同时满足Δ≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和x1+x2、两根之积x1x2的代数式的形式,整体代入.10.一元二次方程的应用解应用题的关键是把握题意,找准等量关系,列出方程,最后还要注意求出的未知数的值,是否符合实际意义.(2)不等式与不等式组①结合具体问题,了解不等式的意义,探索不等式的基本性质.②会解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集,③能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题.【知识汇总】1.不等式的基本性质(1)不等式的两边都加上(或减去)同一个整式,不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2.解不等式求不等式解集的过程称为解不等式.3.一元一次不等式解题步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)未知数的系数化为1.在(1)至(5)步的变形中,一定要注意不等号的方向是否需要改变.4.一元一次不等式组(1)一元一次不等式组的定义:一般地,关于同一个未知数的几个一元一次不等式合在一起,就组成一个一元一次不等式组;(2)一元一次不等式组的解集:组成不等式组的各个不等式的解的公共部分,称为这个一元一次不等式组的解集;(3)解一元一次不等式组:先求出各个不等式的解,再确定其公共部分,即为原不等式组的解集;(4)借助数轴,熟练掌握以下四种基本不等式组(a <b)解集的确定.不等式组(a <b)解集图示口诀x大大取大x小小取小a大小,小大中间找空集大大,小小解不了5.列不等式(组)解应用题列不等式(组)解应用题的基本步骤和列方程解应用题的步骤相类似,即:(1)审:认真审题,分清已知量、未知量及其关系,找出题目中的不等关系,抓住题设中的关键字眼,如“大于”、“小于”、“不小于”、“不大于”、“不少于”、“不低于”、“不多于”、“至多”、“超过”、“至少”、“不足”等. (2)设:设出适当的未知数.(3)列:根据题目中的不等关系,列出不等式. (4)解:解出所列不等式的解集.(5)答:写出答案,并检验答案是否符合题意.3.函数 (1)函数①通过简单实例中的数量关系,了解常量、变量的意义.②结合实例,了解函数的概念和三种表示方法,能举出函数的实例. ③能结合图象对简单实际问题中的函数关系进行分析.④能确定简单实际问题中函数自变量的取值范围,并会求出函数值. ⑤能用适当的函数表示法刻画简单实际问题中变量之间的关系. ⑥结合对函数关系的分析,能对变量的变化情况进行初步讨论. 【知识汇总】1.各象限点的坐标的符号特征第一象限:(+,+);第二象限: (-,+);第三象限:(-,-);第四象限:(+,-). 2.关于对称点的特点(1)点P(x,y)关于x 轴对称的点的坐标为P ′(x ,-y ); (2)点P(x,y)关于y 轴对称的点的坐标为P ′(-x,y);(3)点P(x,y)关于原点对称的点的坐标为P ′(-x ,-y). 3.坐标轴上的点的特征(1)点P(x,y)在横轴上时,y=0;(2)点P(x,y)在纵轴上时,x=0;(3)点P(x,y)在原点时,x=0;y=0.4.常量与变量在某个变化过程中数值保持不变的量是常量,数值发生变化的量是变量,常量与变量是相对的.5.函数设在某个变化过程中有两个变量x,y,对于x在某一范围内的每一个值,y都有唯一确定的值与之对应,我们说y是x的函数,x是自变量,y也叫因变量.6.函数自变量的取值范围(1)当函数关系式是整式时,自变量的取值范围是全体实数;(2)当函数关系式是二次根式时,自变量的取值范围是使被开方数不小于0的全体实数;(3)当函数关系式是分式时,自变量的取值范围是使分母不为0的全体实数;(4)当函数关系式表示一个实际问题时,自变量的取值必须使实际问题有意义.7.函数的表示方法(1)解析法:用解析式来表示函数关系的方法;(2)列表法:用表格来表示函数关系的方法.如数学用表等;(3)图象法:用图象来表示函数关系的方法.8.画函数图象的步骤列表、描点、连线.9.确定函数值若x=a,该函数有唯一的对应值,这个对应值叫做当 x=a 时的函数值.10.已知函数解析式,判定点P(x,y)是否在函数图象上的方法若点P(x,y)的坐标适合函数解析式,则点P(x,y)在其图象上;若点P(x,y)不适合函数解析式,则点 P(x,y) 不在其图象上.(2) 一次函数①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式.②会利用待定系数法确定一次函数的表达式.③能画出一次函数的图象,根据一次函数的图象和表达式y= kx +b(k≠0)探索并理解k>0或k<0时,图象的变化情况.④理解正比例函数.⑤体会一次函数与二元一次方程的关系.⑥能用一次函数解决简单实际问题.【知识汇总】1.如果y=kx+b(k≠0),那么y叫x的一次函数,当b=0时,一次函数y=kx也叫正比例函数.正比例函数是一次函数的特例,具有一次函数的性质.2.一次函数y=kx+b(k≠0)的图象是过点(0,b)与直线y=kx平行的一条直线.它可以由直线y=kx 平移得到.它与x轴的交点为(-b/k,0),与y轴交点为(0,b) .大致图象经过的象限一、三二、四一、二、三一、三、四一、二、四二、三、四4.确定一次函数表达式用待定系数法求一次函数表达式的一般步骤: (1)由题意设出函数的关系式;(2)根据图象所经过的已知点或函数满足的自变量与因变量的对应值列出关于待定系数的方程组;(3)解关于待定系数的方程或方程组,求出待定系数的值; (4)将求出的待定系数代回到原来设的函数关系式中即可求出.(3)反比例函数①结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.②能画出反比例函数的图象,根据图象和表达式y=(k ≠0)探索并理解k>0或k<0时,图象的变化情况.③能用反比例函数解决某些实际问题. 【知识汇总】1.反比例函数的定义如果两个变量x ,y 之间的关系可以表示成y=xk(k 为常数,且k ≠0)的形式,那么称y 是x 的反比例函数.2.反比例函数的图象和性质(1)图象的特征:反比例函数y=xk的图象是一条双曲线,它关于坐标原点成中心对称,两个分支在一、三象限或二、四象限.(2)反比例函数y=k(k ≠0,k 为常数)的图象和性质: 图象一、同号二、异号3.反比例函数表达式的确定求反比例函数的表达式跟求一次函数一样,也是待定系数法.(4)二次函数①通过对实际问题情境的分析,体会二次函数的意义.②会用描点法画出二次函数的图象,能通过图象了解二次函数的性质.③会用配方法将数字系数的二次函数的表达式化为y=a(x- h)2+k(a≠0)的形式,并能由此得到二次函数图象的顶点坐标、开口方向,画出图象的对称轴,并能解决简单实际问题.④会利用二次函数的图象求一元二次方程的近似解.【知识汇总】1.二次函数的定义形如y=ax2+bx+c (a,b,c是常数,a≠0)的函数,叫做x的二次函数.2a>0 a<0①当a>0时,抛物线开口向上,并向上无限延伸.②对称轴是,顶点坐标是.③在对称轴的左侧,即当x<时,y随x的增大而减小;在对称轴的右侧,即当x>时,y随x的增大而增大,简记“左减右增”.④抛物线有最低点,当时,y有最小值,y最小值 =.⑤当a<0时,抛物线开口向下,并向下无限延伸.⑥对称轴是,顶点坐标是.⑦在对称轴的左侧,即当x<时,y随x的增大而增大;在对称轴的右侧,即当x>时,y随x的增大而减小,简记“左增右减”.⑧抛物线有最高点,当时,y有最大值,y最大值 =.(1)二者的形状相同,位置不同,y=a(x-h)2+k是由y=ax2通过平移得来的,平移后的顶点坐标为(h,k).(2)y=ax2(a≠0)的图象y=a(x-h)2+k的图象.4.二次函数的解析式的确定要确定二次函数的解析式,就是要确定解析式中的待定系数(常数):(1)当已知抛物线上任意三点时,通常将函数的解析式设为一般式:y=ax2+bx+c(a≠0).(2)当已知抛物线的顶点坐标和抛物线上另一点时,通常将函数的解析式设为顶点式:y=a(x-h) 2+k(a≠0).5.二次函数与一元二次方程的关系二次函数y=ax2+bx+c的图象与x轴的交点有三种情况:有两个交点,有一个交点,没有交点,当图象与x轴有交点时,令y=0,解方程ax2。
2018年高考数学考纲与考试说明解读(2021年整理精品文档)

(完整版)2018年高考数学考纲与考试说明解读编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2018年高考数学考纲与考试说明解读)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2018年高考数学考纲与考试说明解读的全部内容。
2018年高考数学考纲与考试说明解读专题一:函数、极限与导数的综合问题(一)不等式、函数与导数部分考查特点分析与建议全国课标卷考查内容分析(考什么)(一)结论:考查的核心知识为:函数的概念、函数的性质、函数的图象、导数的应用函数的概念:函数的定义域、值域、解析式(分段函数);函数的性质:函数的奇偶性、单调性、对称性、周期性;函数的图象:包含显性与隐性;导数的应用:导数的概念及其几何意义;利用导数求单调区间、极值、最值与零点;结合函数的单调性解不等式或证明不等式、求参数范围.(二)试题题型结构:全国卷基本上是2道选择题或填空题、1道解答题,共3道题.分值为22分.(三)试题难度定位:全国卷对函数与导数的考查难度相对稳定,选择、填空题中,有一道为中等难度,另一道作为选择、填空的“压轴题"进行考查;解答题均放置于“压轴"位置.小题考点可总结为八类:(1)分段函数; (2)函数的性质; (3)基本函数; (4)函数图像; (5)方程的根(函数的零点);(6)函数的最值; (7)导数及其应用; (8)定积分。
解答题主要是利用导数处理函数、方程和不等式等问题,有一定的难度,往往放在解答题的后面两道题中的一个.纵观近几年全国新课标高考题,常见的考点可分为六个方面:(1)变量的取值范围问题; (2)证明不等式的问题;(3)方程的根(函数的零点)问题; (4)函数的最值与极值问题; (5)导数的几何意义问题; (6)存在性问题.考点:题型1 函数的概念 例1 有以下判断:①f (x )=错误!与g (x )=错误!表示同一函数; ②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数; ④若f (x )=|x -1|-|x |,则f 错误!=0。
高三数学-2018年普通高等学校招生全国统一考试大纲--数学文 精品

2018年普通高等学校招生全国统一考试大纲文科数学Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度、必要的区分度和适当的难度.Ⅱ.考试要求《2018年普通高等学校招生全国统一考试大纲(文科)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修Ⅰ的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想.将知识、能力与素质融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学的知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求依次为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理性认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材.通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力.(3)空间想象能力:能报据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图形进行分解、组合与变换;会运用图形与图表等手段形象地揭示问题的本质.空间想象能力是对空间形式的观察、分析抽象的能力.主要表现为识图、画图和对图形的想象能力.识图是指观察研究所给图形中几何元素之间的相互关系;画图是指将文字语言和符号语言转化为图形语言,以及对图形添加辅助图形或对图形进行各种变换.对图形的想象主要包括有图想图和无图想图两种,是空间想象能力高层次的标志.(4)实践能力:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题,建立数学模型;应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表述和说明.实践能力是将客观事物数学化的能力.主要过程是依据现实的生活背景,提炼相关的数量关系,构造数学模型,将现实问题转化为数学问题,并加以解决.(5)创新意识:对新颖的信息、情境和设问,选择有效的方法和手段分析信息,综合与灵活地应用所学的数学知识、思想和方法,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.创新意识是理性思维的高层次表现.对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也就越强.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义.要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神.二、考查要求数学学科的系统性和严密性决定了数学知识之间深刻的内在联系,包括各部分知识在各自的发展过程中的纵向联系和各部分知识之间的横向联系.要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的结构框架.(l)对数学基础知识的考查,要既全面又突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体.注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面.从学科的整体高度和思维价值的高度考虑问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度.(2)对数学思想和方法的考查是对数学知识在更高层次上的抽象和概括的考查,考查时必须要与数学知识相结合,通过数学知识的考查,反映考生对数学思想和方法的理解;要从学科整体意义和思想价值立意,注重通性通法,淡化特殊技巧,有效地检测考生对中学数学知识中所蕴涵的数学思想和方法的掌握程度.(3)对数学能力的考查,强调“以能力立意”,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料.侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能.对能力的考查,以思维能力为核心,全面考查各种能力,强调综合性、应用性,并切合考生实际.对思维能力的考查贯穿于全卷,重点体现对理性思维的考查,强调思维的科学性、严谨性、抽象性.对运算能力的考查主要是对算理和逻辑推理的考查,考查时以代数运算为主,同时也考查估算、简算.对空间想象能力的考查,主要体现在对文字语言、符号语言及图形语言三种语言的互相转化,表现为对图形的识别、理解和加工,考查时要与运算能力、逻辑思维能力相结合.(4)对实践能力的考查主要采用解决应用问题的形式.命题时要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要切合中学教学的实际,考虑学生的年龄特点和实践经验,使数学应用问题的难度符合考生的水平.(5)对创新意识的考查是对高层次理性思维的考查.在考试中创设比较新颖的问题情境,构造有一定深度和广度的数学问题,要注重问题的多样化,体现思维的发散性.精心设计考查数学主体内容,体现数学素质的试题;反映数、形运动变化的试题;研究型、探索型、开放型的试题.数学科的命题,在考查基础知识的基础上,注重对数学思想和方法的考查,注重对数学能力的考查,注重展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力实现全面考查综合数学素养的要求.Ⅲ.考试内容1.平面向量考试内容:向量.向量的加法与减法.实数与向量的积.平面向量的坐标表示.线段的定比分点.平面向量的数量积.平面两点间的距离.平移.考试要求:(1)理解向量的概念,掌握向量的几何表示,了解共线向量的概念.(2)掌握向量的加法和减法.(3)掌握实数与向量的积,理解两个向量共线的充要条件.(4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件.(6)掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用.掌握平移公式.2.集合、简易逻辑考试内容:集合.子集.补集.交集.并集.逻辑联结词.四种命题.充分条件和必要条件.考试要求:(1)理解集合、子集、补集、交集、并集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合.(2)理解逻辑联结词“或”、“且”、“非”的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义.3.函数考试内容:映射.函数.函数的单调性.奇偶性.反函数.互为反函数的函数图像间的关系.指数概念的扩充.有理指数幂的运算性质.指数函数.对数.对数的运算性质.对数函数.函数的应用.考试要求:(1)了解映射的概念,理解函数的概念.(2)了解函数单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法.(3)了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数.(4)理解分数指数幂的概念,掌握有理数幂的运算性质,掌握指数函数的概念、图像和性质.(5)理解对数的概念,掌握对数的运算性质.掌握对数函数的概念、图像和性质.(6)能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题.4.不等式考试内容:不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式.考试要求:(1)理解不等式的性质及其证明.(2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用.(3)掌握分析法、综合法、比较法证明简单的不等式.(4)掌握简单不等式的解法.(5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │.5.三角函数考试内容:角的概念的推广.弧度制.任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式:22sin cos 1αα+=,sin tan cos ααα=,tan cot 1αα=.正弦、余弦的诱导公式. 两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+ϕ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求:(1)理解任意角的概念、弧度的意义.能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义.了解余切、正割、余割的定义.掌握同角三角函数的基本关系式.掌握正弦、余弦的诱导公式.了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式.掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+ϕ)的简图,理解A,ω,ϕ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsin x、arccos x、arctanx 表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.6.数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义.了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题.7.直线和圆的方程考试内容:直线的倾斜角和斜率.直线方程的点斜式和两点式.直线方程的一般式.两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.用二元一次不等式表示平面区域.简单的线性规划问题.曲线与方程的概念.由已知条件列出曲线方程.圆的标准方程和一般方程.圆的参数方程.考试要求:(1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.(2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系.(3)了解二元一次不等式表示平面区域.(4)了解线性规划的意义,并会简单的应用.(5)了解解析几何的基本思想,了解坐标法.(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.8.圆锥曲线方程考试内容:椭圆及其标准方程.椭圆的简单几何性质.椭圆的参数方程.双曲线及其标准方程.双曲线的简单几何性质.抛物线及其标准方程.抛物线的简单几何性质.考试要求:(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,了解椭圆的参数方程.(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质.(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质.(4)了解圆锥曲线的初步应用.9(A).①直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.对应边分别平行的角.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面平行的判定与性质.直线和平面垂直的判定与性质.点到平面的距离.斜线在平面上的射影.直线和平面所成的角.三垂线定理及其逆定理.平行平面的判定与性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定与性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图.能够画出空间两条直线、直线和平面的各种位置关系的图形.能够根据图形想像它们的位置关系.(2)掌握两条直线平行与垂直的判定定理和性质定理.掌握两条直线所成的角和距离的概念,对于异面直线的距离,只要求会计算已给出公垂线时的距离.(3)掌握直线和平面平行的判定定理和性质定理.掌握直线和平面垂直的判定定理和性质定理.掌握斜线在平面上的射影、直线和平面所成的角、直线和平面的距离的概念.掌握三垂线定理及其逆定理.(4)掌握两个平面平行的判定定理和性质定理.掌握二面角、二面角的平面角、两个平行平面间的距离的概念.掌握两个平面垂直的判定定理和性质定理.(5)会用反证法证明简单的问题.(6)了解多面体、凸多面体的概念,了解正多面体的概念.(7)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(8)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(9)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.9(B).直线、平面、简单几何体考试内容:平面及其基本性质.平面图形直观图的画法.平行直线.直线和平面平行的判定与性质.直线和平面垂直的判定.三垂线定理及其逆定理.两个平面的位置关系.空间向量及其加法、减法与数乘.空间向量的坐标表示.空间向量的数量积.直线的方向向量.异面直线所成的角.异面直线的公垂线.异面直线的距离.直线和平面垂直的性质.平面的法向量.点到平面的距离.直线和平面所成的角.向量在平面内的射影.平行平面的判定和性质.平行平面间的距离.二面角及其平面角.两个平面垂直的判定和性质.多面体.正多面体.棱柱.棱锥.球.考试要求:(1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图;能够画出空间两条直线、直线和平面的各种位置关系的图形,能够根据图形想像它们的位置关系.(2)掌握直线和平面平行的判定定理和性质定理;理解直线和平面垂直的概念,掌握直线和平面垂直的判定定理;掌握三垂线定理及其逆定理.(3)理解空间向量的概念,掌握空间向量的加法、减法和数乘.(4)了解空间向量的基本定理;理解空间向量坐标的概念,掌握空间向量的坐标运算.(5)掌握空间向量的数量积的定义及其性质;掌握用直角坐标计算空间向量数量积的公式;掌握空间两点间距离公式.(6)理解直线的方向向量、平面的法向量、向量在平面内的射影等概念.(7)掌握直线和直线、直线和平面、平面和平面所成的角、距离的概念.对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离.掌握直线和平面垂直的性质定理.掌握两个平面平行、垂直的判定定理和性质定理.(8)了解多面体、凸多面体的概念,了解正多面体的概念.(9)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图.(10)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图.(11)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式.①考生可在9(A)和9(B)中任选其一10.排列、组合、二项式定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:(1)掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.(2)理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.(3)理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.(4)掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.11.概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件与相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生k次的概率.12.统计考试内容:抽样方法.总体分布的估计.总体期望值和方差的估计.考试要求:(1)了解随机抽样,了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布.(3)会用样本估计总体期望值和方差.13.导数考试内容:导数的背景.导数的概念.多项式函数的导数.利用导数研究函数的单调性和极值.函数的最大值和最小值.考试要求:(1)了解导数概念的实际背景.(2)理解导数的几何意义.(3)掌握函数y=c(c为常数)、y=x n(n∈N+)的导数公式,会求多项式函数的导数.(4)理解极大值、极小值、最大值、最小值的概念,并会用导数求多项式函数的单调区间、极大值、极小值及闭区间上的最大值和最小值.(5)会利用导数求某些简单实际问题的最大值和最小值.Ⅳ.考试形式与试卷结构考试采用闭卷、笔试形式.全卷满分为150分,考试时间为120分钟.全试卷包括Ⅰ卷和Ⅱ卷.Ⅰ卷为选择题;Ⅱ卷为非选择题.试卷一般包括选择题、填空题和解答题等题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推证过程;解答题包括计算题、证明题和应用题等,解答应写出文字说明、演算步骤或推证过程.试卷应由容易题、中等题和难题组成,总体难度要适当,并以中等题为主.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年省普通高中学业水平考试数学科考试大纲Ⅰ.考试性质省普通高中学业水平考试是衡量普通高中学生是否达到高中毕业要求的水平测试.考试成绩可作为普通高中学生毕业、高中同等学力认定和高职院校分类提前招生录取的依据.Ⅱ.命题指导思想命题以中华人民国教育部2003年颁布的《普通高中数学课程标准(实验)》和本大纲为依据.试题适用于使用经全国中小学教材审定委员会初审通过的各版本普通高中课程标准实验教科书的考生.试题符合水平性的考试规律和要求,体现普通高中新课程的理念,反映数学学科新课程标准的整体要求,突出考查数学学科基础知识、基本技能和基本思想方法,考查初步应用数学学科知识与方法分析问题、解决问题的能力.关注数学学科的主干知识和核心容,关注数学学科与社会的联系,贴近学生的生活实际.Ⅲ.考核目标与要求1.知识要求知识是指《普通高中数学课程标准(实验)》(以下简称《课程标准》)中所规定的必修课程、选修课程系列1的数学概念、性质、法则、公式、公理、定理以及由其容反映的数学思想方法,还包括按照一定程序与步骤进行运算、处理数据、绘制图表等基本技能.各部分知识的整体要求及其定位参照《课程标准》相应模块的有关说明.对知识的要求依次是了解、理解、掌握三个层次.(1)了解:要求对所列知识的含义有初步的、感性的认识,知道这一知识容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别和认识它. 这一层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等.(2)理解:要求对所列知识容有较深刻的理性认识,知道知识间的逻辑关系,能够对所列知识做正确的描述说明并用数学语言表达,能够利用所学的知识容对有关问题作比较、判别、讨论,具备利用所学知识解决简单问题的能力.这一层次所涉及的主要行为动词有:描述,说明,表达,推测、想像,比较、判别,初步应用等.(3)掌握:要求能够对所列的知识容能够推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决. 这一层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等.2.能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.(2)抽象概括能力:抽象是指舍弃事物非本质的属性,揭示其本质的属性;概括是指把仅仅属于某一类对象的共同属性区分出来的思维过程.抽象和概括是相互联系的,没有抽象就不可能有概括,而概括必须在抽象的基础上得出某种观点或某个结论.(3)推理论证能力:推理是思维的基本形式之一,它由前提和结论两部分组成;论证是由已有的正确的前提到被论证的结论的一连串的推理过程.推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法.一般运用合情推理进行猜想,再运用演绎推理进行证明.(4)运算求解能力:会根据法则、公式进行正确运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并做出判断.(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决相关学科、生产、生活中简单的数学问题;能理解对问题述的材料,并对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题进而加以验证,并能用数学语言正确地表达和说明. 应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数学模型,并加以解决.(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题.3.个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义.IV.考试围、考试容与要求依据《课程标准》,确定数学学业水平考试的围为必修课程的五个模块和选修课程系列1,以考查必修课程容为主.具体如下:1.集合(1)集合的含义与表示① 了解集合的含义、元素与集合的属于关系.② 能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.(2)集合间的基本关系① 理解集合之间包含与相等的含义,能识别给定集合的子集. ② 在具体情境中,了解全集与空集的含义.(3)集合的基本运算① 理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.② 理解在给定集合中一个子集的补集的含义,会求给定子集的补集.③ 能使用韦恩图(Venn)表达集合的关系及运算.2.函数概念与基本初等函数Ⅰ(指数函数、对数函数、幂函数)(1)函数① 了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.② 在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.③ 了解简单的分段函数,并能简单应用.④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.⑤ 会运用函数图像理解和研究函数的性质.(2)指数函数① 了解指数函数模型的实际背景.② 理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.③ 理解指数函数的概念,理解指数函数的单调性,掌握指数函数图像通过的特殊点.(3)对数函数① 理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.② 理解对数函数的概念;理解对数函数的单调性,掌握对数函数图像通过的特殊点.③ 了解指数函数y=a a与对数函数y=log a a互为反函数(a?0,a? 1). (4)幂函数① 了解幂函数的概念.,y=a1/2的图像,了解它们的变化情况.② 结合函数y=x,y=x2,y=x3,y=1a(5)函数与方程① 结合二次函数的图像,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.3.立体几何初步(1)空间几何体① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图.③ 会用平行投影与中心投影两种方法,画出三视图与直观图,了解空间图形的不同表示形式.④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求).⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式.2)点、直线、平面之间的位置关系① 理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.◆公理1:如果一条直线上的两点在一个平面,那么这条直线上所有的点在此平面.◆公理2:过不在同一条直线上的三点,有且只有一个平面.◆公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.◆公理4:平行于同一条直线的两条直线互相平行.◆定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.② 以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理.◆如果平面外一条直线与此平面的一条直线平行,那么该直线与此平面平行.◆如果一个平面的两条相交直线与另一个平面都平行,那么这两个平面平行.◆如果一条直线与一个平面的两条相交直线都垂直,那么该直线与此平面垂直.◆如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理.◆如果一条直线与一个平面平行,经过该直线的任一个平面与此平面相交,那么这条直线就和交线平行.◆如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.◆垂直于同一个平面的两条直线平行.◆如果两个平面垂直,那么一个平面垂直于它们交线的直线与另一个平面垂直.③ 能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.4.平面解析几何初步(1)直线与方程① 在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.② 理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.③ 能根据两条直线的斜率判定这两条直线平行或垂直.④ 掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.⑤ 能用解方程组的方法求两直线的交点坐标.⑥ 掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.(2)圆与方程① 掌握确定圆的几何要素,掌握圆的标准方程与一般方程.② 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.③ 能用直线和圆的方程解决一些简单的问题.④ 初步了解用代数方法处理几何问题的思想.(3)空间直角坐标系① 了解空间直角坐标系,会用空间直角坐标表示点的位置.② 会推导空间两点间的距离公式.5.统计(1)随机抽样① 理解随机抽样的必要性和重要性.② 会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.(2)用样本估计总体① 了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.② 理解样本数据标准差的意义和作用,会计算数据标准差.③ 能从样本数据中提取基本的数字特征(如平均数、标准差),并作出合理的解释.④ 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.⑤ 会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.6.概率(1)事件与概率① 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.② 了解两个互斥事件的概率加法公式.(2)古典概型① 理解古典概型及其概率计算公式.② 会计算一些随机事件所含的基本事件数及事件发生的概率.(3)随机数与几何概型① 了解随机数的意义,能运用模拟方法估计概率.② 了解几何概型的意义.7.基本初等函数Ⅱ(三角函数)(1)任意角的概念、弧度制① 了解任意角的概念.② 了解弧度制概念,能进行弧度与角度的互化.(2)三角函数① 理解任意角三角函数(正弦、余弦、正切)的定义.② 能利用单位圆中的三角函数线推导出2πα±,πα±的正弦、余弦、正切的诱导公式,能画出sin y x =,cos y x =,tan y x =的图像,了解三角函数的周期性.③ 理解正弦函数、余弦函数在区间[0,2π]的性质(如单调性、最大值和最小值以及与x 轴的交点等).理解正切函数在区间,22ππ⎛⎫- ⎪⎝⎭的单调性. ④ 理解同角三角函数的基本关系式:22sin cos 1x x +=,sin tanx cos x x= ⑤ 了解函数sin(x )y A ωϕ=+的物理意义;能画出sin(x )y A ωϕ=+的图像,了解参数A ,ω,ϕ对函数图像变化的影响.⑥ 了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.8.平面向量(1)平面向量的实际背景及基本概念① 了解向量的实际背景.② 理解平面向量的概念,理解两个向量相等的含义. ③ 理解向量的几何表示.(2)向量的线性运算① 掌握向量加法、减法的运算,并理解其几何意义.② 掌握向量数乘的运算及其意义,理解两个向量共线的含义.③ 了解向量线性运算的性质及其几何意义.(3)平面向量的基本定理及坐标表示① 了解平面向量的基本定理及其意义.② 掌握平面向量的正交分解及其坐标表示.③ 会用坐标表示平面向量的加法、减法与数乘运算.④ 理解用坐标表示的平面向量共线的条件.(4)平面向量的数量积① 理解平面向量数量积的含义及其物理意义.② 了解平面向量的数量积与向量投影的关系.③ 掌握数量积的坐标表达式,会进行平面向量数量积的运算.④ 能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.(5)向量的应用① 会用向量方法解决某些简单的平面几何问题.② 会用向量方法解决简单的力学问题与其他一些实际问题.9.三角恒等变换(1)和与差的三角函数公式① 会用向量的数量积推导出两角差的余弦公式.② 能利用两角差的余弦公式导出两角差的正弦、正切公式.③ 能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的在联系.(2)简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).10.解三角形(1)正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.(2) 应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.11.数列(1)数列的概念和简单表示法① 了解数列的概念和几种简单的表示方法(列表、图像、通项公式).② 了解数列是自变量为正整数的一类函数.(2)等差数列、等比数列① 理解等差数列、等比数列的概念.② 掌握等差数列、等比数列的通项公式与前n项和公式.③ 能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.④ 了解等差数列与一次函数、等比数列与指数函数的关系.12.不等式(1)不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.(2)一元二次不等式① 会从实际情境中抽象出一元二次不等式模型.② 通过函数图像了解一元二次不等式与相应的二次函数、一元二次方程的联系.③ 会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.(3)二元一次不等式组与简单线性规划问题① 会从实际情境中抽象出二元一次不等式组.② 了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.③ 会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.(4)基本不等式:0,0)2a b a b +≥≥≥ ① 了解基本不等式的证明过程.② 会用基本不等式解决简单的最大(小)值问题.13.常用逻辑用语(1)命题及其关系① 理解命题的概念.② 了解“若p ,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.③理解必要条件、充分条件与充要条件的意义。