《容器零部》PPT课件

合集下载

压力容器零部件

压力容器零部件

1. 整体法兰:法兰与设备或管道不可拆地 固定在一起。
常见的整体法兰型式有两种: (1)平焊法兰 如图4-5(a),(b)所示。 这种法
兰制造容易,应用广泛,但刚性差。
适用的压力范围较低(PN≤4 MPa).
(2)对焊法兰
又叫高颈法兰 或长颈法兰 ,如图4-5(c)所 示。由于长颈的存在提高了法兰刚性,同时 由于颈的根部厚度比器壁厚,所以也降低了 这里的弯曲应力。
第四章 压力容器零部件
常见的可拆卸结构 有 法兰连接, 螺纹连接 承插式连接。
第一节 法兰连接
一、法兰连接结构与 密封原理
法兰连接结构是 一个组合件,一般是 由连接件、被连接件、 密封件组成。
如图所示.法兰密封 由法兰1一被连接件, 垫片2一密封元件, 螺栓、螺母,3--连接 件组成。
在生产实际中,压力容器常见的法兰密 封失效很少是由于连接件或被连接件的强度 破坏所引起的,较多的却是因为密封不好而 泄漏。
采用减小螺栓直径,增加螺栓个数的办法对
密封是有利的。
2. 压紧面(密封面)
压紧面(密封面)直接与垫片接触,它既
传递螺栓力使垫片变形,同时也是垫片的表面
约束。因而,压紧面的形状和表面光洁度应与
垫片相配合。
压紧面的平直度和压紧面与法兰中心轴线
垂直、同心,是保证垫片均匀压紧的前提。
减小压紧面与垫片的接触面积,可以有效
地降低预紧力,但若减得过小,则易压坏垫片。
法兰压紧面的形式
1、平面型压紧面 2、凹凸型压紧面 3、榫槽型压紧面 4、锥形压紧面 5、梯形压紧面
(1)平面型压紧面
这种压紧面的表面是一个光滑的平面, 或在其上车有数条三角形断面的沟槽〔图45(a),(b)]。这种压紧面结构简单.加工方便, 且便于进行防腐衬里.平面压紧面法兰适用 的压力范围是PN<2. 5MPa,在PN>0. 6MPa 的情况下,应用最为广泛,但是、这种压紧 面垫片接触面积较大,预紧时垫片容易往两 边挤,不易压紧,密封性能较差,当介质有 毒或易燃易爆时,不能采用平面压紧面。

压力容器零部件

压力容器零部件
智能化监测技术:通过传感器和智能化监测系统实时监测压力容器的运行状态预防事故 发生。
新型焊接工艺的发展:如激光焊接、电子束焊接等提高了焊接质量和效率降低了制造成 本。
模块化设计:将压力容器零部件设计成模块化结构方便维修和更换提高了设备的可靠性。
压力容器零部件的市场需求和发展趋势
市场需求:随着工 业生产和能源需求 的增长压力容器零 部件的市场需求不 断扩大。
压力容器零部件的铸造工艺要求严格需遵循相关标准和规范确保生产出的零件符合安全性能要求。
锻造工艺
定义:通过加热和加压使金属 材料变形并形成所需形状的工 艺
优点:高强度、耐磨性、耐腐 蚀性
制造过程:备料、加热、锻打、 冷却、热处理等
应用范围:压力容器、化工机 械、石油机械等领域
焊接工艺
焊接的定义和原理 焊接的分类和应用 压力容器零部件制造中常用的焊接方法 焊接工艺对压力容器零部件性能的影响
和性能。
智能化监测: 通过智能化监 测技术实现对 压力容器零部 件的实时监测 和预警提高设 备的安全性和
可靠性。
新型材料应用: 新型材料的不 断涌现和应用 将为压力容器 零部件的制造 提供更多选择
和可能性。
绿色环保:随 着环保意识的 提高压力容器 零部件的设计 和制造将更加 注重环保和节 能减少对环境
的影响。
THEME TEMPLATE
感谢观看
选用原则:选用压力容器零部件时应考虑介质特性、操作条件、载荷状况等因素以确保安全可靠 地运行。
压力容器零部件的标准和规范
压力容器零部件必须符合相关国 家和行业标准确保安全性能和使 用寿命。
定期进行检测和维护确保压力容 器零部件的正常运行和使用安全。
添加标题
添加标题

容器设计基础PPT课件

容器设计基础PPT课件

2、按承压性质分类
(1)压力方向 真空容器与外压容器的区别
内压容真器空容器指外部压力来源于大气的压 外力压(容外器压(为真1个空大容气器压:外,P即=00..11MMpPaa,)内,P<即0.1Mpa) 将设备内空气抽掉,内部压力小于大气压 (2)力压。力大小(设计压力大小) 压力外不压限大容小器低指。压外容部器压:力0来.1≤源P<于1介.6质M压Pa力, 内压容器 中压容器:1.6≤P<10 MPa
二类容器
高度、极度毒性 ≥0.2
三类 容器
4、按容器壁温或材料分类
低温容器:≤-20℃ 常温容器:-20~200℃ 中温容器:200~420 ℃ 高温容器:达到材料蠕变温度
蠕变碳:素在钢应或力低不合变金的钢条>件4下20,℃应变随时间延长 而增合加金的钢现>象4。50它℃与屈服现象不同,屈服现象 通常奥在氏应体力不超锈过钢弹>性5极50限℃之后才出现,而蠕变 只要应力的作用时间相当长,它在应力小于弹 性极限时也能出现。
10.2 内压薄壁容器设计
一、薄壁容器设计的理论基础
1、薄壁容器 容器
厚壁容器 K>1.2 薄壁容器 K ≤1.2
δ/Di≤0.1
根据容器的外径D0和内径Di的比值K来判断。
K D0 Di 2 1 2
Di
Di
Di
石油、化工中使用的压力容器大多为薄壁容器。
2、圆筒薄壁容器承受内压时的应力
2
1 2 p R1 R2
pr
1 2 cos
pr
2 cos
pr
1 2 cos
pr
2 cos
锥形壳的环向应力是经向 应力的2倍,并且应力随着 半锥角α的增大而增大。
一般α≤45°,不宜太大。

压力容器的设计单元十三 压力容器零部件(支座及开孔)52p

压力容器的设计单元十三 压力容器零部件(支座及开孔)52p

B=2d d=接管内径+2C (C=C1+C2)
h 1
dSnt
或实际外伸高度的值较;小
h 2
dSnt
或实际内伸高度的值较;小
等面积补强,纵截面上的投影面积要满足下式:
A1+A2+A3≥A A1—壳体的贡献(有效壁厚减去计算壁厚部分); A2—接管的贡献(有效壁厚减去计算壁厚部分); A3—焊缝金属截面积; A—壳体上需要补强的截面积。(表6-20 P179)
椭圆形人孔(或称长圆形人孔)的最小 尺寸为400mm×300mm。
人孔:筒节、法兰、盖板和手柄。
使用中常打开,可用快开式结构人 孔。
水平吊盖人孔
手孔(HG21515~21527-95) 和人孔(HG21528~2153595)已有标准,
设计时根据设备的公称压力, 工作温度以及所用材料等按 标准直接选用。
(2)加强元件结构 (3)整体补强结构
若须补强的接管较多, 可采取增加壳体壁厚 的办法,也称为整体 补强。
(四).等面积补强的设计方法
1. 开孔有效补强范围及补强面积的计算 等面积补强——补强的金属量等于或大于开孔所
削弱的金属量。 图上看,应该考虑的截面是强度削弱较大的截面
——轴(纵)向截面的面积:
三、手孔与人孔
检查设备内部空间以及安装和拆 卸内部构件。
手孔直径150mm~250mm,标准
手孔公称直径有DN150和 DN250两种。
手孔结构:容器上接一短管,其 上盖一盲板。
人孔:
设备直径超过900mm,有手孔也设 人孔。
人孔的形状有圆形和椭圆形。
椭圆形人孔短轴与筒身轴线平行。
圆形人孔直径400mm~600mm,容 器压力不高或有特殊需要时,直径 可以大一些。

容器零部件--法兰设计

容器零部件--法兰设计
操作工况阶段: 工作状态内压轴向力拉伸,降低了压紧应力。垫片有足够回弹,补偿变
形,预紧密封比压值不小于某一值(工作密封比压),则法兰保持良好密封。 反之,回弹不足,则此密封失效。
密封元件在操作压力作用下,仍然保持一定的残余压紧力。螺栓和法 兰须有足够大的强度和刚度,不发生过大的变形。
精选ppt
2)、容器法兰的分类
精选ppt
(3). 垫片材料的选择:
根据温度、压力以及介质腐蚀决定,同时考 虑密封面形式、螺栓力的大小以及装卸要求 等。
精选ppt
精选ppt
2.4.2、法兰标准及选用
石油、化工上用的法兰标准有两类: 一是压力容器法兰标准 二是管法兰标准
精选ppt
(1) 、压力容器法兰标准
最新标准是原机械工业部、化工部、劳动部、石化总公 司合编《压力容器法兰》,标准号为JB4700~4707-92
例如:DN 1000mm的压力容器,应当配用DN
1000mm的压力容器法兰。
精选ppt
* 法兰公称压力:
法兰公称压力与最大操作压力、操作温度以及材 料有关。因为:
定义: 是以16MnR在200℃时的机械性能为基准来确定
法兰的尺寸,所以在200℃时,它的最大允许操作 压力,就认为是具有该尺寸法兰的公称压力。
焊法兰适用于压力、温度较高或设备直径较
大的场合。
精选ppt
( 2)、松式法兰
法兰与容器或管道不连接,比整体式连接 强度差
精选ppt
法兰盘可用不同材料,用于铜制、铝制、陶瓷、 石墨及其非金属材料的设备或管道上。
受力后无附加弯曲应力,只适用于压力较低场合
精选ppt
(3)、任意式法兰
整体性介于整体法兰和松式法兰之间。

化工设备基础9 容器零部件-2

化工设备基础9 容器零部件-2

18
第9章 容器零部件
选用: 选用: 1)根据容器公称直径DN和 根据容器公称直径DN和 总质量选取相应的支座号和 支座数量 2)计算支座承受实际载荷, 计算支座承受实际载荷, 使其不大于支座允许载荷。 使其不大于支座允许载荷。 除容器总质量外, 除容器总质量外,实际载荷 还应综合考虑风载荷、 还应综合考虑风载荷、地震 载荷和偏心载荷。 载荷和偏心载荷。
裙座的结构
22
第9章 容器零部件
裙座结构
23
第9章 容器零部件
9.3 容器的开孔补强 ——开孔破坏原有的应力分布并引起应力集中, ——开孔破坏原有的应力分布并引起应力集中,较 开孔破坏原有的应力分布并引起应力集中 大的局部应力; 大的局部应力; ——作用于接管上的各种载荷所产生的应力, ——作用于接管上的各种载荷所产生的应力,温度 作用于接管上的各种载荷所产生的应力 差造成的温差应力; 差造成的温差应力; ——容器材质和焊接缺陷等因素的综合作用; ——容器材质和焊接缺陷等因素的综合作用; 容器材质和焊接缺陷等因素的综合作用 ——接管成为容器的破坏源,必须考虑补强问题 ——接管成为容器的破坏源,必须考虑补强问题。 补强问题。 接管成为容器的破坏源
第9章 容器零部件
鞍式支座
5
第9章 容器零部件
鞍座的结构—— 鞍座的结构—— 由横向直立筋板、轴向直立筋板和底板焊接而成, 由横向直立筋板、轴向直立筋板和底板焊接而成,在与设 备筒体相连处, 带加强垫板的和不带加强垫板的两种 的和不带加强垫板的两种。 备筒体相连处,有带加强垫板的和不带加强垫板的两种。
27
第9章 容器零部件
(b)塑性失效补强设计原则 ——极限设计的方法,考虑到结构的安定性。 ——极限设计的方法,考虑到结构的安定性。 极限设计的方法 开孔容器的接管处达到全域塑性时的极限应力应等 于无孔壳体的屈服应力;同时, 于无孔壳体的屈服应力;同时,按弹性计算的最大 应力应不超过2 应力应不超过2σs。 σmax=2σs max=2σs 而 所以 σs =1.5[σ] σmax=3[σ] max=3[σ

第二节 压力容器零部件 1.2.1 筒体和封头

第二节 压力容器零部件 1.2.1 筒体和封头
当容器筒体直径较小时,可直接采用无缝钢管制 作时,这时容器的公称直径等于钢管的外径。
管子的公称直径(通径)既不是管子的内径也不 是管子的外径,而是一个略小于外径的数值。
零部件的二个基本参数
公称压力(PN)
国家标准GB1048将管路元件的公称压力分为以 下十个等级:0.25MPa、0.6MPa、1.0Ma、 1.6MPa、2.5MPa、4.0MPa、6.30MPa、10.0MPa、 16.0MPa、25.0MPa 。
(e) 梯形压紧面(Trapezium face):适用于高温,压力较高场合,O形圈、金 属垫圈— —八角垫、椭圆垫
(a)全平面
(b)突面
(c)凹凸面
(d)榫槽面
(e)环连接面(梯形槽)
突出平面型压紧面
凹凸面法兰连接
榫槽面法兰连接
榫槽型密封面
梯形槽密封面
金属与金属的接触(Metal to metal)
中华人民共和国机械电子工业部 中华人民共和国化学工业部 中华人民共和国劳动部 中国石油化工总公司
JB4700-92 压力容器法兰分类与技术条件
适用范围:公称压力0.25~6.4MPa,工作温度-20~450℃ 分类:甲型平焊法兰,乙型平焊法兰,长颈对焊法兰 法兰、垫片、螺柱、螺母材料的匹配
容器法兰公称直径:指与法兰相配的筒体或封头的公称直径。
压力容器的公 称直径DN:
无 钢缝 板钢 卷管 焊作 点筒 筒体 体: :外 内径 径D1i5390,201,590,302,850,40, 216000,1600,3000等
公称压力pN:一定温度和材料的法兰的最高工作压力。
容器法兰的公称压力是以16Mn在200℃时的最高操作压 力为依据制订的。
3)法兰的类型

压力容器的设计—压力容器零部件

压力容器的设计—压力容器零部件
同; • ◎压力容器法兰—
·板卷筒体,与相联接筒体的公称直径相 同; ·无缝钢管作筒体,与相联接无缝管的公 称直径相同。
50
公称压力
公称压力——是以16Mn在200℃时的最高工作压力为依据 制定的,因此当法兰材料和工作温度不同时,最大工作压
力将降低或升高。
法兰公称压力与法兰的最大操作压力和操作温度以及法 兰材料三个因素有关。
公称压力 PN 法兰材质
Q235-A
0.6
16MnR
15MnVR
最大允许工作压力 (MPa)
-20~200℃ 300℃ 350℃
0.4
0.33 0.30
0.6
0.51 0.49
0.65
0.63 0.651
3、压力容器法兰的标记
52
压力容器法兰设计步骤:
(1)确定DN; (2)根据法兰材质、工作温度和最高工作压力,确
有一个圈座是滑动支承的。
77
㈢ 腿式支

简称支腿
连接处造成严重的局部应力, 只适用于小型设备
难,榫易损坏。
注意:应使固定在设备上的 法兰为槽面,可拆下部分的法
兰为榫面。
榫槽型压紧面
29
锥形压紧面
通常用于高压密封,其缺 点是需要的尺寸精度和表 面粗糙度要求高。须与透 镜垫片配合,常用于高压管
道。
锥形压紧面
30
梯形槽压紧面
槽底不起密封作用,是槽的 内外锥面与垫片接触成梯形, 形成密封的,与椭圆或八角
凝土制的基础上。
66
㈡ 支承式支座
用钢管、角钢、 槽钢制作,或 用数块钢板焊 成,
型式、结构、 尺寸及材料 JB/T 4724-92 《支承式支 座》。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结构:容器封头底部焊上数根支柱,直接支承基础地面
特点:简单方便,但对容器封头会产生较大的局部应力, 故当容器较大或壳体较薄时,必须在支座和封头间加垫 板,以改善壳体局部受力情况。
标准: JB/T 4724《支承式支座》 A型(钢板支柱) B型(钢管支柱)
15
第9章 容器零部件
B型
A型
图12-21 支承式支座
标准:JB/T4713《腿式支座》。 A型(角钢支柱)B型(钢管支柱)
18
第9章 容器零部件
选用: 1)根据容器公称直径DN和 总质量选取相应的支座号和 支座数量 2)计算支座承受实际载荷, 使其不大于支座允许载荷。
除容器总质量外,实际载荷 还应综合考虑风载荷、地震 载荷和偏心载荷。
图12-23 腿式支座
8
第9章 容器零部件
鞍式支座
9
第9章 容器零部件
鞍式支座
10
第9章 容器零部件
圈座
圈座
支腿式
11
第9章 容器零部件
2、立式容器支座 (1)耳式支座 (悬挂式支座)
结构:由筋板和支脚板组成
特点:简单、轻便,但对器壁会产生较大的局部应力。 当容器较大或器壁较薄时,应在支座与器壁间加一垫 板,垫板的材料最好与筒体材料相同。
19
第9章 容器零部件
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
垫板 盖板 支柱
底板
A型
AN型
B型
BN型
20
第9章 容器零部件
(4)裙式支座 应用:高大的立式容器,特别 是塔设
21
第12章 容器零部件(续)
1—塔体; 2—保温支承圈; 3—无保温时排气孔; 4—裙座筒体; 5—人孔 ; 6—螺栓座; 7—基础环; 8—有保温时排气孔; 9—引出管通道; 10—排液孔
26
第9章 容器零部件
问题:没有考虑开孔处应力集中的影响,没有计入 容器直径变化的影响,补强后对不同接管会得到不 同的应力集中系数,即安全裕量不同,因此有时显 得富裕,有时显得不足。
优点:长期实践经验,简单易行,当开孔较大时, 只要对其开孔尺寸和形状等予以一定的配套限制, 在一般压力容器使用条件下能够保证安全,因此 不少国家的容器设计规范主要采用该方法,如 ASME Ⅷ-1和GB150等。
一个固定(重量大,配管较多的一侧)
双鞍座
一个可沿轴线移动(操作时和安装时的 温度不同可能引起热膨胀以及可能出现 弯曲造成附加应力)
鞍座包角的选取
影响鞍座处圆筒截面上的应力分布, 影响稳定性和储罐-支座系统重心的高低
常用包角120°、135 °、150°我国JB/T4712用120°、150° 4
第9章 容器零部件
第9章 容器零部件
第9章 容器零部件
9.2 容器支座
——用来支承容器及设备重量,并使其固定在某一位 置的压力容器附件。在某些场合还受到风载荷、地震载
荷等动载荷的作用。 卧式支座
鞍式支座 圈式支座 支腿支座
支座
耳式支座
立式支座
支撑式支座 腿式支座
裙式支座
2
第9章 容器零部件
1、卧式容器支座 形式:鞍座、圈座及支腿三种
标准: JB/T 4725《耳式支座》 A型(短臂) A、AN B型(长臂) B 、BN
12
第9章 容器零部件
1-垫板; 2-筋板; 3-支脚板 图12-19 耳式支座
带垫板的耳式支座
13
第9章 容器零部件
14
第9章 容器零部件
(2)支承式支座 应用:高度不大、安装位置距基础面较近且具有凸形 封头的立式容器。
应用 常见的大型卧式储罐、 换热器等多采用鞍座。
是应用最为广泛的 一种卧式容器支座。
其它 圈座:用于大直径薄壁容器和 真空容器,增加局部刚度。 支腿:重量较轻的小型容器。
3
第9章 容器零部件
支座数量的决定
双鞍座结构较普遍,多支座结构难 于保证各支座受力均匀
安装位置的安排
一般,外伸长度A ≤0.2L,且最好A ≤0.5R m,A 最大不超过0.25L
16
第9章 容器零部件
带垫板的支承式支座
17
第9章 容器零部件
(3)腿式支座(支腿)
应用:多用于高度较小的中小型立式容器中。
结构与支承式支座区别:腿式支座是支承在容器圆柱 体部分,而支承式支座是支承在容器底封头上。
特点:结构简单、轻巧、安装方便,容器下面有较大 操作维修空间。但当容器上管线直接与产生脉动载荷 的机器设备刚性连接时,不宜选用腿式支座。
7
第9章 容器零部件
鞍座标记方法: JB/T 4712—1992 鞍座 ××-×
固定鞍座F 滑动鞍座S 公称直径mm 型号(A,BⅠ,BⅡ, BⅢ,BⅣ,BⅤ) 如公称直径为1600mm的轻型(A型)鞍座,标记为 JB/T 4712—92鞍座A1600—F JB/T 4712—92鞍座A1600—S
鞍式支座
5
第9章 容器零部件
鞍座的结构—— 由横向直立筋板、轴向直立筋板和底板焊接而成,在与设 备筒体相连处,有带加强垫板的和不带加强垫板的两种。
F型鞍式支座
S型鞍式支座
鞍座标准—— 轻型(A)和重型(B)两大类,重型又分为BⅠ~BⅤ五 种型号,见表13-1。
6
第9章 容器零部件
鞍座标准的选用 ➢根据鞍座实际承载的大小 ➢确定选用轻型( A型 )或重型( BⅠ~BⅤ型)鞍座 ➢找出对应的公称直径, ➢根据容器圆筒强度确定120°或150°包角的鞍座 ➢标准高度下鞍座的允许载荷和各部分结构尺寸可从 表12-7和JB/T4712—92中得到。
24
第9章 容器零部件
1、开孔补强的设计原则与补强结构 开孔补强设计
——采取适当增加壳体或接管厚度的方法将应力集 中系数减小到某一允许数值。 开孔补强设计准则
弹性失效设计准则——等面积补强法
塑性失效准则—极限分析法
25
第9章 容器零部件
(1)补强设计原则 (a)等面积补强法的设计原则
——规定局部补强的金属截面积必须等于或大于开 孔所减去的壳体截面积,其含义在于补强壳壁的平 均强度,用于开孔等截面的外加金属来补偿削弱的 壳壁强度。
裙座的结构
22
第9章 容器零部件
裙座结构
23
第9章 容器零部件
9.3 容器的开孔补强 ——开孔破坏原有的应力分布并引起应力集中,较 大的局部应力; ——作用于接管上的各种载荷所产生的应力,温度 差造成的温差应力; ——容器材质和焊接缺陷等因素的综合作用; ——接管成为容器的破坏源,必须考虑补强问题。
相关文档
最新文档