单纯形法matlab程序
单纯形法matlab

数学软件与实验数学与信息科学学院信息与计算科学单纯形法的Matlab程序如下:function [xx,fm]=myprgmh(m,n,A,b,c)B0=A(:,1:m);cb=c(:,1:m);xx=1:n;sgm=c-cb*B0^-1*A;h=-1;sta=ones(m,1);for i=m+1:nif sgm(i)>0h=1;endendwhile h>0[msg,mk]=max(sgm);for i=1:msta(i)=b(i)/A(i,mk);end[mst,mr]=min(sta);zy=A(mr,mk);for i=1:mif i==mrfor j=1:nA(i,j)=A(i,j)/zy;endb(i)=b(i)/zy;endendfor i=1:mif i~=mrfor j=1:nA(i,j)=A(i,j)-A(i,mk)*A(mr,j);endb(i)=b(i)-A(i,mk)*b(mr);endendB1=A(:,1:m);cb(mr)=c(mk);xx(mr)=mk;sgm=c-cb*B1*A;for i=m+1:nif sgm(i)>0h=1;endendendfm=c*xx;例题:编写下列求解如下线性规划问题的单纯形法函数min f'xs.t ax<=b(其中b>=0)函数形式function [x,fval,it,op]=singl(f,a,b) 输出中x为最优解fval为最优值it为迭代次数无最优解op=0有最优解op=1编写程序如下:function [x,fval,it,op]=singl(f,a,b)[m,n]=size(a);c=[a eye(m) b;f' zeros(1,m+1)];fval=0;x=zeros(m+n,1);op=1;it=0;e=zeros(1,m);lie=find(f<0);l=length(lie);while(l>0)for j=1:ld=find(c(:,lie(j)));d_l=length(d);if d_l>0for i=1:mif c(i,lie(j))>0e(i)=c(i,end)/c(i,lie(j));elsee(i)=inf;endend[g,h]=min(e);for w=1:m+1if w==hc(w,:)=c(w,:)/c(h,lie(j));elsec(w,:)=c(w,:)-c(h,:)*c(w,lie(j))/c(h,lie(j));endendit=it+1;elseop=0;endendlie=find(c(end,:)<0);l=length(lie);endfor i=1:(m+n)ix=find(c(:,i));if(length(ix)==1)&(ix<=m)&(c(ix,i)==1) x(i)=c(ix,end)elsex(i)=0endendfval=-c(end,end);。
单纯形法matlab求解有约束优化问题实验报告

单纯形法matlab求解有约束优化问题实验报告一、实验目的本次实验旨在通过使用MATLAB软件中的单纯形法,求解约束优化问题,熟悉单纯形法的基本原理和操作方法,并掌握MATLAB软件中单纯形法的使用。
二、实验原理1.单纯形法基本原理单纯形法是一种线性规划问题的求解方法,其基本思想是通过不断地移动一个n维空间中的“单纯形”(即一个n+1个顶点组成的凸多面体),寻找到目标函数最小值或最大值所对应的顶点。
在每次移动时,都会将当前顶点与其它顶点进行比较,选择一个更优秀的顶点来替换当前顶点,并不断重复这个过程直到找到最优解为止。
2.单纯形法步骤(1)确定初始可行解;(2)检查当前可行解是否为最优解;(3)如果当前可行解不是最优解,则选择一个非基变量进入基变量集合,并确定该变量使目标函数值下降最多;(4)计算新可行解;(5)判断新可行解是否存在并继续执行步骤2-4直到找到最优解。
三、实验步骤1.建立约束优化问题模型本次实验采用如下线性规划问题模型:$max\quad z=2x_1+3x_2$$s.t.\quad x_1+x_2\leq 4$$x_1\geq 0,x_2\geq 0$2.使用MATLAB软件求解(1)打开MATLAB软件,新建一个m文件;(2)输入以下代码:%建立约束优化问题模型f=[-2,-3];A=[1,1];b=[4];lb=zeros(2,1);[x,fval]=linprog(f,A,b,[],[],lb);(3)保存并运行该m文件,即可得到最优解。
四、实验结果与分析根据上述步骤,我们可以得到该线性规划问题的最优解为:$x_1=3,x_2=1,z=9$。
五、实验总结本次实验通过使用MATLAB软件中的单纯形法,成功求解了一个约束优化问题,并深入了解了单纯形法的基本原理和操作方法。
通过实践操作,加深了对MATLAB软件中单纯形法的使用和应用。
单纯形法的matlab实现(极小化问题)

实验报告实验题目: 单纯形法的matlab实现学生:学号:实验时间: 2013-4-15一.实验名称: 单纯形法的MATLAB 实现二.实验目的及要求:1. 了解单纯形算法的原理及其matlab 实现.2. 运用MATLAB 编辑单纯形法程序解决线性规划的极小化问题, 求出最优解及目标函数值.三.实验容:1. 单纯形方法原理:单纯形方法的基本思想, 是从一个基本可行解出发, 求一个使目标函数值有所改善的基本可行解; 通过不断改进基本可行解, 力图达到最优基本可行解. 对问题.0 ,A s.t. def min ≥=x b x cx f 其中A 是一个m ×n 矩阵, 且秩为m, c 为n 维行向量, x 为n 维列向量, b 为m 维非负列向量. 符号“”表示右端的表达式是左端的定义式, 即目标函数f 的具体形式就是cx . 记),...,,(n 21p p p A =令A =(B,N), B 为基矩阵, N 为非基矩阵, 设⎥⎦⎤⎢⎣⎡=0B 1-)0(b x是基本可行解, 在)0(x处的目标函数值b c b c c cxf 1-B 1-N B )0(0B 0B ),(=⎥⎦⎤⎢⎣⎡==,其中B c 是c 中与基变量对应的分量组成的m 维行向量; N c 是c 中与非基变量对应的分量组成的n-m 维行向量. 现由基本可行解)0(x出发求解一个改进的基本可行解.设⎥⎦⎤⎢⎣⎡=N B x x x 是任一可行解, 则由b Ax =得到N 1-1-B N B B x b x -=,在点x 处的目标函数值∑∈--=⎥⎦⎤⎢⎣⎡==R j j j j f x x c c cx f x )c z (),(0N B N B ,其中R 是非基变量下标集,j j p c 1-B B z =.2. 单纯形方法计算步骤:首先给定一个初始基本可行解, 设初始基为B, 然后执行下列主要步骤: (1)解b x B =B , 求得_1b b B x B ==-, 令0=N x , 计算目标函数值B B xc f =. (2)求单纯形乘子w , 解B c wB =, 得到1-=Bc w B . 对于所有非基变量, 计算判别数j j j j j c c -z -=p w . 令}c -{z max c -z j j Rj k k ∈=.若0c -z k k ≤, 则对于所有非基变量0c -z j j ≤, 对应基变量的判别数总是为零, 因此停止计算, 现行基本可行解是最优解. 否则, 进行下一步.(3)解k k p By =, 得到k 1k p B y -=, 若0k ≤y , 即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解. 否则进行步骤(4). (4)确定下标r, 使x k =⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=0min ik ik i k y y b y b r r ,r B x 为离基变量, k x 为进基变量. 用k p 替换r B p , 得到新的基矩阵B, 返回步骤(1).3. 单纯形方法表格形式:表 3.1.1表 3.1.2(3.1.1略去左端列后的详表)假设0B 1-≥=b b , 由上表得0,N B ==x b x . 若0c -N B c N -1B ≤, 则现行基本可行解是最优解.若0c -N B c N -1B >, 则用主元消去法求改进的基本可行解. 先根据}c -{z max c -z j j R j k k ∈=选择主列, 再根据⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>=0min ikik i k y y b y b r r 找主行, 主元为rk y , 然后进行主元消去, 得到新单纯形表. 表的最后一行是判别数和函数目标值.四.实验流程图及其MATLAB 实现:2. 代码及数值算例:(1) 程序源代码:function [x,f]=DCmin(c,A,b,AR,y0,d) % x: 最优解% f: 目标函数最优值% c: 目标函数系数向量% A: 系数矩阵% b: m维列向量% AR: 松弛变量系数矩阵% y0: 基矩阵初始向量% d: 补充向量(非目标系数向量, 为一零向量)N=10000;B=[A,AR,b];[m,n]=size(B);C=[c,d];y=y0;x=zeros(1,length(c));for k=1:Nk;z=B(:,end);%右端for j=1:n-1t(j)=y*B(:,j)-C(j);%检验数endt;f=y*z;%%========选取主元==========%%%---------选取主列---------%[alpha,q]=max(t);q;W(k)=q;%x下标矩阵%-------------------------%%--------选取主元----------%for p=1:mif B(p,q)<=0r(p)=N;else r(p)=z(p)/B(p,q);endend[beta,p]=min(r);p;y(p)=C(q);%-------------------------% %%==========================%% B(p,:)=B(p,:)/B(p,q); for i=1:m if i~=pB(i,:)=B(i,:)-B(p,:)*B(i,q); end endif max(t)<=0 break ; end B; end%++++++++++++++++++++++++++++++++++++++% Z=B(:,end);if length(x(W))~=length(Z) x=char(' NONE');f=char(' NONE'); disp(' 不存在有限最优解'); else x(W)=Z'; end(2) 数值算例:例 3.1.2 用单纯形方法解下列问题.43210x 4x -2x x - 84x x -2x 10x -2x x x s.t.x x 2-min x j 3213214321321,,,,,,,=≥≤+≤+=+++j引进松弛变量x 5, x 6, 问题标准化:.6543210x .4x x -2x x - 8 x 4x x -2x 10 x -2x x x s.t.x x 2-min x j 632153214321321,,,,,,,,=≥=++=++=+++j(i) 输出命令:>> c=[1 -2 1];A=[1 1 -2 1;2 -1 4 0;-1 2 -4 0];b=[10;8;4];AR=[0 0;1 0;0 1];y0=[0 0 0];d=[0 0 0]; >> [x,f]=DCmin(c,A,b,AR,y0,d)(ii) 运行结果:B =1 1 -2 1 0 0 102 -1 4 0 1 0 8-1 2 -4 0 0 1 4k =1t =-1 2 -1 0 0 0f =B =1.5000 0 0 1.0000 0 -0.5000 8.00001.5000 02.0000 0 1.0000 0.5000 10.0000-0.5000 1.0000 -2.0000 0 0 0.5000 2.0000k =2t =0 0 3 0 0 -1f =-4B =1.5000 0 0 1.0000 0 -0.5000 8.00000.7500 0 1.0000 0 0.5000 0.2500 5.00001.0000 1.0000 0 0 1.0000 1.0000 12.0000k =3t =-2.2500 0 0 0 -1.5000 -1.7500f =-19x =0 12 5f =-19五.总结:在单纯形法求解过程中, 每一个基本可行解x都以某个经过初等行变换的约束方程组中的单位矩阵为可行基. 对于极大化的线性规划问题, 先标准化, 即将极大化问题变换为极小化问题:minmaxcx-cx然后利用单纯形方法求解.六.参考文献:宝林编著《最优化理论与算法》清华大学2005年10月第2版。
实验二:MATLAB编程单纯形法求解

北京联合大学实验报告项目名称:运筹学专题实验报告学院:自动化专业:物流工程班级: 1201B 学号:2012100358081 姓名:管水城成绩:2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w,BwB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步 (3).解k kBy p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的是,为了提高运行速度。
matlab 单纯形法 -回复

matlab 单纯形法-回复什么是单纯形法?单纯形法是一种用于解决线性规划问题的算法。
它是由美国数学家乔治·达特兰德于1947年提出的。
单纯形法通过在一个多面体内移动一个特殊的高维图形,即单纯形,来搜索最优解。
这个多面体被称为可行解区域,而单纯形则是由多个顶点组成的多面体。
单纯形法的步骤如下:1. 理解线性规划问题:在开始使用单纯形法之前,首先需要明确线性规划问题的定义和约束条件。
线性规划问题是一类在线性目标函数下,通过一组线性不等式和等式约束来找到使目标函数最优化的变量值。
2. 转换为标准形式:将线性规划问题转换为标准形式,即将目标函数和约束条件都转化为等式形式,并引入人工变量和松弛变量。
3. 初始化:寻找一个可行基础解,并计算对应的目标函数值。
如果找不到初始的基础解,则问题无解。
4. 选择进基变量:从非基变量中选择一个进基变量,即将其从0增加为正值,以使目标函数值增加。
5. 选择出基变量:确定一个出基变量,即将其从正值减少到0,以保持其他约束条件不变。
6. 单纯形迭代:通过计算目标函数值和约束条件来确定下一个基础解。
如果满足终止条件,则找到了最优解。
否则,继续选择进基变量和出基变量进行下一次迭代。
7. 终止:根据终止条件判定是否找到了最优解。
终止条件可以是找不到进基变量或者出基变量,或者目标函数值已达最优。
单纯形法的优点在于它是一种相对快速和可靠的算法,可以在多项式时间内找到最优解。
然而,它的缺点是当问题规模较大时,计算复杂度会呈指数增长,并且在某些特殊情况下可能会出现挂起、无法终止的情况。
为了改进单纯形法的性能,研究人员提出了一些变种和改进的算法。
例如,内点法通过在多面体内部搜索最优解,避免了单纯形法中移动单纯形的过程,并取得了较好的效果。
其他算法如双轨法、变尺度法等也都在不同程度上改进了单纯形法的缺点。
总而言之,单纯形法是一种经典且有效的用于解决线性规划问题的算法。
它的基本思想是通过迭代逐步优化目标函数值,直到找到最优解。
单纯形法MATLAB程序

单纯形法(Mat lab程序)%%单纯形法(Mat lab程序)a= input (' input the major matrix A '); b=input (' input the matrix b '); n=input C input the judgement ');%%为计数器(确定循环次数)萨0;while g<40%%确定非负alength=max(size(n));blength二max(size(b));m=0;for i=l:alength辻n(i)〉=0m二m+1;endend;if m==alengthx=b;breakend;%%找Ks二min(n);for i=l:alengthif n(i) ==sk二i;breakend;end;%%a[i,k]的非负性m=0;for i=l:blengthif a(i, k)<0m二m+1;end;end;if m==blengthdisp('x does not exit');judge二1;breakend;%%找L确定主元cc=100000;for i=l:blengthif a (i, k) >0if(b(i)/a(i, k))<cccc=b(i)/a(i, k);endend end; for i=l:blengthif a(i, k)~=0if (b(i)/a(i, k))==cc1二i;breakendend end; %%计算,a 标准化zu=a(l, k); aa=a; for i=l:1-1 for j=l:alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for i=l+l:blengthfor j=l :alength aa(i, j)=a(i, j)-a(l, j)*a(i, k)/a(l, k);end end; for j=l:alengthaa(l, j)=a(l, j)/zu; end;%%b 勺判别bb=b; bb(l)=b(l)/zu;for i=l: 1~1 bb(i)=b(i)~b⑴*a(i, k)/a(l, k);end;for i=l+l:blength bb(i)二b(i)-b(l)*a(i, k)/a(l, k);end;b二bb; %%确定判别数tt 二n;for j=l:alength11 (j) =n(j)-a(1, j)*n(k)/a(1, k) ; end; n=tt;a=aa;%%显示单纯形表sa sa二[b' aa;0 n];dispC单纯表示例’);disp(g+1);disp(sa);g二g+l;judge=2;end;if judge==2q二0; result=zeros (alength, 2); for j=l+q:alengthif n(j)=0 t=a(:, j) ; zu=find( t) ; resu lt( j, l)=j ; result (j, 2)=x(zu) ; q 二q+1 ;endif n(j)>0 result(j,l)=q+l; q=q+l;endend;dispC最优解’);disp (result);dispC循环次数');end。
实验二MATLAB编程单纯形法求解

北京联合大学实验报告项目名称: 运筹学专题实验报告学院: 自动化专业: 物流工程班级: 1201B 学号:21姓名: 管水城成绩: 2015 年 5 月 6 日实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进行程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解、二、实验用仪器设备、器材或软件环境计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx其中初始可行基为松弛变量对应的列组成、对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx1.求解上述一般标准线性规划的单纯形算法(修正)步骤如下:对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始基本可行解。
设初始基为B,然后执行如下步骤:(1)、解B Bx b =,求得1B x B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2)、计算单纯形乘子w, BwB C =,得到1B w C B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令 max{}k i R σσ∈=,R 为非基变量集合若判别数0k σ≤ ,则得到一个最优基本可行解,运算结束;否则,转到下一步(3)、解k k By p =,得到1k k y B p -=;若0k y ≤,即k y 的每个分量均非正数, 则停止计算,问题不存在有限最优解,否则,进行步骤(4)、确定下标r,使 {}:0min ,0t rrk tk tk b b tk y y t y y >=>且r B x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:图1 3.计算程序(Matlab):A=input('A=');b=input('b=');c=input('c=');format rat%可以让结果用分数输出[m,n]=size(A);E=1:m;E=E';F=n-m+1:n;F=F';D=[E,F]; %创建一个一一映射,为了结果能够标准输出X=zeros(1,n); %初始化Xif(n<m) %判断就是否为标准型fprintf('不符合要求需引入松弛变量')flag=0;elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的cwhile flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B的目的就是,为了提高运行速度。
实验二:MATLAB编程单纯形法求解

北京联合大学实验报告工程名称:运筹学专题实验报告学院:自动化专业:物流工程班级:1201B 学号:姓名:管水城成绩:2021 年 5 月 6 日 实验二:MATLAB 编程单纯形法求解一、实验目的:(1)使学生在程序设计方面得到进一步的训练;,掌握Matlab (C 或VB)语言进展程序设计中一些常用方法。
(2)使学生对线性规划的单纯形法有更深的理解. 二、实验用仪器设备、器材或软件环境 计算机, Matlab R2006三、算法步骤、计算框图、计算程序等本实验主要编写如下线性规划问题的计算程序:⎩⎨⎧≥≥≤0,0..min b x b Ax t s cx 其中初始可行基为松弛变量对应的列组成. 对于一般标准线性规划问题:⎩⎨⎧≥≥=0,0..min b x b Ax t s cx 1.求解上述一般标准线性规划的单纯形算法〔修正〕步骤如下: 对于一般的标准形式线性规划问题(求极小问题),首先给定一个初始根本可行解。
设初始基为B,然后执行如下步骤: (1).解B Bx b=,求得1Bx B b -=,0,N B B x f c x ==令计算目标函数值 1(1,2,...,)i m B b i -=i 以b 记的第个分量(2).计算单纯形乘子w, B wB C =,得到1B wC B -=,对于非基变量,计算判别数1i i i B i i z c c B p c σ-=-=-,可直接计算σ=1B A c c B --令max{}k i Rσσ∈=,R 为非基变量集合假设判别数0k σ≤ ,那么得到一个最优根本可行解,运算完毕;否那么,转到下一步(3).解k k By p =,得到1k k y B p -=;假设0k y ≤,即k y 的每个分量均非正数, 那么停顿计算,问题不存在有限最优解,否那么,进展步骤(4).确定下标r,使{}:0min ,0t rrktktk b b tk y y t y y >=>且rB x 为离基变量,,r k B x p k 为进基变量,用p 替换得到新的基矩阵B,还回步骤(1);2、计算框图为:⎭⎬⎫⎩⎨⎧>=0|min ik ik i rk ry y b y b图13.计算程序(Matlab):A=input('A=');b=input('b='); c=input('c=');format rat %可以让结果用分数输出 [m,n]=size(A);E=1:m;E=E'; F=n-m+1:n;F=F';D=[E,F]; %创立一个一一映射,为了结果能够标准输出 X=zeros(1,n); %初始化Xif (n<m) %判断是否为标准型 fprintf('不符合要求需引入松弛变量') flag=0; elseflag=1;B=A(:,n-m+1:n); %找基矩阵cB=c(n-m+1:n); %基矩阵对应目标值的c while flagw=cB/B; %计算单纯形乘子,cB/B=cB*inv(B),用cB/B 的目的是,为了提高运行速度。