15.4.1 尺规作图
数学沪科版八年级(上册)15.4.1角平分线的尺规作图与性质

求证:PD=PE.
证明: ∵ PD⊥OA,PE⊥OB, ∴ ∠PDO= ∠PEO=90 °.
在△PDO和△PEO中,
∠PDO= ∠PEO,
O
∠AOC= ∠BOC,
OP= OP,
∴ △PDO ≌ △PEO(AAS).
∴PD=PE.
A
D C
P
E
B
新知探究
性质定理: 角平分线上的点到角两边的距离相等. A
点重合,且仪器的两边相等,怎样在作图中体现这个过
程呢?
(3)在平分角的仪器中,BC=DC,怎样在作图中体现这个
过程呢?
O
B (4)你能说明为什么OC是∠AOB的平分线吗?
新知探究
Байду номын сангаас尺规作图
作法:
1.以_点__O_为圆心,__任__意__长为半径画圆
弧,与角的两边分别交于M、N两点;
2.分别以点 _M_、__N_ 为圆心, _大__于__1_2_M__N_的长为半径画弧,
A
其依据是SSS,两全等三角形的 对应角相等.
D
B
(E) C
新知探究
尺规作角平分线 问题:如果没有此仪器,我们用数学作图工具,能实现该
仪器的功能吗?
做一做:请大家找到用尺规作角的平分线的方法,并说明
作图方法与仪器的关系.
A
提示:
(1)已知什么?求作什么?
(2)把平分角的仪器放在角的两边,仪器的顶点与角的顶
A
M C
B
N
O
课堂小测 3.请在图中作出线段AD,使其平分∠BAC且长度等于m.
B
m
A
C
课堂小测
解:
A
N D
尺规作图总结

一、理解“尺规作图”的含义1.在几何中,我们把只限定用直尺(无刻度)和圆规来画图的方法,称为尺规作图.其中直尺只能用来作直线、线段、射线或延长线段;圆规用来作圆和圆弧.由此可知,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不允许度量成分的.2.基本作图:(1)用尺规作一条线段等于已知线段;(2)用尺规作一个角等于已知角. 利用这两个基本作图,可以作两条线段或两个角的和或差.二、熟练掌握尺规作图题的规范语言1.用直尺作图的几何语言:①过点×、点×作直线××;或作直线××;或作射线××;②连结两点××;或连结××;③延长××到点×;或延长(反向延长)××到点×,使××=××;或延长××交××于点×;2.用圆规作图的几何语言:①在××上截取××=××;②以点×为圆心,××的长为半径作圆(或弧);③以点×为圆心,××的长为半径作弧,交××于点×;④分别以点×、点×为圆心,以××、××的长为半径作弧,两弧相交于点×、×. 三、了解尺规作图题的一般步骤尺规作图题的步骤:1.已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;2.求作:能根据题目写出要求作出的图形及此图形应满足的条件;3.作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.在目前,我们只要能够写出“已知,求作,作法”三步(另外还有第四步证明)就可以了,而且在许多中考作图题中,又往往只要求保留作图痕迹,不需要写出作法,可见在解作图题时,保留作图痕迹很重要.尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图。
尺规作图的方法和步骤

尺规作图的方法和步骤
尺规作图的方法和步骤
在几何里把限定用直尺和圆规来画图,称为尺规作图,最基本最常用的尺规作图,称基本作图。
2. 基本作图包括:
①作一角等于已知角;
②平分已知角;
③经过一点作已知直线的垂线;
④作线段的垂直平分线;
⑤若两已知圆相交,可求其交点。
原理都是已经证明的定理,如平分角,利用的就是边边边公理,以定点为圆心化圆交角两点,角平分线的任一点,到两点的距离相等的原理(很容易证明这是个全等三角形)。
作图公法
以下是尺规作图中可用的基本方法,也称为作图公法,任何尺规作图的步骤均可分解为以下五种方法:
通过两个已知点可作一直线。
已知圆心和半径可作一个圆。
若两已知直线相交,可求其交点。
若已知直线和一已知圆相交,可求其交点。
若两已知圆相交,可求其交点。
五种基本的尺规作图

在建筑设计中,尺规作图被广泛 应用于绘制平面图、立面图和剖 面图等,以确保建筑的准确性和
美观性。
机械工程
在机械制图中,尺规作图是绘制精 确零件图和装配图的重要工具,有 助于提高机械制造的精度和效率。
艺术设计
在美术、设计等艺术领域,尺规作 图也被用于创作具有几何美感的作 品,展现出独特的艺术魅力。
技巧分享
分享一些在尺规作图中常用的技巧和注意事项,如如何准确确定切点、如何绘制 垂直直线等,以提高作图的准确性和效率。同时,也可以介绍一些在实际应用中 可能会遇到的特殊情况和处理方法。
06 综合应用与拓展
五种基本尺规作图的综合应用
作一条已知线段的垂直平分线
利用直尺和圆规,可以准确作出已 知线段的垂直平分线,这在几何作 图中非常有用。
技巧分享
在绘制大圆时,可以将圆规两脚间距离调整得稍大一些,以提高绘制效率;在绘制小圆时 ,则需要更加精细地调整圆规两脚间距离,以确保绘制出的圆足够准确。
注意事项
在实例演示和技巧分享中,要强调保持圆规两脚间距离不变的重要性,以及注意调整圆规 两脚间距离的方法。同时,还可以分享一些在绘制过程中可能遇到的问题和解决方法,例 如如何避免圆规针尖滑动导致绘制出的圆不准确等问题。
五种基本的尺规作图
目 录
• 五种基本尺规作图概述 • 直线与角平分线作图 • 垂直平分线与平行线作图 • 圆的作图 • 圆弧连接与切线作图 • 综合应用与拓展
01 五种基本尺规作图概述
定义与分类
定义
尺规作图是指使用无刻度的直尺和圆 规进行作图的方法,是几何学中的基 本作图技能之一。
分类
五种基本的尺规作图包括作一条线段 等于已知线段、作一个角等于已知角 、作已知角的平分线、作线段的垂直 平分线以及作已知线段的中点。
尺规作图方法

尺规作图方法尺规作图,是古代数学中一种重要的几何学方法,它是利用尺子和圆规进行的一种几何图形的绘制方法。
尺规作图方法在古希腊时期就已经被广泛运用,而且在欧几里得的《几何原本》中也有详细的介绍。
尺规作图方法的重要性不言而喻,它不仅在古代被广泛应用,而且在现代数学中也有着重要的地位。
下面我们就来详细了解一下尺规作图方法的相关知识。
首先,我们需要了解尺规作图的基本工具,即尺子和圆规。
尺子是用来测量长度的工具,而圆规则是用来画圆的工具。
利用这两种工具,我们可以进行各种几何图形的绘制。
在尺规作图中,我们需要遵循一些基本原则,比如只能使用尺子和圆规,不能使用其他工具,也不能进行测量。
这些原则的遵循是尺规作图方法得以实现的基础。
其次,我们需要了解尺规作图的基本步骤。
在进行尺规作图时,我们首先需要根据给定的条件,利用尺子和圆规进行一些基本的构图,比如画直线、画圆等。
然后,根据已经构图的基本图形,我们可以进行一些运算,比如加减乘除等,从而得到我们需要的几何图形。
尺规作图的基本步骤并不复杂,但需要我们严格遵循规则,才能得到准确的结果。
接着,我们需要了解尺规作图方法的应用范围。
尺规作图方法不仅可以用来绘制一些简单的几何图形,比如直线、圆等,还可以用来解决一些复杂的几何问题,比如三角形的平分线、三角形的内切圆等。
尺规作图方法在解决这些几何问题时,往往能够给出简洁而优美的解决方案,因此在数学研究和教学中得到了广泛的应用。
最后,我们需要了解尺规作图方法的现代意义。
尽管在现代数学中,我们已经有了更加先进的工具和方法,比如解析几何、向量几何等,但尺规作图方法仍然具有重要的意义。
尺规作图方法所展现的严密的逻辑推理和简洁的解决方案,对于培养学生的逻辑思维能力和创造力有着重要的作用。
因此,尺规作图方法在现代数学教学中仍然占据着重要的地位。
总之,尺规作图方法是古代数学中一种重要的几何学方法,它不仅在古代被广泛应用,而且在现代数学中也具有重要的意义。
尺规作图ppt

xx年xx月xx日
目录
• 尺规作图基本知识 • 尺规作图的基本技能 • 尺规作图实例展示与分析 • 尺规作图技巧提升 • 尺规作图的应用前景 • 尺规作图的练习题及答案
01
尺规作图基本知识
定义和特点
定义
尺规作图是指使用无刻度的直尺和圆规进行图形绘制的方法 。
特点
具有精确、规范、美观等特点,被广泛应用于数学、工程、 设计等领域。
尺规作图在实际工程中的应用
工程设计
在工程设计中,尺规作图可以用于绘制各种机械零件的图形,如中,尺规作图可以用于绘制各种建筑图纸,如平面图、立面图、剖面 图等。
尺规作图的未来发展
计算机辅助作图
随着计算机技术的发展,尺规作图逐渐被计算机辅助作图所 取代,出现了各种绘图软件和工具,如AutoCAD、 SolidWorks等。
作图原则和步骤
01
02
作图原则:尺规作图必 须遵循“先定规矩,再 画图形”的原则,即先 明确图形的形状、大小 、比例等参数,再使用 直尺和圆规进行绘制。
作图步骤
03
04
05
确定图形形状、大小、 比例等参数。
使用直尺和圆规绘制图 形轮廓。
填充图形内部,完成绘 制。
尺规作图的广泛应用
1 2
数学中的应用
尺规作图在数学中有着广泛的应用,如几何证 明、图形构造等。
工程中的应用
在工程中,尺规作图常被用于绘制机械零件图 、建筑图纸等。
3
设计中的应用
设计领域中,尺规作图常被用于绘制平面、立 体等各种类型的设计图纸。
02
尺规作图的基本技能
尺规作图的基本工具
直尺
用于画直线和测量长度
铅笔
尺规作图技巧

尺规作图技巧
尺规作图是起源于古希腊的数学课题,是指用没有刻度的直尺和圆规作图。
其中直尺必须没有刻度,只能用来作直线、线段、射线或延长线段;圆规可以开至无限宽,但上面也不能有刻度,只能用来作圆和圆弧.因此,尺规作图与一般的画图不同,一般画图可以动用一切画图工具,包括三角尺、量角器等,在操作过程中可以度量,但尺规作图在操作过程中是不可以度量的。
1、尺规作图规范用语
2、尺规作图基本步骤
3、五种基础的尺规作图题型(掌握基础才能挑战复杂题型)
基本作图一:作一条线段等于已知线段。
基本作图二:作一个角等于已知角。
基本作图三:作已知线段的垂直平分线。
基本作图四:作已知角的角平分线
基本作图五:过一点作已知直线的垂线。
4、典型例题分析
END
来源:网络(侵删)。
尺规作图方法介绍课件

23
现实和理想之间,不变的是跋涉, 暗淡与辉煌之间,不变的是开拓;
整理你的行装,
不同的起点,可以到达同样辉煌的终点。
24
感谢 聆听!
25
l 直尺必须没有刻度,无限长,且只能使用直尺的固定一侧。 只可以用它来将两个点连在一起,不可以在上画刻度。圆 规可以开至无限宽,但上面亦不能有刻度。它只可以拉开 成你之前构造过的长度或一个任意的长度。
2
一、何为“尺规作图”
l 尺规作图,起源于古希腊。 l 希腊人强调作图只能用直尺圆规,有下列原因: ①希腊几何的基本精神,是从极少的基本假定(定义、公理、公设)出发,推导
13
二、 “尺规作图”可能问题
7、几种常见的尺规作图方法
(2)代数作图法: 例3,只用圆规,不许用直尺,四等分圆周
(已知圆心)。
例4,求作一正方形,使其面积等于已知 ⊿ABC的面积。
14二、Βιβλιοθήκη “尺规作图”可能问题7、几种常见的尺规作图方法
(3)旋转作图法: 例 5 , 已 知 : 直 线 a、 b、 c, 且 a/ b/ c.
求作:正⊿ABC,使得A、B、C 三点分别在直线a、b、c上.
15
二、 “尺规作图”可能问题
7、几种常见的尺规作图方法
(4)位似法作图: 例6,已知:一锐角⊿ABC
求作:一正方形DEFG,使得D、E在 BC上, F在AC上, G在AB上.
16
二、 “尺规作图”可能问题
7、几种常见的尺规作图方法
(5)面积割补法 例7,过⊿ABC的底边BC上一定点P,
10
二、 “尺规作图”可能问题