通用2019年中考数学总复习第七章第一节视图与尺规作图课件
合集下载
人教版数学中考复习课件第七章第一节 尺规作图

的周长是 16 .
尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)
尺规作图题常见考查类型 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已 知角等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种 类型的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基 本作图,再根据作图依据进行结论判断或计算.
5.★(2020·郴州)如图,在矩形 ABCD 中,AD=4,AB=8.分别以点 B,D 为圆心,以大于12BD 的长为半径画弧,两弧相交于点 E 和 F.作直线 EF 分别与 DC,DB,AB 交于点 M,O,N,则 MN= 2 5 .
6.(2020·扬州)如图,在△ABC 中,按以下步骤作图: ①以点 B 为圆心,任意长为半径作弧,分别交 AB,BC 于点 D,E. ②分别以点 D,E 为圆心,大于12DE 的长为半径作弧,两弧交于点 F. ③作射线 BF 交 AC 于点 G. 如果 AB=8,BC=12,△ABG 的面积为 18,则△CBG 的面积为 27 .
∴∠DBA=∠ACD=45°, ∵AC=6,BC=8,∴AB=10, ∴AD=BD=AB·sin 45°=10× 22=5 2.
7.(2020·青海)如图,在 Rt△ABC 中,∠C=90°.
(1)尺规作图:作 Rt△ABC 的外接圆⊙O;作∠ACB 的角平分线交⊙O 于点 D,连接 AD;(不写作法,保留作图痕迹)
解:如图,Rt△ABC 的外接圆⊙O,线段 CD 即为所求.
(2)若 AC=6,BC=8,求 AD 的长. 解:连接 BD, ∵∠C=90°. ∴AB 是⊙O 的直径, ∴∠BDA=90°, ∵CD 平分∠ACB, ∴∠ACD=∠BCD=45°,
命题点:尺规作图及相关的证明与计算(2020 年考查 2 次,2019 年考 查 2 次,2018 年考查 2 次,2017 年考查 1 次)
中考数学第七章 图形的变化 第一节 尺规作图

(4)“三三”型
考点 3 几何体的展开与折叠
3.立体图形的折叠 一个几何体能展开成一个平面图形,这个平面图形就可以折叠成相应的
几何体,展开和折叠是一个互逆的过程.
《安徽·中考》数学
安徽中考考点过关
第七章 图形的变化
第三节 图形的对称、平移、 旋转与位似
目录(安徽·中考)
考点
• 考点 1 轴对称与轴对称图形 • 考点 2 图形的中心对称 • 考点 3 图形的平移与旋转变换 • 考点 4 位似图形
图示:
方法
命题角度1 图形的对称
例 [2021重庆A卷]如图,在▱ABCD中,AB>AD. (1)用尺规完成以下基本作图:在AB上截取AE,使AE=AD; 作∠BCD的平分线交AB于点F.(保留作图痕迹,不写作法 ) (2)在(1)所作的图形中,连接DE交CF于点P,猜想△CDP 按角分类的类型,并证明你的结论. 【思路分析】 (1)根据“等线”“角平分线”的尺规作图方法作图 即可;(2)根据平行四边形的性质、等腰三角形的性质、角平分线的 性质求得∠CPD为直角,从而可得△CDP为直角三角形.
考点 1 轴对称与轴对称图形
3.常见的轴对称图形及其对称轴
图形 对称轴数量
对称轴
角
㉕ 1 条 角平分线所在的直线
等腰三角形 ㉖ 1 条 顶角平分线所在的直线(或底边上的高所在的直线或底边上的中线所 在的直线)
等边三角形 ㉗ 3 条 三个内角平分线所在的直线(或任一条边上的高或中线所在的直线)
矩形
㉘ 2 条 相邻两边的垂直平分线
中心投影
由一点(点光源)发出的光线所形成的投影.如:物体在灯泡发出的光的 照射下形成的影子.
考点 2 三视图
【中考数学考点复习】第一节 尺规作图 课件(23张PPT)

段的垂
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
直平分
线(已 知线段 结论:AB⊥l
, AB)
AO=OB
到线段两
1.分别以点A,B为圆心,大于
个端点距
1
__2_A__B___的长为半径,在AB两侧 离相等的
作弧,两弧交于两点;
点在这条
2.连接两弧交点所成直线l即为所求 线段的垂
作的垂直平分线
直平分线
上
第一节 尺规作图
类型
步骤
五种基本 尺规作图
第一节 尺规作图
返回目录
成都10年真题及拓展
尺规作图的相关计算
1. 如图,在△ABC 中,按以下步骤作图:①分别以点 B 和点 C 为圆心,
以大于 12BC 的长为半径作弧,两弧相交于点 M 和 N;②作直线 MN 交
AC 于点 D,连接 BD.若 AC=6,AD=2,则 BD 的长为( C )
A.2
的两侧;
到线段两 2.以点P为圆心,PM的长为半径作弧
个端点距 ,交直线l于点A和点B,可得到PA=
PB;
离相等的
1
3大.分于别2以AB点A、点B为圆心,以
点在这条 线段的垂
________长为半径作弧,交点M的
直平分线
同侧于点N,可得到AN=BN;
上
4连接PN,则直线PN即为所求作的垂
线
第一节 尺规作图
长为( C )
A.252 3 C.20
B.12 3 D.15
第9题图
第一节 尺规作图
返回目录
10.人教版初中数学教科书八年级上册第 35-36 页告诉我们作一个三角 形与已知三角形全等的方法: 已知:△ABC. 求作:△A′B′C′,使得△A′B′C′≌△ABC. 作法:如图.
中考数学 考点系统复习 第七章 作图与图形变换 第一节 尺规作图

尺规作图题常见考查类型: 1.直接作图,如作角平分线,线段的垂直平分线,作一个角等于已知角 等,直接利用五种基本的尺规作图来解答. 2.给出作图痕迹或步骤,判断结论正误或进行相关计算,对于此种类型 的题目,平时要对五种基本尺规作图了熟于心,从而判断是哪种基本作 图,再根据作图依据进行结论判断或计算.
1 心,大于2MN 的长为半径画弧,两弧在∠BAC 内部 交于点 H,作射线 AH 交 BC 于点 E;分别以点 A,E 为圆心,大于12AE 的长
为半径画弧,两弧交于 P,Q 两点,作直线 PQ,分别交 CD,AC,AB 于点 F,G,L,交 CB 的延长线于点 K,连接 GE,下列结论:①∠LKB=22.5°;
第七章 作图与图形变换 第一节 尺规作图
【考情分析】云南近 5 年尺规作图主要在选择题中给出作图步骤及 作图痕迹进行结论判断或利用性质进行相关计算.难度小,分值一般 3 -4 分.
命题点:尺2016·曲靖第 8 题 4 分)如图,C,E 是直线 l 两侧的
点,以 C 为圆心,CE 长为半径画弧交 l 于 A,B 两点,又
分别以点 A,B 为圆心,大于12AB 的长为半径画弧,两弧
交于点 D,连接 CA,CB,CD.下列结论中不一定正确的是
( C)
A.CD⊥l
B.点 A,B 关于直线 CD 对称
C.点 C,D 关于直线 l 对称
D.CD 平分∠ACB
2.★(2018·曲靖第 8 题 4 分)如图,在正方形 ABCD 中,连接 AC,以点 A 为圆心,适当长为半径 画弧,交 AB,AC 于点 M,N,分别以点 M,N 为圆
A.AD=CD
B.∠ABP=∠CBP
C.∠BPC=115°
D.∠PBC=∠A
2019中考数学总复习第1部分教材同步复习第七章图形与变换课时24尺规作图视图与投影课件

• 【注意】尺规作图题目的常用解题方法:
• (1)首先分析题设要用哪种尺规作图.如:①作平行线的实质是作等角; ②作三角形中线的实质是作线段的平分线;③作三角形的外接圆的实质 是作线段的垂直平分线;④作三角形内切圆的实质是作角平分线、过一 点作已知线段的垂线等.
• (2)对于已知作法进行有关结论的判断或计算问题,要能通过作图步骤 判断是哪种基本作图,作出的线段、角有什么关系,以及要知道作出图 形的性质,进而作出判断或计算,如根据作图步骤知作角平分线则可得 到角相等.
• 2.长方体的展开图:3对全等的矩形. • 3.圆柱的展开图:一个矩形和两个等圆. • 4.圆锥的展开图:一个扇形和一个圆.
【注意】正方体的表面展开图中不能出现“
”“
”图形,若出现
“
”类型,另两面必须在两侧,可借助此方法进行排除错误选项.
(1)展开图中位于同一行(或同一列),中间隔一个面的两个面在正方体中一定是
• 【正解】从左面看所得到的图形是长方形,中间两条竖的虚线.故选
A.
• 5.下列立体图形中,主视图是三角形的是 ( B )
6.如图一个空心圆柱体,其主视图正确的是 ( B )
知识点四 常见几何体的展开与折叠
• 1.正方体的展开图 • 正方体的展开图是⑨___六___个正方形,正方体常见的展开图共⑩11
_______种,分别是:
1.一四一型
2.二三一型
3.三三型
4.二二二型
知识点二 投影
• 一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫 做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.物 体投影的形成需要两个条件:一是投影线(光源),二是投影面.
• 1.平行投影 • 由⑤__平_行__光__线_____形成的投影叫做平行投影.太阳光线可以看成是平行