水轮机

合集下载

水轮机分类

水轮机分类

水轮机分类水轮机是一种利用水能转换成机械能的装置。

根据不同的分类标准,水轮机可以分为多种类型。

本文将从不同的分类角度出发,介绍常见的水轮机类型及其特点。

一、按照叶轮结构分类1. 悬臂式水轮机悬臂式水轮机是一种叶轮只有一侧有叶叶片的水轮机。

它的主要特点是叶轮只有一侧有叶片,叶轮的另一侧是空的,因此在水流作用下,叶轮只能单向旋转。

悬臂式水轮机的结构简单,但效率较低,主要用于小型水电站。

2. 双向逆流式水轮机双向逆流式水轮机是一种具有两个反向旋转叶轮的水轮机。

它的主要特点是叶轮有两个,水从叶轮中央进入,流经两个叶轮,最后从中央排出。

双向逆流式水轮机的效率较高,但制造难度大,主要用于中小型水电站。

3. 直径式水轮机直径式水轮机又称离心式水轮机,是一种叶轮直径较大的水轮机。

它的主要特点是叶轮直径较大,水流进入叶轮后,被离心力推向叶轮的外侧,从而产生动能。

直径式水轮机的效率较高,主要用于大型水电站。

二、按照水流方式分类1. 活塞式水轮机活塞式水轮机是一种利用水流压力推动活塞运动的水轮机。

它的主要特点是利用水流压力差推动活塞运动,从而产生机械能。

活塞式水轮机结构简单,但效率较低,主要用于小型水电站。

2. 喷嘴式水轮机喷嘴式水轮机是一种利用水流喷射推动叶轮旋转的水轮机。

它的主要特点是水从喷嘴射出,喷嘴的高速流体作用于叶轮,产生动能。

喷嘴式水轮机效率较高,但需要较高的水压力,主要用于中小型水电站。

3. 引水式水轮机引水式水轮机是一种利用水流引导叶轮旋转的水轮机。

它的主要特点是利用引水管将水引导到叶轮处,通过叶片的旋转产生动能。

引水式水轮机结构复杂,但效率高,主要用于大型水电站。

三、按照安装方式分类1. 泄流式水轮机泄流式水轮机是一种安装在水流强劲的水流中,利用水流直接推动叶轮旋转的水轮机。

它的主要特点是安装简单,但需要有足够的水源。

泄流式水轮机主要用于山区、河流等水源丰富的地区。

2. 水导式水轮机水导式水轮机是一种利用引水管将水引导到叶轮处的水轮机。

水轮机结构介绍

水轮机结构介绍

水轮机结构介绍水轮机是利用水能转换为机械能的一种装置,是发电厂中常用的主要发电设备之一、下面将对水轮机的结构进行详细介绍。

水轮机主要由机壳、转轮、导向装置、涡排装置、轴承和透水管道等组成。

1.机壳:水轮机的机壳是一个装置的外部保护壳,一般由钢板或钢铸件焊接而成。

机壳内有良好的润滑和密封装置,以保证机器的正常运转,并能减少机械损耗,并防止泄漏。

2.转轮:转轮是水轮机的核心部分,是水能转换为机械能的重要部分。

转轮的形状和组织结构根据不同的水轮机类型而有所不同,常见的有斜流式、混流式和轴流式等类型。

3.导向装置:导向装置起到引导水流进入转轮并调节进水流量的作用。

导向装置一般由多个可调节的导叶组成,导叶的位置和角度可以通过液压机构或机械装置进行调节,以实现对水流的控制。

4.涡排装置:涡排装置将已经转过水轮机的水流排出,将水流的动能转化为排出水流的动能。

一般情况下,涡排装置由锥壳、导管和涡轴组成,通过设计合理的导管形状和尺寸,使水流尽可能地获得动能转换。

5.轴承:轴承用于支撑和固定转轮和轴的位置,以减少旋转过程中的运动摩擦和机械损耗。

轴承在水轮机中至关重要,要求具有较高的承载能力和良好的摩擦性能。

6.透水管道:透水管道用于将调节好流量的水流引入水轮机的导叶中,以驱动转轮旋转。

透水管道的设计应保证水流顺利地进入和离开水轮机,并尽量减少水流中的压力损失和涡旋现象。

水轮机通过上述各部分的相互配合和工作,将水能转化为机械能,实现发电厂的发电功能。

在实际应用中,水轮机的转速和功率可根据工作需求进行调节和匹配,并通过自动控制系统来控制和监测水轮机的运行状态。

总之,水轮机是一种利用水能发电的设备,它通过机壳、转轮、导向装置、涡排装置、轴承和透水管道等部分的协同工作,将水能转化为有用的机械能。

水轮机的设计和运行状态对于发电厂的稳定运行至关重要,因此,在水轮机设计和制造过程中需要严格遵循相关的技术规范和要求,确保水轮机的性能和安全性。

水轮机结构及工作原理

水轮机结构及工作原理

水轮机结构及工作原理
水轮机是一种利用水流转动轮盘产生动力的机械装置,它可以将流体动能转化为机械能。

水轮机结构简单,主要由导流装置、转轮、出水装置和传动装置组成。

导流装置通常由水导管、导叶或导流管等构成,主要作用是引导水流进入转轮;转轮是水轮机的核心部件,通常由叶片和轮辐组成,它负责将水流的动能转化为机械能;出水装置用于将转轮后的水流排出;传动装置则将转轮的机械能传递给其他设备,如发电机或机械磨粉机等。

水轮机的工作原理基于液体在流动过程中所具有的动能和压力能。

当水流进入转轮时,叶片将水流的动能转化为转轮的旋转动能,然后通过传动装置将旋转动能传递出去。

在转轮内部,水流的压力能也会对转轮产生作用,进一步增加了转轮的驱动力。

水轮机的工作过程可以分为导流、冲击和排泄三个阶段。

在导流阶段,导流装置将水流引导进入转轮,并使其流向叶片;在冲击阶段,水流与叶片相互作用,使叶片受到冲击力,从而转动转轮;在排泄阶段,转轮后的水流通过出水装置被排出。

总之,水轮机通过利用水流动能和压力能的转化,将水流的动能转化为机械能,实现了能源的转换和利用。

水轮机具有结构简单、效率高等优点,在水力发电、水泵和机械加工等领域得到了广泛应用。

水轮发电机的工作原理

水轮发电机的工作原理

水轮发电机的工作原理水轮发电机是一种利用水流的动能来驱动发电机产生电能的设备。

它是一种非常常见且有效的发电方式,被广泛应用于水力发电站和小型水电站中。

水轮发电机的工作原理可以简述为水驱动叶轮旋转,从而带动发电机发电。

下面详细介绍水轮发电机的工作原理。

1. 水轮发电机的构造- 水轮发电机主要由水轮机、发电机、发电机调速器和控制系统等组成。

- 水轮机是核心部件,由机壳、导叶、叶轮、轴等组成。

其中,叶轮通过水的冲击力旋转,将水的动能转化为机械能。

- 发电机则将机械能转化为电能,通过正常的电路连接将电能输送到电网或存储设备中。

- 发电机调速器负责控制叶轮的转速,以保持稳定的输出电压。

2. 水轮机的工作原理- 当水流经过水轮机时,根据动量守恒定律,水流的动能会转化为叶轮的动能。

此时水轮机中的叶轮开始旋转。

- 叶轮旋转的速度与水流的流速、叶轮的形状以及进入叶轮的水流角度有关。

因此,调整这些参数可以改变发电机的输出功率。

- 叶轮就像一个转子,将水的动能转化为机械能。

其构造使得能够最大化地利用水流的动能。

3. 发电机的工作原理- 叶轮通过轴将转动的机械能传递给发电机。

发电机内部的转子通过旋转的磁场感应电流,从而发生电磁感应现象。

- 根据法拉第电磁感应定律,转子中产生的电动势会引起电流的流动,从而产生电能。

- 发电机内部的线圈和磁铁组成的电磁感应系统是实现电能转换的关键。

4. 发电机调速器的工作原理- 为保持发电机的输出电压恒定,调速器会通过监测输出电压的变化,反馈控制叶轮的转速。

- 当输出电压低于设定值时,调速器会增加叶轮的转速,增加电能的输出。

反之亦然。

- 调速器还可以根据外部的需求或变化的水流量来自动调整叶轮的转速。

总结起来,水轮发电机的工作原理就是利用水流的动能将水轮旋转,进而带动发电机发电。

水轮发电机的构造包括水轮机、发电机、发电机调速器和控制系统。

水轮机将水的动能转化为机械能,发电机则将机械能转化为电能。

水轮机概述

水轮机概述

第一节水轮机概述一、水轮机工作参数1、水轮机工作水头(1)水轮机槪念:水流付出的能量转换成旋转机械能的机器。

(2)水轮机工作水头:水轮机进口断面与出口断面水流单位能量之差。

公式H=Hst-Δh发电机水轮机ⅠⅠγZIⅡ∏ⅡⅡα1v122g1即:水轮机工作水头等于水电站净水头。

Hst---水电站毛水头,等于上下游水位差Δh----水头损失,引水管的沿程水力与局部水力损失(3)设计水头:水轮机发额定出力是的最小水头。

2、水轮机的功率和效率(1)水轮机的功率:单位时间内,水流对水轮机所做的功。

用N表示。

公式:N=9.81QHη其中:Q为水轮机流量η为水轮机效率,现在的水轮机效率可达90%以上,而模型效率可达95%。

(2)水轮机效率:水轮机把水轮机出力与水流出力之比,主要有三方面的效率损失:①容积效率:即一部分水量没有流经转轮做功,损失了。

如:主轴漏水,下迷宫环漏水等。

用ηq表示。

2②水流效率:转轮在旋转过程中,克服水的阻力所损失的功率,用ηd表示。

③机械效率:克服主轴与轴承之间的摩擦阻力所消耗的功率,用ηm表示。

则:水轮机的效率为η=ηq×ηd×ηm3、流量单位时间内流过转轮的水量,以Q表示,单位m³/s。

两种说法:①水轮机发额定出力时的最大流量②在设计´水头下,水轮机发额定出力时的流量。

4、水轮机的转速(1)定义:单位时间内水轮机旋转次数,以n表示。

n10´Hav公式n=──────D13其中:n10´为最优单元转速Hav 为加权平均水头,在某些情况下可取设计水头。

(2)水轮机额定转速按(1)式计算结果,取相近发电机同步转速为水´轮机额定转速,可大于计算结果。

同步转速按n=f×60/P计算。

其中f=50HZ,P为磁极对数。

(3)飞逸转速:水轮机发额定出力时,突然跳闸,而调速器又失灵,不能关/闭导水机构,以致转速快速上升,并达到某一最高值后稳定,这个空转的最高转速就是水轮机的飞逸转速。

水轮机原理及构造

水轮机原理及构造

水轮机原理及构造水轮机是一种将水流动能转化为机械能的能量转换装置。

它的工作原理基于动能守恒定律和能量守恒定律。

水轮机的构造主要包括水轮机轮盘、水轮机叶片、水轮机导叶和水轮机主轴等。

水轮机的工作原理:水轮机的工作原理是利用水流的冲击力和动能来推动轮盘旋转,从而进行能量转换。

具体来说,水轮机是利用流体在受力后产生的动量变化来实现动能转化的。

当水流经过水轮机叶片时,由于叶片形状和速度的变化,水流的动量发生了变化。

这个过程中,水流的动能减小,而叶片所受到的水流冲击力增加,从而推动轮盘旋转。

水流的动力作用可分为冲击力和剪力两部分,它们共同作用在叶片上,产生一个向环形斜盘中心方向的作用力,使其在金属皮带或摩擦轮的拉力下转动。

水轮机的构造:1.水轮机轮盘:水轮机轮盘是水轮机的主要部件,它可以分为定子轮盘和转子轮盘两部分。

定子轮盘通常是固定的,而转子轮盘则与主轴连接,并能转动。

轮盘的外形和材料选择需根据具体的工作条件和需求来确定。

2.水轮机叶片:水轮机叶片是位于轮盘上的一系列叶片,其形状和角度的设计对水轮机的性能具有很大的影响。

一般来说,叶片可以分为定叶和移动叶两种类型。

定叶是固定在轮盘上的,主要用于导向水流;移动叶则可以调整角度,用于控制水流的进入和出口。

叶片通常由耐磨和高强度的材料制成,如钢铁或铝合金。

3.水轮机导叶:水轮机导叶位于叶片和进水管道之间,用于引导水流进入叶片。

导叶的设计可根据水流的速度和压力来决定。

通常,导叶是可调角度的,通过调整导叶的角度,可以控制水流的流向和流速,从而实现对水轮机的调节。

4.水轮机主轴:水轮机主轴是连接轮盘和发电机或其他设备的中心轴。

它负责传输轮盘旋转产生的机械能,使之转化成用于发电或其他工作的机械能。

主轴的设计需考虑到承载能力、刚度和传动效率等要素。

除了以上主要构造部件外,水轮机还包括导叶机构、轴承、机壳和冷却系统等辅助部件。

导叶机构通常是由液压或电动设备控制,用于调节导叶的角度。

水轮机的类型构造及工作原理

水轮机的类型构造及工作原理

水轮机的类型构造及工作原理水轮机是一种将水流动能转化为机械能的装置,广泛应用于水利发电、抽水、供水等领域。

根据不同的工作原理和构造方式,水轮机可以分为以下几种类型:1. 蓄能式水轮机(Impulse Water Turbine):蓄能式水轮机通过高速水流冲击叶轮上的叶片,将水流的动能转化为叶轮的动能,再通过机械传动将动能转化为机械能。

蓄能式水轮机可以进一步分为斯奈尔逊水轮机、佩尔顿水轮机和弧翻水轮机等。

斯奈尔逊水轮机(Pelton Turbine):斯奈尔逊水轮机是一种利用高速喷射水流冲击叶片的水轮机。

当高速的水流经过喷射管,喷射口处有一个喷嘴,水流经过喷嘴变为高速的射流,射流喷向叶轮上的叶片,冲击叶片使其转动。

斯奈尔逊水轮机主要适用于高水头和小流量的水力发电站。

佩尔顿水轮机(Turgo Turbine):佩尔顿水轮机是斯奈尔逊水轮机的改进型,喷口由一个切割型孔道和一个喷射皮供水孔组成,通过设计孔道形状和取适当的工作压力,充分利用水力能量,使得佩尔顿水轮机相对效率高,适用于中、小型水力发电站。

弧翻水轮机(Cross-Flow Turbine):弧翻水轮机是一种垂直轴流式水轮机,水流经过顶部的导水管流入导水槽,然后通过导叶导入叶轮,流经叶轮后再通过弧翻装置流出。

弧翻水轮机适用于较低水头和大流量的水力发电站。

2. 反作用式水轮机(Reaction Water Turbine):反作用式水轮机是通过水流对叶轮叶片的冲击和流经叶轮的作用力来驱动叶轮旋转的水轮机。

反作用式水轮机可以进一步分为法兰西斯水轮机、咆哮水轮机、半径式水轮机等。

法兰西斯水轮机(Francis Turbine):法兰西斯水轮机是一种水流流过叶轮两侧的轴流水轮机,水流首先流经导叶,然后分流流经叶轮两侧,冲击叶片使其旋转。

法兰西斯水轮机适用于中、高水头和大流量的水力发电站。

咆哮水轮机(Kaplan Turbine):咆哮水轮机是一种可调桨叶片的轴流水轮机,叶轮上的桨叶可以根据水流条件的不同调节叶片角度,以适应不同的工况。

水轮机效率的名词解释

水轮机效率的名词解释

水轮机效率的名词解释水轮机是一种将水能转化为机械能的装置,常见的有水轮发电机和水轮水泵。

效率是衡量设备性能的指标之一,这篇文章将深入解释水轮机效率的概念,探讨影响水轮机效率的因素,以及如何提高水轮机效率。

一、水轮机效率的概念水轮机效率是指在水轮机转化水能时,实际输出的机械能与理论上输入的水能之间的比值。

通常用百分数表示,可通过以下公式计算:效率(%) = (实际输出的机械能 / 理论输入的水能) × 100%水轮机的效率在设计和运行过程中起着重要作用。

高效的水轮机能够更好地利用水资源,减少能源浪费和环境污染。

二、影响水轮机效率的因素1. 水轮机的类型:水轮机通常分为垂直轴水轮机和水平轴水轮机。

不同类型的水轮机在转化水能时具有不同的效率特点。

2. 水轮机的尺寸和设计参数:水轮机的尺寸和设计参数决定了它的叶片形状、转速和转矩等特性,直接影响到效率的高低。

3. 水轮机的水量和水头:水量和水头是衡量水轮机性能的重要参数。

水量过少或水头过低会导致效率降低,水量过大或水头过高也会增加能量损失。

4. 水轮机的叶片材料和制造工艺:叶片的材料和制造工艺会影响水轮机的耐磨性和气动性能,进而影响到效率的提升。

5. 水轮机的运行状态:水轮机运行时的负荷情况对效率有直接影响。

过大或过小的负荷都会降低效率。

6. 水轮机的维护和保养:定期的维护和保养可以保证水轮机的正常运行,减少能量损失和性能退化。

三、提高水轮机效率的方法1. 优化设计:通过改变水轮机的尺寸、叶片形状和材料等设计参数,优化水流分布,减少涡流和湍流的产生,从而提高效率。

2. 提高水轮机运行状态:合理控制水量和水头,确保水轮机在最佳工作点运行,以获得最高效率。

3. 采用高效节能技术:引入新的节能技术,如变频调速、可调叶片和微水轮机等,以提高水轮机的整体效率。

4. 加强维护和保养:定期检查水轮机的各项参数,清理叶片表面的积水或杂物,保持机械部件的灵活性,确保设备的正常运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录第一节水轮机的主要类型第二节水轮机的工作参数第三节水轮机的型号第四节水轮机的装置型式第五节水轮机发展综述第一章水轮机的主要类型、构造第一节水轮机的主要类型自然界有多种能源,其中有很多式可以开发利用的,目前已被利用的能源中主要有热能、水能、风能和核能。

其中水能是一种最经济的能源,水能的开发利用已受到越来越多的关注。

我国有着丰富的水力资源,对水能的开发利用已受到社会的广泛关注,对水能最重要的开发形式就是兴建各种各样的水电站。

水轮机作为将水能转换成旋转机械能的一种水力原动机,是水电站中最重要的组成部分。

根据转轮转换水流能量方式的不同,水轮机分成两大类:反击式水轮机和冲击式水轮机。

反击式水轮机包括混流式、轴流式、斜流式和贯流式水轮机;冲击式水轮机分为水斗式、斜击式和双击式水轮机。

一、反击式水轮机反击式水轮机转轮区内的水流在通过转轮叶片流道时,始终是连续充满整个转轮的有压流动,并在转轮空间曲面型叶片的约束下,连续不断地改变流速的大小和方向,从而对转轮叶片产生一个反作用力,驱动转轮旋转。

当水流通过水轮机后,其动能和势能大部分被转换成转轮的旋转机械能。

1.混流式水轮机如图1-1所示,水流从四周沿径向进入转轮,然后近似以轴向流出转轮。

混流式水轮机应用水头范围较广,约为20~700m,结构简单,运行稳定且效率高,是现代应用最广泛的一种水轮机。

图1-1 混流式水轮机1—主轴;2—叶片;3—导叶2.轴流式水轮机如图1-2所示,水流在导叶与转轮之间由径向流动转变为轴向流动,而在转轮区内水流保持轴向流动,轴流式水轮机的应用水头约为3~80m。

轴流式水轮机在中低水头、大流量水电站中得到了广泛应用。

根据其转轮叶片在运行中能否转动,又可分为轴流定桨式和轴流转桨式水轮机两种。

轴流定桨式水轮机的转轮叶片是固定不动的,因而结构简单、造价较低,但它在偏离设计工况运行时效率会急剧下降,因此,这种水轮机一般用于水头较低、出力较小以及水头变化幅度较小的水电站。

轴流转桨式水轮机的转轮叶片可以根据运行工况的改变而转动,从而扩大了高效率区的范围,提高了运行的稳定性。

但是,这种水轮机需要有一个操作叶片转动的机构,因而结构较复杂,造价较高,一般用于水头、出力均有较大变化幅度的大中型水电站。

图1-2 轴流式水轮机1—导叶;2—叶片;3—轮毂3.斜流式水轮机如图1-3所示,水流在转轮区内沿着与主轴成某一角度的方向流动。

斜流式水轮机的转轮叶片大多做成可转动的形式,具有较宽的高效率区,适用水头在轴流式与混流式水轮机之间,约为40~200m。

它是在50年代初为了提高轴流式水轮机适用水头而在轴流转桨式水轮机基础上改进提出的新机型,其结构形式及性能特征与轴流转桨式水轮机类似,但由于其倾斜桨叶操作机构的结构特别复杂,加工工艺要求和造价均较高,所以一般只在大中型水电站中使用,目前这种水轮机应用还不普遍。

图1-3 斜流式水轮机1—蜗壳;2—导叶;3—转轮叶片;4—尾水管4.贯流式水轮机贯流式水轮机是一种流道近似为直筒状的卧轴式水轮机,它不设引水蜗壳,叶片可做成固定的和可转动的两种。

根据其发电机装置形式的不同,分为全贯流式和半贯流式两类。

全贯流式水轮机(如图1-4)的发电机转子直接安装在转轮叶片的外缘。

它的优点是流道平直、过流量大、效率高。

但由于转轮叶片外缘的线速度大、周线长,因而旋转密封困难。

目前这种机型已很少使用。

半贯流式水轮机有轴伸式、竖井式和灯泡式等装置形式,如图1-5、图1-6、图1-7所示,其中轴伸式和竖井式结构简单、维护方便,但效率较低,一般只用于小型水电站。

目前广泛使用的是灯泡贯流式水轮机,其结构紧凑、稳定性好、效率较高,其发电机布置在被水绕流的钢制灯泡体内,水轮机与发电机可直接联接,也可通过增速装置联接。

图1-4 全贯流式水轮机1—转轮叶片;2—转轮轮缘;3—发电机转子轮辋;4—发电机定子;5、6—支柱;7—轴颈;8—轮毂;9—锥形插入物;10—拉紧杆;11—导叶;12—推力轴承;13—导轴承图1-5 轴伸贯流式水轮机1—转轮;2—水轮机主轴;3—尾水管;4—齿轮转动机构;5—发电机图1-6 灯泡贯流式水轮机1—转轮叶片;2—导叶;3—发电机定子;4—发电机转子;5—灯泡体图1-7 竖井贯流式水轮机贯流式水轮机的适用水头为1~25m,适用于低水头、大流量的水电站。

由于其卧轴式布置及流道形式简单,所以土建工程量少,施工简便,因而在开发平原地区河道和沿海地区潮汐等水力资源中得到较为广泛的应用。

目前我国自行研制的最大的灯泡贯流式水轮机转轮直径为,单机出力为15MW。

二、冲击式水轮机冲击式水轮机的转轮始终处于大气中,来自压力钢管的高压水流在进入水轮机之前已转变成高速自由射流,该射流冲击转轮的部分轮叶,并在轮叶的约束下发生流速大小和方向的改变,从而将其动能大部分传递给轮叶,驱动转轮旋转。

在射流冲击轮叶的整个过程中,射流内的压力基本不变,近似为大气压。

冲击式水轮机按射流冲击转轮的方式不同可分为水斗式、斜击式和双击式三种。

1.水斗式水轮机水斗式水轮机,亦称切击式水轮机,如图1-8所示。

从喷嘴出来的高速自由射流沿转轮圆周切线方向垂直冲击轮叶。

这种水轮机适用于高水头、小流量的水电站,特别是当水头超过400m时,由于结构强度和气蚀等条件的限制,混流式水轮机已不太适用,则常采用水斗式水轮机。

大型水斗式水轮机的应用水头约为300~1700m,小型水斗式水轮机的应用水头约为40~250m。

目前水斗式水轮机的最高水头已用到1767m(奥地利莱塞克电站),我国天湖水电站的水斗式水轮机设计水头为。

图1-8 水斗式水轮机2.斜击式水轮机如图1-9所示,从喷嘴出来的自由射流沿着与转轮旋转平面成一角度的方向,从转轮的一侧进入轮叶再从另一侧流出轮叶。

与水斗式相比,其过流量较大,但效率较低,因此这种水轮机一般多用于中小型水电站,适用水头一般为20~300m。

图1-9(a)斜击式转轮;(b)斜击式转轮进水示意图1—管帽;2—针阀;3—轮叶;3.双击式水轮机如图1-10所示,从喷嘴出来的射流先后两次冲击在转轮叶片上。

这种水轮机结构简单、制作方便,但效率低、转轮叶片强度差,仅适用于单机出力不超过1000kW的小型水电站,其适用水头一般为5~100m。

图1-10 带有闸板阀门的双击式水轮机1—工作轮;2—喷嘴;3—调节闸板;4—舵轮;5—引水管;6—尾水槽各种类型水轮机及应用水头范围如表1-1所示。

表1-1 水轮机类型及应用水头范围类型型式适应水头范围(m)反击式混流式混流式40~700混流可逆式80~600轴流式轴流转桨式3~90轴流定桨式3~50斜流式斜流式40~200斜流可逆式40~120贯流式贯流转桨式2~30贯流定桨式冲击式水斗式300~1700斜击式20~300双击式5~100第二节水轮机的工作参数水轮机的工作参数是表征水流通过水轮机时水流能量转换为转轮机械能过程中的一些特性数据。

水轮机的基本工作参数主要有水头H、流量Q、出力P、效率η、转速n。

一、水头H水轮机的水头(亦称工作水头)是指水轮机进口和出口截面处单位重量的水流能量差,单位为m。

对反击式水轮机进口断面取在蜗壳进口处Ⅰ-Ⅰ断面,出口取在尾水管出口Ⅱ-Ⅱ断面。

列出水轮机进、出口断面的能量方程,如图1-11所示,根据水轮机工作水头的定义可写出其基本表达式:图1-11 水电站和水轮机的水头示意图⎪⎪⎭⎫⎝⎛++-⎪⎪⎭⎫⎝⎛++=-=gVPZgVPZEEHⅡⅡⅡⅡⅠⅠⅠⅠⅡⅠ2222αγαγ(1-1)式中E——单位重量水体的能量,m;Z——相对某一基准的位置高度,m;P——相对压力,N/m2或Pa;V——断面平均流速,m/s;α——断面动能不均匀系数;γ——水的重度,其值为9810N/m3;g——重力加速度,m/s2。

式(1-1)中,计算常取gVⅡⅠ2,12ααα==称为某截面的水流单位动能,即比动能(m);P称为某截面的水流单位压力势能,即比压能(m);Z称为某截面的水流单位位置势能,即比位能(m)。

gV22α、P与Z的三项之和为某水流截面水的总比能。

水轮机水头H又称净水头,是水轮机做功的有效水头。

上游水库的水流经过进水口拦污栅、闸门和压力水管进入水轮机,水流通过水轮机做功后,由尾水管排至下游。

上、下游水位差值称为水电站的毛水头gH,其单位为m。

水轮机的工作水头又可表示为 hH H g ∆-= (1-2)式中gH ——水电站毛水头,m ;h ∆——水电站引水建筑物中的水力损失,m 。

从式(1-2)可知,水轮机的水头随着水电站的上下水位的变化而改变,常用取几个特征水头表示水轮机水头的范围。

特征水头包括最大水头max H 、最小水头min H 、加权平均水头a H 、设计水头r H 等,这些特征水头由水能计算给出。

1.最大水头max H ,是允许水轮机运行的最大净水头。

它对水轮机结构的强度设计有决性的影响。

2.最小水头min H ,是保证水轮机安全、稳定运行的最小净水头。

3.加权平均水头a H,是在一定期间内(视水库调节性能而定),所有可能出现的水轮机水头的加权平均值,是水轮机在其附近运行时间最长的净水头。

4.设计水头r H ,是水轮机发出额定出力时所需要的最小净水头。

水轮机的水头,表明水轮机利用水流单位机械能的多少,是水轮机最重要的基本工作参数,其大小直接影响着水电站的开发方式、机组类型以及电站的经济效益等技术经济指标。

二、流量Q水轮机的流量是单位时间内通过水轮机某一既定过流断面的水流体积,常用符号Q 表示,常用的单位为m 3/s 。

在设计水头下,水轮机以额定转速、额定出力运行时所对应的水流量称为设计流量Q ,它是水轮机发出额定出力时所需要的最大流量。

三、转速n水轮机的转速是水轮机转轮在单位时间内的旋转的次数,常用符号n 表示,常用单位为r/min 。

四、出力P 与效率η水轮机出力是水轮机轴端输出的功率,常用符号P 表示,常用单位kW 。

水轮机的输入功率为单位时间内通过水轮机的水流的总能量,即水流的出力,常用符号n P 表示,则QH QH P n 81.9==γ(KW) (1-3)由于水流通过水轮机时存在一定的能量损耗,所以水轮机出力P 总是小于水流出力n P 。

水轮机的输入和输出功率之比称为水轮机的效率,用符号t η表示。

n t P P=η (1-4)由于水轮机在工作过程中存在能量损耗,故水轮机的效率t η<1。

由此,水轮机的出力可写成t t n QH P P ηη81.9==(KW ) (1-5) 水轮机将水能转化为水轮机轴端的出力,产生旋转力矩M 用来克服发电机的阻抗力矩,并以角速度ω旋转。

水轮机出力P 、旋转力矩M 和角速度ω之间有以下关系式602nM M P ⋅==πω (1-6)式中 ω——水轮机旋转角速度,rad/s ;M——水轮机主轴输出的旋转力矩,Nm;n——水轮机转速,r/min。

相关文档
最新文档