数值计算方法课程报告

合集下载

数值计算方法实验分析报告

数值计算方法实验分析报告

学生实验报告实验课程名称数值计算方法开课实验室数学实验室实验五解线性方程组的直接方法实验(主元的选取与算法的稳定性)问题提出:消去法是我们在线性代数中已经熟悉的。

但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保消去法作为数值算法的稳定性呢?消去法从理论算法到数值算法,其关键是主元的选择。

主元的选择从数学理论上看起来平凡,它却是数值分析中十分典型的问题。

实验内容:考虑线性方程组nn Rn∈=⨯,Ax∈,RbAb编制一个能自动选取主元,又能手动选取主元的求解线性方程组的消去过程。

实验要求:()取矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1415157,6816816816M O O Ob A ,则方程有解Tx )1,,1,1(*Λ=。

取计算矩阵的条件数。

让程序自动选取主元,结果如何?()现选择程序中手动选取主元的功能。

每步消去过程总选取按模最小或按模尽可能小的元素作为主元,观察并记录计算结果。

若每步消去过程总选取按模最大的元素作为主元,结果又如何?分析实验的结果。

()取矩阵阶数或者更大,重复上述实验过程,观察记录并分析不同的问题及消去过程中选择不同的主元时计算结果的差异,说明主元素的选取在消去过程中的作用。

()选取其他你感兴趣的问题或者随机生成矩阵,计算其条件数。

重复上述实验,观察记录并分析实验结果。

实验(线性代数方程组的性态与条件数的估计) 问题提出:理论上,线性代数方程组b Ax =的摄动满足⎪⎪⎭⎫ ⎝⎛∆+∆∆-≤∆-b b A A AA A cond x x 11)( 矩阵的条件数确实是对矩阵病态性的刻画,但在实际应用中直接计算它显然不现实,因为计算1-A 通常要比求解方程b Ax =还困难。

实验内容:中提供有函数“”可以用来估计矩阵的条件数,它给出的是按范数的条件数。

首先构造非奇异矩阵和右端,使得方程是可以精确求解的。

再人为地引进系数矩阵和右端的摄动b A ∆∆和,使得bA ∆∆和充分小。

数值计算方法实验报告

数值计算方法实验报告

本科实验报告课程名称:数值计算方法实验地点:计算机科学与技术学院506 专业班级:学号:学生姓名:指导教师:**年月日太原理工大学学生实验报告}printf("%f\n",c);}五、实验结果与分析二分法割线法分析:使用二分法和割线法均能计算出方程的根,但利用割线法要比二分法计算的次数少,并且能够较早的达到精度要求。

并且割线法程序代码量较少,精简明了。

六、讨论、心得本次数值计算方法程序设计实验是在不断的习题练习中跳脱出来,直接面对实用性较强的程序代码编写。

效果很好,不仅加深对二分法、割线法的理解,还加强了实际用运能力。

将理论成功地转化成实践结果。

实验地点北区多学科综合楼4506指导教师王峥太原理工大学学生实验报告x[i] = y[i];for(j=i+1;j<=n;++j){x[i]-=u[i][j]*x[j];}x[i]/= u[i][i];}for(i=1;i<=n;++i){printf("%0.2lf\n",x[i]);}return 0;}五、实验结果与分析完全主元素消元法:列主元素消元法:LU分解法:分析:对于两种高斯解方程,完全主元素跟列主元素都是先消元、再回代,由程序段可以发现,始终消去对角线下方的元素。

即,为了节约内存及时效,可以不必计算出主元素下方数据。

列主元素消元法的算法设计上优于完全主元素消元法,它只需依次按列选主元素然后换行使之变到主元素位置,再进行消元即可。

列主元素消元法的耗时比完全主元素法少很多,常采用之。

对于LU分解法,分解矩阵为单位下三角阵L与上三角阵U的乘积,然后解方程组Ly=b,回代,解方程组Ux=y。

其中的L为n阶单位下三角阵、U为上三角阵.六、讨论、心得本次试验中,感觉是最难的一次,完全主元素消元法程序编写过程相对来说花了好长时间。

纠正各种语法、算法、思路错误。

最后勉强成功,但还是有几处警告,不得解决之法。

数值分析(计算方法)课程设计实验报告(附程序)

数值分析(计算方法)课程设计实验报告(附程序)

n=4 时,max[L(X)-h(X)]=0.4020;
n=8 时,max[L(X)-h(X)]=0.1708;
n=10 时,max[L(X)-h(X)]=0.1092。
图象分析: 从图象可以看出随着插值节点数的增加出现异常的摆动,中间能较好的接近 原函数,但两边却出现很大的误差。
(3).对定义在(-5,5)上的函数
程序代码 2:
x=[-1:0.2:1]; y=1./(1+25.*x.^2); x0=[-1:0.01:1]; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2);
plot(x0,y0,'--r'); hold on; plot(x0,y1,'-b'); x2=abs(y0-y1); max(x2) ; 程序代码3: n=3; for i=1:n x(i)=cos(((2.*i-1).*pi)./(2.*(n+1))); y(i)=1./(1+25.*x(i).*x(i)); end x0=-1:0.01:1; y0=lagrange(x,y,x0); y1=1./(1+25.*x0.^2); plot(x0,y0,'--r') hold on plot(x0,y1,'-b')
以 x1,x2,„,xn+1 为插值节点构造上述各函数的 Lagrange 插值多项式, 比较其 结果。
设计过程: 已知函数 f(x)在 n+1 个点 x0,x1,…,xn 处的函数值为 y0,y1,…,yn 。 求一 n 次多 项式函数 Pn(x),使其满足: Pn(xi)=yi,i=0,1,…,n. 解决此问题的拉格朗日插值多项式公式如下

数值计算方法实验报告

数值计算方法实验报告

数值计算方法实验报告一、实验介绍本次实验是关于数值计算方法的实验,旨在通过计算机模拟的方法,实现对于数值计算方法的掌握。

本次实验主要涉及到的内容包括数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等。

二、实验内容1. 数值微积分数值微积分是通过计算机模拟的方法,实现对于微积分中的积分运算的近似求解。

本次实验中,我们将会使用梯形公式和辛普森公式对于一定区间上的函数进行积分求解,并比较不同公式的计算误差。

2. 线性方程组的求解线性方程组求解是数值计算领域中的重要内容。

本次实验中,我们将会使用高斯消元法、LU分解法等方法对于给定的线性方程组进行求解,并通过比较不同方法的计算效率和精度,进一步了解不同方法的优缺点。

3. 插值与拟合插值与拟合是数值计算中的另一个重要内容。

本次实验中,我们将会使用拉格朗日插值法和牛顿插值法对于给定的数据进行插值求解,并使用最小二乘法对于给定的函数进行拟合求解。

4. 常微分方程的数值解常微分方程的数值解是数值计算中的难点之一。

本次实验中,我们将会使用欧拉法和龙格-库塔法等方法对于给定的常微分方程进行数值解的求解,并比较不同方法的计算精度和效率。

三、实验结果通过本次实验,我们进一步加深了对于数值计算方法的理解和掌握。

在数值微积分方面,我们发现梯形公式和辛普森公式都能够有效地求解积分,但是辛普森公式的计算精度更高。

在线性方程组求解方面,我们发现LU分解法相对于高斯消元法具有更高的计算效率和更好的数值精度。

在插值与拟合方面,我们发现拉格朗日插值法和牛顿插值法都能够有效地进行插值求解,而最小二乘法则可以更好地进行函数拟合求解。

在常微分方程的数值解方面,我们发现欧拉法和龙格-库塔法都能够有效地进行数值解的求解,但是龙格-库塔法的数值精度更高。

四、实验总结本次实验通过对于数值计算方法的模拟实现,进一步加深了我们对于数值计算方法的理解和掌握。

在实验过程中,我们了解了数值微积分、线性方程组的求解、插值与拟合、常微分方程的数值解等多个方面的内容,在实践中进一步明确了不同方法的特点和优缺点,并可以通过比较不同方法的计算效率和数值精度来选择合适的数值计算方法。

数值计算方法学习报告

数值计算方法学习报告

数值计算方法学习报告数值计算方法是数学中研究数值计算的一门学科。

它主要研究用数学方法解决实际问题时所涉及的数值计算方法和计算技巧。

数值计算方法主要包括近似计算、数值逼近、数值微积分、数值代数等方面,广泛应用于科学工程计算、金融、图像处理等领域。

本文将对数值计算方法进行学习总结。

首先,在学习数值计算方法之前,我们需要了解数值计算的基本概念和原理。

数值计算是通过计算机等数值工具获得问题的数值解。

在实际应用中,往往无法用解析方法求得问题的精确解,而需要通过数值方法来近似求解。

数值计算方法的基本原理是将问题转化为数学模型,通过选择适当的数值算法和计算技巧,利用计算机进行数值计算,得到问题的数值解。

其次,数值计算方法的学习可以从近似计算开始。

近似计算是指通过代数运算或函数逼近得到问题的近似解。

常见的近似计算方法包括二分法、牛顿迭代法、泰勒展开法等。

这些方法在求解非线性方程、方程组、最优化问题等方面有广泛应用。

学习近似计算方法需要掌握数值误差的估计和控制方法,这是保证数值计算结果有效性和可靠性的关键。

然后,数值逼近是数值计算方法的核心内容之一、数值逼近是指用其中一种函数或多项式逼近待求函数或曲线的方法。

常见的数值逼近方法包括插值法、最小二乘法等。

插值法通过已知数据点之间的插值多项式来逼近待求函数,最小二乘法通过最小化残差平方和来逼近待求曲线。

在实际应用中,数值逼近方法常用于数据拟合、信号处理、图像处理等领域。

此外,数值微积分也是数值计算方法的重要内容。

数值微积分是将微积分的基本概念和方法用数值算法来实现。

常见的数值微积分方法包括数值积分和数值微分。

数值积分是通过数值近似方法计算函数的定积分,常用的数值积分方法有梯形法则、辛普森法则等。

数值微分是通过数值逼近方法计算函数的导数,常用的数值微分方法有前向差分法、后向差分法等。

最后,数值代数是数值计算方法的另一个重要组成部分。

数值代数主要研究线性方程组和矩阵的数值计算方法。

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告

《数值计算方法》上机实验报告华北电力大学实验名称数值il•算方法》上机实验课程名称数值计算方法专业班级:电力实08学生姓名:李超然学号:200801001008 成绩: 指导教师:郝育黔老师实验日期:2010年04月华北电力大学实验报告数值计算方法上机实验报吿一.各算法的算法原理及计算机程序框图1、牛顿法求解非线性方程*对于非线性方程,若已知根的一个近似值,将在处展开成一阶xxfx ()0, fx ()xkk泰勒公式"f 0 / 2 八八,fxfxfxxxxx 0 0 0 0 0 kkkk2!忽略高次项,有,fxfxfxxx 0 ()()(),,, kkk右端是直线方程,用这个直线方程来近似非线性方程。

将非线性方程的**根代入,即fx ()0, X ,* fxfxxx 0 0 0 0, ,, kkkfx 0 fx 0 0,解出fX 0 *k XX,, k' fx 0 k水将右端取为,则是比更接近于的近似值,即xxxxk, Ik, Ikfx ()k 八XX, Ikk* fx()k这就是牛顿迭代公式。

,2,计算机程序框图:,见,,3,输入变量、输出变量说明:X输入变量:迭代初值,迭代精度,迭代最大次数,\0输出变量:当前迭代次数,当前迭代值xkl,4,具体算例及求解结果:2/16华北电力大学实验报吿开始读入l>k/fx()0?,0fx 0 Oxx,,01* fx ()0XX,,,?10kk, ,1,kN, ?xx, 10输出迭代输出X输出奇异标志1失败标志,3,输入变量、输出变量说明: 结束例:导出计算的牛顿迭代公式,并il •算。

(课本P39例2-16) 115cc (0), 求解结果:10. 75000010.72383710. 72380510. 7238052、列主元素消去法求解线性方程组,1,算法原理:高斯消去法是利用现行方程组初等变换中的一种变换,即用一个不为零的数乘 -个 方程后加只另一个方程,使方程组变成同解的上三角方程组,然后再自下而上 对上三角3/16华北电力大学实验报告方程组求解。

数值计算基础实验报告(3篇)

数值计算基础实验报告(3篇)

第1篇一、实验目的1. 理解数值计算的基本概念和常用算法;2. 掌握Python编程语言进行数值计算的基本操作;3. 熟悉科学计算库NumPy和SciPy的使用;4. 分析算法的数值稳定性和误差分析。

二、实验内容1. 实验环境操作系统:Windows 10编程语言:Python 3.8科学计算库:NumPy 1.19.2,SciPy 1.5.02. 实验步骤(1)Python编程基础1)变量与数据类型2)运算符与表达式3)控制流4)函数与模块(2)NumPy库1)数组的创建与操作2)数组运算3)矩阵运算(3)SciPy库1)求解线性方程组2)插值与拟合3)数值积分(4)误差分析1)舍入误差2)截断误差3)数值稳定性三、实验结果与分析1. 实验一:Python编程基础(1)变量与数据类型通过实验,掌握了Python中变量与数据类型的定义方法,包括整数、浮点数、字符串、列表、元组、字典和集合等。

(2)运算符与表达式实验验证了Python中的算术运算、关系运算、逻辑运算等运算符,并学习了如何使用表达式进行计算。

(3)控制流实验学习了if-else、for、while等控制流语句,掌握了条件判断、循环控制等编程技巧。

(4)函数与模块实验介绍了Python中函数的定义、调用、参数传递和返回值,并学习了如何使用模块进行代码复用。

2. 实验二:NumPy库(1)数组的创建与操作通过实验,掌握了NumPy数组的基本操作,包括创建数组、索引、切片、排序等。

(2)数组运算实验验证了NumPy数组在数学运算方面的优势,包括加、减、乘、除、幂运算等。

(3)矩阵运算实验学习了NumPy中矩阵的创建、操作和运算,包括矩阵乘法、求逆、行列式等。

3. 实验三:SciPy库(1)求解线性方程组实验使用了SciPy库中的线性代数模块,通过高斯消元法、LU分解等方法求解线性方程组。

(2)插值与拟合实验使用了SciPy库中的插值和拟合模块,实现了对数据的插值和拟合,并分析了拟合效果。

数值计算方法 实验报告4

数值计算方法  实验报告4

实验四 数值微积分实验学院:数学与计算机科学学院 专业:数学与应用数学 学号: 姓名:一. 实验目的1 利用复化求积公式计算定积分,并比较误差;2 比较一阶导数和二阶导数的数值方法,并绘图观察特点.二. 实验题目用复化梯形公式、复化辛普森公式、龙贝格公式求下列定积分,要求绝对误差为8105.0-⨯=ε,并将计算结果与精度解进行比较:⑴dx e x e x2321432⎰= ⑵dx x x ⎰-=322326ln .利用等距节点的函数值和端点的导数值,用不同的方法求下列函数的一阶和二阶导数,分析各种方法的有效性,并用绘图软件绘出函数的图形,观察其特点. ⑴35611201x x y -=,[]2,0∈x ⑵xey 1-=,[]5.0,5.2--∈x三. 实验原理1 复化梯形公式将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a x k ,其中n a b h /)(-=.在每个区间[]1,+k k x x 上用梯形公式,则有 ()()dx x fdxx fn k x xba k k∑⎰=⎰-=+11()()[][]∑⎭⎬⎫⎩⎨⎧++-=-=++1112n k k k kkk f R x f x f x x()()[][]f R x f x f h n k k n k k k ∑+∑+=-=-=+1112.记()()[]()()()[]∑++=∑+=-=-=+111222n k kn k k knx f b f a f hx f x f h T .2 复化辛普森公式 将积分区间[]b a ,剖分为n 等分,分点为)2,1,0( =+=k kh a xk,其中n a b h /)(-=.记区间[]1,+k k x x 的中点为21+k x ,在每个区间[]1,+k k x x 上用辛普森公式,则得到所谓的复化辛普森公式:()()⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛+∑-=++-=+1211146k k kn k k k n xfx f x f x x S ,即()()()⎥⎦⎤⎢⎣⎡∑⎪⎭⎫ ⎝⎛+∑++=-=+-=1211426n k k n k knx f x fb f a f h S .3 龙贝格公式的算法步骤为: I.输入b a ,及精度ε; II.置,a b h -=()()()b f a f h T+=211;III. 置2,1,1===n j i ,对分区间[]b a ,,并计算111,+++i j i j T T :∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T 121111221,144111--=+++jijj jj i j T T T ;IV.若不满足终止条件,做循环:n n h h i i 2:,2/:,1:==+=, 计算∑⎪⎭⎫ ⎝⎛+==-+nk k ii x f hT T121111221, 对,,,1i j =计算:144111--=+++jijj jj i j T T T .4 向前差商公式:()()()ha f h a f a f -+≈';向后差商公式:()()()h h a f a f a f --≈';中心差商公式:()()()hh a f h a f a f 2--+≈';二阶导数公式:()()()()22hh a f a f h a f a f ++--≈''.四. 实验内容 实验一第一小题:对于方程dx e x e x2321432⎰=,利用程序shiyan1_01.m内容如下:%第一个函数的实验 clear clcfun=inline('(2/3)*x.^3.*exp(x.^2)'); S1=matrap(fun,1,2,170000); S2=masimp(fun,1,2,250); S3=maromb(fun,1,2,.5e-8); s=exp(4); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)第二小题:对于方程dx x x ⎰-=322326ln ,利用程序shiyan1_02.m内容如下:%第二个函数的实验 clearclcfun=inline('2*x./(x.^2-3)'); S1=matrap(fun,2,3,15000); S2=masimp(fun,2,3,100); S3=maromb(fun,2,3,.5e-8); s=log(6); Er1=abs(S1-s) Er2=abs(S2-s) Er3=abs(S3-s)实验二第一小题:对于方程35611201x x y -=,[]2,0∈x ,利用程序shiyan2_01.m内容如下:clear clcfun=inline('x.^5/20-(11./6)*x.^3'); dfun=inline('x.^4/4-(11./2)*x.^2'); ddfun=inline('x.^3-11*x'); n=8;h=2/n;x=0:h:2;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h;dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i));errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y') plot(x1,ddy,'k')第二小题:对于方程xey 1-=,[]5.0,5.2--∈x ,利用程序shiyan2_02.m内容如下:clear clcfun=inline('exp(-1./x)');dfun=inline('(-1./x).*exp(-1./x)');ddfun=inline('(-1./(x.^2)).*exp(-1./x)+1./(x.^2)'); n=8;h=2/n;x=-2.5:h:-0.5;x1=x(2:n); y=feval(fun,x); dy=feval(dfun,x1); ddy=feval(ddfun,x1); for i=2:ndy1(i)=(y(i+1)-y(i))/h; dy2(i)=(y(i)-y(i-1))/h; dy3(i)=(y(i+1)-y(i-1))/(2*h);ddy1(i)=(y(i+1)-2*y(i)+y(i-1))/(h*h); endfor i=1:n-1err1(i)=abs(dy1(i)-dy(i)); err2(i)=abs(dy2(i)-dy(i)); err3(i)=abs(dy3(i)-dy(i)); errd2(i)=abs(ddy1(i)-ddy(i)); end[err1' err2' err3' errd2'] plot(x,y,'r')hold onplot(x1,dy,'y')plot(x1,ddy,'')五.实验结果实验一第一小题T =146.5012 0 0 0 0 0 0 083.9243 63.0653 0 0 0 0 0 062.6132 55.5095 55.0058 0 0 0 0 056.6535 54.6669 54.6108 54.6045 0 0 0 055.1154 54.6027 54.5984 54.5982 54.5982 0 0 054.7277 54.5984 54.5982 54.5982 54.5982 54.5982 0 054.6305 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 0 54.6062 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982 54.5982Er1 =4.5922e-009Er2 =4.8409e-009Er3 =1.4211e-014第二小题T =2.5000 0 0 0 0 0 0 0 2.0192 1.8590 0 0 0 0 0 0 1.8564 1.8022 1.7984 0 0 0 0 0 1.8088 1.7929 1.7922 1.7921 0 0 0 0 1.7961 1.7918 1.7918 1.7918 1.7918 0 0 0 1.7928 1.7918 1.7918 1.7918 1.7918 1.7918 0 0 1.7920 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 0 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918 1.7918Er1 =4.9383e-009Er2 =4.0302e-009Er3 =1.0132e-012实验二第一小题ans =0.2196 0.2196 0.2196 2.1920 0.3627 0.8003 0.5815 2.1480 0.5711 1.4367 1.0039 2.0560 0.7667 2.0411 1.4039 1.91600.9447 2.5991 1.7719 1.72801.1003 3.09632.0983 1.4920 1.22873.5183 2.3735 1.2080 1.3251 3.8507 2.5879 0.87601.3847 4.07912.7319 0.4960第二小题ans =0.6932 0.6932 0.6932 0.1105 0.4680 0.5532 0.5106 0.5030 0.5236 0.6555 0.5895 0.7793 0.5907 0.8102 0.7005 1.2991 0.6692 1.0727 0.8709 2.3982 0.7473 1.6071 1.1772 5.15720.7567 3.0873 1.9220 14.2888六.实验结果分析1.利用复化辛普森公式比利用复化梯形公式,所取的n更小,当达到相同精度时,利用辛普森公式等分次数n更小,减少计算次数.2.若利用同一公式,所取n的大小与题设给出的精度ε之间的关系:当n越大时,与精度ε之间的误差越小;反之,当n越小时,与精度ε之间的误差越大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
{
e = 0;
for(j=i+1;j<n;j++)
{
e = e + array[i][j] * array[j][n];
}
array[i][n]=(array[i][n] - e) / array[i][i];
array[i][i]=1;
for(j=i+1;j<n;j++)
{array[i][j]=0;}
scanf("%f",&array[i][j]);
printf("方程系数为\n");
for(i=0;i<n;i++)
{
for(k=0;k<=n-1;k++) //在相应的列中选主k+1;i<=n-1;i++)
{
x = fabs(array[m][k]);
if(fabs(array[i][k] > x))
{
int i,j,k,m,n;
float s,e,q;
double x;
float X[N];
float array[N][N+1];
printf("请输入方程的阶数\n");
scanf("%d",&n);
printf("输入的原方程系数,中间用空格隔开\n");
for(i=0;i<n;i++)
for(j=0;j<n+1;j++)
广东工业大学试卷用纸,共2页,第2页
一 编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)
问题描述:编写一C语言程序,算法为列主元消元法,功能为求解线性方程组。
解:
# include<stdio.h>
# include<math.h>
#define N 200
void main()
年12 月 26 日(第 17 周星期六)进行答辩。不参加答辩者将取消考试成绩。
“数值计算”考试结果要求独立在计算机上完成,可使用Matlab或C
程序编程实现。考试结果将以报告书形式提交,内容包括对问题描述、计算
程序以及算例、计算结果、分析组成。计算程序要求具有通用性,能够处理
异常情况,可以输入问题、算法参数、算例及初始值,在计算过程中显示当
问题描述:
写一C语言程序,算法为拉格朗日插值法,功能为求解多项式函数。插值函数为:
解:
前计算状态、计算完成后显示计算结果。上述内容将作为试卷成绩的主要评
定依据。特别提醒,不得使用教师在讲课和实验时的范例作为考试结果。报
告书具体格式参考毕业设计手册。
以考生学号命名的文件夹存放程序及报告书电子版,以班级为单位刻录
在一张光盘中,与打印版报告书一起由班长和学习委员一起上交任课教师。
数值计算课程总成绩将由试卷成绩(70%)、平时成绩(30%)组成。
}
printf("解的集合\n");
for(j=0;j<n;j++)
{
printf("%8.4f", X[j]);
}
printf("\n");
}
例子:求方程组的解。
运算程序结果:
计算结果与分析:
计算结果如下: 。代入方程中得带的结果等于右边。可见列主元消元法求解精度高。
二 编写多项式插值的程序,要求附有算例。(本题 20 分)
{
for(j=0;j<n+1;j++)
{
printf("%8.4f", array[i][j]);
}
printf("\n");
}
printf("\n");
array[n-1][n] = array[n-1][n]/array[n-1][n-1];
array[n-1][n-1]=1;
for(i=n-2;i>=0;i--)
}
printf("消元后的矩阵\n");
for(i=0;i<n;i++) //输出消元后的矩阵//
{
for(j=0;j<n+1;j++)
{
printf("%8.4f", array[i][j]);
}
printf("\n");
}
for(i=0;i<n;i++) //输出解矩阵//
{
X[i]=array[i][n];
array[m][j] = q;
}//换行结束//
for(i=0;i<n;i++)
{
for(j=0;j<n+1;j++)
{
printf("%8.4f ",array[i][j]);
}
printf("\n"); //输出换行后的矩阵//
}
printf("\n\n\n\n\n\n");
for(i=k+1;i<=n-1;i++)
m = i;
}
printf("最大元在第%d行\n\n\n\n",m);
if(array[m][k]==0)
{
printf("ERROR");
return;
}
else //两行进行比较交换两行//
{
for(j=k;j<=n;j++)
{
q = array[k][j];
array[k][j] = array[m][j];
课程名称:
数值计算
试卷满分
100分
考试时间: 2015 年 12 月 26 日
(第 17 周 星期六)
题 号










总分
评卷得分
评卷签名
复核得分
复核签名
“数值计算”考试要求
“数值计算”考试以开卷形式进行。在“数值计算”课程考试日(2015
年12 月 19 日,第 12 周星期五)考试时间,在考试教室领取试题,在 2015
课程报告
课程名称______《数值计算》__
学生学院_____机电工程学院___
专业班级_____微电子(1)班____
学 号________
学生姓名_______________
指导教师_____________
XXXX年XX月XX日
姓 名:
线
学 号:

装专业:
学 院:
广东工业大学考试试卷( A )
{
s = array[i][k]/array[k][k]; //消元过程//
for(j=0;j<=n;j++)
{
array[i][j] =-( array[i][j] - s * array[k][j]);
}
}
}
}
}
printf("变换后的矩阵\n");
for(i=0;i<n;i++) //输出变换后的矩阵//
一 编写 Gauss 列主元消元法求解线性方程组的程序,要求附有算例。(本题 20 分)
二 编写多项式插值的程序,要求附有算例。(本题 20 分)
三 编写Gauss积分方法的程序,要求附有算例。(本题 20 分)
四 编写Euler方法求常微分方程初值问题的程序,要求附有算例。(本题 20 分)
五 编写Newton迭代法求非线性方程的程序,要求附有算例。(本题 20 分)
相关文档
最新文档