中考数学复习第三单元函数第12讲二次函数练习.doc

合集下载

中考数学复习 第三单元 函数 第12讲 二次函数练习

中考数学复习 第三单元 函数 第12讲 二次函数练习

第12讲 二次函数第1课时 二次函数的图象与性质重难点1 二次函数的图象和性质二次函数y =2x 2+bx +c 的图象经过点A(2,1),B(0,1).(1)求该二次函数的表达式;(2)二次函数图象的顶点坐标为(1,-1),对称轴为直线x =1,最小值为-1; (3)若C ,D 是抛物线上两点,且点C(3,7),点D(a ,7),则a 的值为-1;(4)若点P(3+n 2,y 1),Q(4+n 2,y 2)在抛物线上,试判断y 1与y 2的大小;(写出判断的理由)(5)将该函数图象向右平移,当图象经过点(1,1)时,A ,B 两点随图象移至A′,B′,求△OBB′的面积; (6)将该函数图象向上平移k(k 是正整数)个单位长度,使平移后的图象与x 轴无交点,求k 的最小值.【自主解答】 解:(1)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1).∴⎩⎪⎨⎪⎧8+2b +c =1,c =1,解得⎩⎪⎨⎪⎧b =-4,c =1. ∴该二次函数的表达式是y =2x 2-4x +1.(4)∵4+n 2>3+n 2>1, ∴P,Q 都在对称轴的右边.又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2.(5)设函数图象向右平移m(m >0)个单位长度,则平移后函数的表达式为y =2(x -1-m)2-1, ∵图象经过点(1,1),∴2m 2-1=1,解得m =1.∴S △O BB′=12OB·BB′=12×1×1=12.(6)将抛物线y =2x 2-4x +1的图象向上平移k(k 是正整数)个单位长度后的解析式为y =2x 2-4x +1+k , ∴方程2x 2-4x +1+k =0无根,∴Δ<0, ∴16-8(1+k)<0.∴k>1. ∵k 是正整数, ∴k 的最小值为2. 方法指导1.求抛物线y =ax 2+bx +c(a≠0)的对称轴、顶点坐标有两种方法,一是利用顶点公式(-b 2a ,4ac -b24a),二是通过配方得到y =a(x -h)2+k 的形式.2.比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.如本例(4).3.与x 轴有无交点,就是将其转化为一元二次方程求解,若无交点,即是要求Δ<0;有一个交点,即是Δ=0;有两个交点,即是Δ>0.【变式训练1】 (2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3【变式训练2】 (2017·泰安)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:下列结论:①抛物线的开口向下;②其图象的对称轴为直线x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个重难点2 同一坐标系中的函数图象共存问题(2018·德州)如图,函数y =ax 2-2x +1和y =ax -a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是(B ),A ) ,B ) ,C ) ,D )方法指导同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:例2A 选项,若一次函数图象正确,则a<0,这与抛物线开口向上相矛盾.故A 选项错误.【变式训练3】 (2018·永州)在同一平面直角坐标系中,反比例函数y =b x (b≠0)与二次函数y =ax 2+bx(a≠0)的图象可能是(D ),A ),B ) ,C ) ,D )重难点3 二次函数图象与字母系数的关系(2018·达州)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0;②9a+3b +c >0;③若点M(12,y 1),点N(52,y 2)是函数图象上的两点,则y 1<y 2;④-35<a <- 25.其中正确结论有(D )A .1个B .2个C .3个D .4个【思路点拨】①利用开口方向、对称轴以及与y轴交点纵坐标即可判断a,b,c的正负性;②根据抛物线与x轴交点坐标以及对称轴,可判断抛物线与x轴的另外一个交点为(5,0),根据图象可知当x=3时,y>0,即可判断9a+3b+c与0的大小关系;③根据点M、点N与对称轴的关系即可判断y1与y2的大小关系;④根据抛物线的对称轴x=2,以及二次函数经过点(-1,0)可得出a,b,c之间的关系,再根据2<c<3即可判断a的取值范围.,方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,抛物线与两坐标轴的交点坐标情况,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c 与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小;(4)判断9a+3b+c与0的关系,需看x=3时的纵坐标,即比较x=3时函数值与0的大小;判断9a-3b+c 与0的关系,需看x=-3时的纵坐标,即比较x=-3时函数值与0的大小;(5)判断某个字母的取值范围,通常找出两个等式,将所求字母用其他字母(容易得出范围)表示,然后解不等式. 【变式训练4】(2018·深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(C) A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c-3=0有两个不相等的实数根【变式训练5】(2018·荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有(B) A.1个B.2个C.3个D.4个考点1二次函数的图象与性质1.(2018·岳阳)抛物线y=3(x-2)2+5的顶点坐标是(C)A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5)2.(2018·上海)下列对二次函数y=x2-x的图象的描述,正确的是(C)A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的3.(2017·连云港)已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是(C)A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>04.(2018·青岛)已知一次函数y =b a x +c 的图象如图,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是(A ),A ) ,B ),C ),D )5.如图,抛物线y =ax 2+bx +c 的顶点为B(1,-3),与x 轴的一个交点A 在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b =0;③a-b +c >0;④a-c =3,正确的有(A )A .4个B .3个C .2个D .1个6.(2018·陕西)对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在(C )A .第一象限B .第二象限C .第三象限D .第四象限考点2 二次函数图象的平移7.(2018·广安)抛物线y =(x -2)2-1可以由抛物线y =x 2平移而得到,下列平移正确的是(D )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度 8.(2018·广西)将抛物线y =12x 2-6x +21向左平移2个单位长度后,得到新抛物线的解析式为(D )A .y =12(x -8)2+5B .y =12(x -4)2+5C .y =12(x -8)2+3D .y =12(x -4)2+3考点3 二次函数与方程、不等式9.(2018·襄阳)已知二次函数y =x 2-x +14m -1的图象与x 轴有交点,则m 的取值范围是(A )A .m≤5B .m≥2C .m <5D .m >210.(2017·苏州)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a(x -2)2+1=0的实数根为(A )A .x 1=0,x 2=4B .x 1=-2,x 2=6C .x 1=32,x 2=52D .x 1=-4,x 2=011.(2017·咸宁)如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n>ax 2+bx +c 的解集是x<-1或x>4.考点4 确定二次函数的解析式12.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的解析式;(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.解:(1)设抛物线的解析式为y =a(x -3)2+5,将A(1,3)代入上式得3=a(1-3)2+5,解得a =-12.∴抛物线的解析式为y =-12(x -3)2+5.(2)∵A(1,3),抛物线对称轴为直线x =3, ∴B(5,3).令x =0,y =-12(0-3)2+5=12,则C(0,12).∴△ABC 的面积=12×(5-1)×(3-12)=5.13.(2018·泸州)已知二次函数y =ax 2+2ax +3a 2+3 (其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为(D )A .1或-2B .- 2 或 2C . 2D .114.(2018·湖州)在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y =ax 2-x +2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是(A )A .a≤-1或14≤a<13B .14≤a<13C .a≤14或a >13D .a≤-1或a≥1415.(2018·淄博)已知抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m(m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧).若B ,C 是线段AD 的三等分点,则m 的值为2或8.16.(2017·济宁)已知函数y =mx 2-(2m -5)x +m -2的图象与x 轴有两个公共点.(1)求m 的取值范围,写出当m 取范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C 1.①当n≤x≤-1时,y 的取值范围是1≤y≤-3n ,则n 的值为-2; ②函数C 2:y =2(x -h)2+k 的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,半径为5的圆内或圆上.设函数C 1的图象顶点为M ,求点P 与点M 距离最大时函数C 2的解析式.解:(1)由题意,得⎩⎪⎨⎪⎧m≠0,[-(2m -5)]2-4m (m -2)>0.解得m<2512,且m≠0.当m =2时,函数解析式为y =2x 2+x. (2)②∵y=2x 2+x =2(x +14)2-18,∴图象顶点M 的坐标为(-14,-18),由图形可知当P 为射线MO 与圆在第一象限的交点时,距离最大.∵点P 在直线OM 上,由O(0,0),M(-14,-18)可求得直线解析式为y =12x ,设P(a ,b),则有a =2b ,根据勾股定理可得PO 2=(2b)2+b 2, 解得a =2,b =1.∴PM 最大时函数C 2的解析式为y =2(x -2)2+1.第2课时 二次函数的综合应用重难点1 二次函数的实际应用(2018·黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y =⎩⎪⎨⎪⎧x +4(1≤x≤8,x 为整数),-x +20(9≤x≤12,x 为整数),每件产品的利润z(元)与月份x(月)的关系如下表:(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少?【自主解答】 解:(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z =kx +b ,⎩⎪⎨⎪⎧k +b =19,2k +b =18,得⎩⎪⎨⎪⎧k =-1,b =20. 即当1≤x≤9时,z =-x +20, 当10≤x≤12时,z =10,由上可得,z =⎩⎪⎨⎪⎧-x +20(1≤x≤9,x 为整数),10(10≤x≤12,x 为整数).(2)当1≤x≤8时,w =(x +4)(-x +20)=-x 2+16x +80.当x =9时,w =(-9+20)×(-9+20)=121.当10≤x≤12时,w =(-x +20)×10=-10x +200. 由上可得,w =⎩⎪⎨⎪⎧-x 2+16x +80(1≤x≤8,x 为整数),121(x =9),-10x +200(10≤x≤12,x 为整数).(3)当1≤x≤8时,w =-x 2+16x +80=-(x -8)2+144,∴当x =8时,w 取得最大值,此时w =144. 当x =9时,w =121.当10≤x≤12时,w =-10x +200,则当x =10时,w 取得最大值,此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元. 【变式训练1】 (2017·潍坊)工人师傅用一块长为10 dm ,宽为6 dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)裁剪示意图如图:设裁掉的正方形边长为x dm,由题意,得(10-2x)(6-2x)=12,即x2-8x+12=0.解得x1=2,x2=6(舍去).答:裁掉的正方形的边长为2 dm.(2)∵长不大于底面宽的五倍,∴10-2x≤5(6-2x).∴0<x≤2.5.设总费用为y,由题意,得y=0.5×2[(10-2x)x+(6-2x)x]+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24.∵对称轴为直线x=6,开口向上,∴当0<x≤2.5时,y随x的增大而减小.∴当x=2.5时,y最小=4×(2.5-6)2-24=25.答:当裁掉边长为2.5 dm的正方形时,总费用最低为25元.【变式训练2】(2018·滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=-5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?解:(1)当y=15时,15=-5x2+20x.解得x1=1,x2=3.答:在飞行过程中,当小球的飞行高度为15 m时,飞行时间是1 s或3 s.(2)当y=0时,0=-5x2+20x.解得x3=0,x4=4.∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s.(3)y=-5x2+20x=-5(x-2)2+20,∴当x=2时,y取得最大值,此时,y=20.答:在飞行过程中,小球飞行高度第2 s时最大,最大高度是20 m.综合B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,-2),连接AE.(1)求二次函数的解析式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;,方法指导运用二次函数的性质求实际问题的最大值和最小值的一般方法是:(1)列出二次函数的解析式,并根据自变量的实际意义,确定取值范围;(2)配方法利用公式求顶点;(3)检查顶点是否在自变量的取值范围内或检查所求最值是不是符合要求(例如抛物线开口向上求最小值,开口向下求最大值).若在,则函数在顶点处取得最大值或最小值;若不在,则在自变量的取值范围内,根据增减性确定.K拓展点1:面积问题方法指导1.利用二次函数解决实际问题,第一步是建立二次函数模型,一般都是根据两个变量之间的等量关系建立.K2.利用二次函数探究实际生活中的最值问题,需先建立二次函数模型,列出二次函数关系式,整理成顶点式,函数最值应结合自变量取值范围求解,最值不一定是顶点的纵坐标,画出函数在自变量取值范围内的图象,图象上的最高点的纵坐标是函数的最大值,图象上的最低点的纵坐标是函数的最小值.拓展点2:抛物线型问题利用二次函数解决抛物线型问题的基本思路是将实际问题中的条件转化为数学问题方法指导中的条件,本例中就是将飞行高度转化为纵坐标,然后列出一元二次方程求解;飞机飞出与落地时y值均为0,令纵坐标为0,就可以得到问题的答案;小球飞行的最大高度即是求抛物线所对应的二次函数的最大值.K(3)抛物线对称轴上是否存在点P ,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存,在请说明理由.【思路点拨】 (1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.解:(1)∵二次函数y =ax 2+bx +c 经过点A(-4,0),B(2,0),C(0,6),∴⎩⎪⎨⎪⎧16a -4b +c =0,4a +2b +c =0,c =6,解得⎩⎪⎨⎪⎧a =-34,b =-32,c =6.1分 ∴二次函数的解析式为y =-34x 2-32x +6.3分(2)由A(-4,0),E(0,-2),可求AE 所在直线解析式为y =-12x -2.4分过点D 作DH⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH⊥DF,垂足为H. 设D(m ,-34m 2-32m +6),则点F(m ,-12m -2).∴DF =-34m 2-32m +6-(-12m -2)=-34m 2-m +8.5分∴S △ADE =S △ADF +S △EDF =12×DF·A G +12DF·EH =12×DF·AG+12×DF·EH =12×4·DF =2×(-34m 2-m +8)=-32(m +23)2+503.7分∴当m =-23时,△ADE 的面积取得最大值为503.8分(3)y =-34x 2-32x +6的对称轴为直线x =-1,设P(-1,n),又E(0,-2),A(-4,0).可求PA =9+n 2,PE =1+(n +2)2,AE =16+4=2 5.当PA =PE 时,9+n 2=1+(n +2)2,解得n =1,此时P(-1,1);当PA =AE 时,9+n 2=2 5 ,解得n =±11,此时点P 坐标为(-1,±11);当PE =AE 时,1+(n +2)2=25,解得n =-2±19,此时点P 坐标为(-1,-2±19). 综上所述,P 点的坐标为(-1,1),(-1,±11),(-1,-2±19).11分,例题剖析本例为二次函数的综合应用,涉及待定系数法、割补法求三角形面积、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中表示出△ADE 的面积是解题的关键,在(3)中表示出三边的长度是解题的关键,难点在于需分三种情况讨论.本题考查知识点较多,综合性较强,难度较大.方法指导链接专题复习(七)边栏解题方法. K1.(2018·连云港)已知学校航模组设计制作的火箭的升空高度h(m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是(D )A .点火后9 s 和点火后13 s 的升空高度相同B .点火后24 s 火箭落于地面C .点火后10 s 的升空高度为139 mD .火箭升空的最大高度为145 m2.(2018·北京)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m )与水平距离x(单位:m )近似满足函数关系y =ax 2+bx +c(a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(B )A .10 mB .15 mC .20 mD .22.5 m第2题图第3题图3.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.4.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y =-2x 2+80x +750,由于某种原因,售价只能满足15≤x≤22,那么一周可获得的最大利润是1__550元.5.(2018·武汉)飞机着陆后滑行的距离y(单位:m )关于滑行时间t(单位:s )的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是24m .6.(2017·义乌)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y=x·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积y 最大,即当饲养室长为25 m 时,占地面积最大. (2)∵y=x·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大,即当饲养室长为26 m 时,占地面积最大. ∵26-25=1≠2, ∴小敏的说法不正确.7.(2017·德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高2 m 的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,水柱落地处离池中心3 m .(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?解:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.由题意可设抛物线的函数解析式为y =a(x -1)2+h(0≤x≤3). 抛物线过点(0,2)和(3,0),代入抛物线解析式,可得⎩⎪⎨⎪⎧4a +h =0,a +h =2.解得⎩⎪⎨⎪⎧a =-23,h =83. 所以抛物线解析式为y =-23(x -1)2+83(0≤x≤3).化为一般式为y =-23x 2+43x +2(0≤x≤3).(2)由(1)中抛物线解析式y =-23(x -1)2+83(0≤x≤3)知,当x =1时,y =83.所以抛物线水柱的最大高度为83m .8.(2018·江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.解:(1)设y 与x 的函数关系式为y =kx +b ,将(10,200),(15,150)代入,得⎩⎪⎨⎪⎧10k +b =200,15k +b =150,解得⎩⎪⎨⎪⎧k =-10,b =300.∴y 与x 的函数关系式为y =-10x +300(8≤x≤30). (2)设每天销售获得的利润为w , 则w =(x -8)y=(x -8)(-10x +300)=-10(x -19)2+1 210. ∵8≤x≤30,∴当x =19时,w 取得最大值,最大值为1 210.(3)由(2)知,当获得最大利润时,定价为19元/千克, 则每天的销售量为y =-10×19+300=110(千克), ∵保质期为40天,∴总销售量为40×110=4 400. 又∵4 400<4 800, ∴不能销售完这批蜜柚.9.(2018·济宁)如图,已知抛物线y =ax 2+bx +c(a≠0)经过点A(3,0),B(-1,0),C(0,-3). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.解:(1)把A(3,0),B(-1,0),C(0,-3)代入抛物线解析式,得⎩⎪⎨⎪⎧9a +3b +c =0,a -b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.则该抛物线解析式为y =x 2-2x -3.(2)过点A 作AM⊥BC 于点M ,过点M 作MH⊥x 轴于点H. ∴∠BOC=∠AMB=∠AHM=90°. 易证△BOC∽△BMA∽△MHA. ∴BC OC =AB AM ,AM AB =AH AM ,OB OC =MH AH. ∵A(3,0),B(-1,0),C(0,-3), ∴BC=12+32=10,OC =3,AB =4,OA =3.∴AM=6510,AH =185,MN =65,OH =35.∴M(-35,-65).(3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形.分三种情况考虑:设Q(x ,0),P(m ,m 2-2m -3),当四边形BCQP 为平行四边形时,由B(-1,0),C(0,-3),根据平移规律,得-1+x =0+m ,0+0=-3+m 2-2m -3,解得m =1±7,x =2±7.当m =1+7时,m 2-2m -3=8+27-2-27-3=3,即P(1+7,3);当m =1-7时,m 2-2m -3=8-27-2+27-3=3,即P(1-7,3); 当四边形BCPQ 为平行四边形时,由B(-1,0),C(0,-3).根据平移规律,得-1+m =0+x ,0+m 2-2m -3=-3+0,解得m =0或2. 当m =0时,P(0,-3)(舍);当m =2时,P(2,-3).当四边形BQCP 为平行四边形时,由B(-1,0),C(0,-3),根据平移规律,得-1+0=x +m ,0+(-3)=0+m 2-2m -3,解得m =0或2.当m =0时,P(0,-3)(舍);当m =2时,P(2,-3).综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为(1+7,3)或(1-7,3)或(2,-3).。

中考数学 考点系统复习 第三章 函数 第十节 二次函数与几何综合题

中考数学 考点系统复习 第三章 函数 第十节 二次函数与几何综合题
解:此抛物线的解析式为 y=x2-4x.
(2)若点 B 是抛物线对称轴上的一点,且点 B 在第一象限,当△OAB 的面积 为 15 时,求点 B 的坐标;
如答图①,∵点 B 是抛物线对称轴上的一点,且点 B 在第一象限, ∴设 B(2,m)(m>0),设直线 OA 的解析式为 y=kx, 则 5k=5,解得 k=1, ∴直线 OA 的解析式为 y=x,设直线 OA 与抛物线对称 轴交于点 H,则 H(2,2),∴BH=m-2,
2.(2022·北部湾)已知抛物线 y=-x2+2x+3 与 x 轴交于 A,B 两点(点 A 在点 B 的左侧). (1)求点 A,点 B 的坐标;
解:当 y=0 时, -x2+2x+3=0, ∴x1=-1,x2=3, ∴A(-1,0),B(3,0).
(2)如图,过点 A 的直线 l:y=-x-1 与抛物线的另一个交点为 C,点 P 为抛物线对称轴上的一点,连接 PA,PC,设点 P 的纵坐标为 m,当 PA= PC 时,求 m 的值;
点 E 的坐标为(-1,0),
∴AE=4,OB=3,CD=2,
1
1
∴S△BCE=S△ABE-S△ACE=2AE·OB-2AE·CD
=12×4×3-12×4×2=2,
∴△BCE 的面积为 2.
3.(2022·广东)如图,抛物线 y=x2+bx+c(b,c 是常数)的顶点为 C, 与 x 轴交于 A,B 两点,A(1,0),AB=4,点 P 为线段 AB 上的动点, 过点 P 作 PQ∥BC 交 AC 于点 Q.
第十节 二次函数与几何 综合题
类型一:二次函数与线段 问题
1.(2022·齐齐哈尔)如图,某一次函数与二次函数 y=x2+mx+n 的图象 交点为 A(-1, 0),B(4, 5). (1)求抛物线的解析式;

最新中考数学总复习第一部分数与代数 第12讲 二次函数

最新中考数学总复习第一部分数与代数 第12讲 二次函数
题23, 题23, 题23, 题10,
10, 题25
数的
题22,
题25 题25 题25 题25
图象和性质
题25
题25
二次函数的 题12,4 题7,
平移

3分
返回
数学
二次函数的
解析式
(待定系数)
二次函数图
象的
顶点坐标、
对称轴

25(1),
2分
题7,3分


25(1),
25(3),
1分
1分

23(3),
2
2
∴k= 3 或 k=2,即 k 的值为 2 或 3.
返回
数学
(3)∵函数的对称轴为直线 x=2,当 m<2 时,当 x=m 时,y 有最大
4m
1
值, 3 =- 3 (m-2)+3,解得 m=± 5,∴m=- 5;
4m
当 m≥2 时,当 x=2 时,y 有最大值,∴
3
9
=3,∴m= .
4
9
综上所述,m 的值为- 5或 4.

题23(1) 3分
23(2),
(2),6分 题
3分
25(3),
2分
题10,
3分

23(3),
1分
返回
数学
二次函数与一元
二次方程、不等

题25(1), 题10,3
题23(3),
25(1),

5分

4分
(与x轴的交点坐
2分
标)
题10,3分
题25(3), 题25(3), 题25(3), 题25(3),
A,B(-1,0)两点,则下列说法正确的是( D )

中考备考数学总复习第12讲二次函数(含解析)

中考备考数学总复习第12讲二次函数(含解析)

第12讲 二次函数[锁定目标考试]考标要求考查角度1.理解二次函数的有关概念. 2.会用描点法画二次函数的图象,能从图象上认识二次函数的性质. 3.会运用配方法确定二次函数图象的顶点、开口方向和对称轴,并会求解二次函数的最值问题. 4.熟练掌握二次函数解析式的求法,并能用它解决有关的实际问题. 5.会用二次函数的图象求一元二次方程的近似解. 二次函数是中考考查的重点内容,题型主要有选择题、填空题及解答题,而且常与方程、不等式、几何知识等结合在一起综合考查,且一般为压轴题.命题不仅考查二次函数的概念、图象和性质等基础知识,而且注重多个知识点的综合考查以及对学生应用二次函数解决实际问题能力的考查.[导学必备知识]知识梳理一、二次函数的概念一般地,形如y =______________(a ,b ,c 是常数,a ≠0)的函数,叫做二次函数. 二次函数的两种形式:(1)一般形式:____________________________;(2)顶点式:y =a (x -h )2+k (a ≠0),其中二次函数的顶点坐标是________.二、二次函数的图象及性质二次函数y =ax 2+bx +c (a ,b ,c 为常数,a ≠0) 图象(a >0)(a <0) 开口方向 开口向上 开口向下对称轴 直线x =-b 2a 直线x =-b 2a顶点坐标 ⎝⎛⎭⎫-b 2a ,4ac -b 24a ⎝⎛⎭⎫-b 2a ,4ac -b 24a增减性 当x <-b 2a 时,y 随x 的增大而减小;当x >-b 2a 时,y 随x 的增大而增大 当x <-b 2a时,y 随x 的增大而增大;当x >-b 2a时,y 随x 的增大而减小最值 当x =-b 2a 时,y 有最______值4ac -b 24a 当x =-b 2a 时,y 有最______值4ac -b 24a三、二次函数图象的特征与a ,b ,c 及b 2-4ac 的符号之间的关系四、二次函数图象的平移抛物线y=ax2与y=a(x-h)2,y=ax2+k,y=a(x-h)2+k中|a|相同,则图象的________和大小都相同,只是位置不同.它们之间的平移关系如下:五、二次函数关系式的确定1.设一般式:y=ax2+bx+c(a≠0).若已知条件是图象上三个点的坐标,则设一般式y=ax2+bx+c(a≠0),将已知条件代入,求出a,b,c的值.2.设交点式:y=a(x-x1)(x-x2)(a≠0).若已知二次函数图象与x轴的两个交点的坐标,则设交点式:y=a(x-x1)(x-x2)(a≠0),将第三点的坐标或其他已知条件代入,求出待定系数a,最后将关系式化为一般式.3.设顶点式:y=a(x-h)2+k(a≠0).若已知二次函数的顶点坐标或对称轴方程与最大值或最小值,则设顶点式:y=a(x-h )2+k (a ≠0),将已知条件代入,求出待定系数化为一般式.六、二次函数与一元二次方程的关系1.二次函数y =ax 2+bx +c (a ≠0),当y =0时,就变成了ax 2+bx +c =0(a ≠0).2.ax 2+bx +c =0(a ≠0)的解是抛物线与x 轴交点的________.3.当Δ=b 2-4ac >0时,抛物线与x 轴有两个不同的交点;当Δ=b 2-4ac =0时,抛物线与x 轴有一个交点;当Δ=b 2-4ac <0时,抛物线与x 轴没有交点.4.设抛物线y =ax 2+bx +c 与x 轴两交点坐标分别为A (x 1,0),B (x 2,0),则x 1+x 2=________,x 1·x 2=________.自主测试1.下列二次函数中,图象以直线x =2为对称轴,且经过点(0,1)的是( )A .y =(x -2)2+1B .y =(x +2)2+1C .y =(x -2)2-3D .y =(x +2)2-32. 如图所示的二次函数y=ax 2+bx+c 的图象中,刘星同学观察得出了下面四个结论:(1)b 2-4ac >0;(2)c >1;(3)2a-b <0;(4)a+b+c <0.你认为其中错误的有( )A .2个B .3个C .4个D .1个3.当m =__________时,函数y =(m -3)xm 2-7+4是二次函数.4.(上海)将抛物线y =x 2+x 向下平移2个单位,所得新抛物线的表达式是________.5.(广东珠海)如图,二次函数y =(x -2)2+m 的图象与y 轴交于点C ,点B 是点C 关于该二次函数图象的对称轴对称的点.已知一次函数y =kx +b 的图象经过该二次函数图象上点A (1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足kx +b ≥(x -2)2+m 的x 的取值范围.[探究重难方法]考点一、二次函数的图象及性质【例1】 (1)二次函数y =-3x 2-6x +5的图象的顶点坐标是( )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4)(2)已知抛物线y =ax 2+bx +c (a >0)的对称轴为直线x =1,且经过点(-1,y 1),(2,y 2),试比较y 1和y 2的大小:y 1________y 2.(填“>”“<”或“=”)解析:(1)抛物线的顶点坐标可以利用顶点坐标公式或配方法来求.∵-b 2a=--62×(-3)=-1, 4ac -b 24a =4×(-3)×5-(-6)24×(-3)=8, ∴二次函数y =-3x 2-6x +5的图象的顶点坐标是(-1,8).故选A .(2)点(-1,y1),(2,y2)不在对称轴的同一侧,不能直接利用二次函数的增减性来判断y1,y2的大小,可先根据抛物线关于对称轴的对称性,然后再用二次函数的增减性即可.设抛物线经过点(0,y3),∵抛物线对称轴为直线x=1,∴点(0,y3)与点(2,y2)关于直线x=1对称.∴y3=y2.∵a>0,∴当x<1时,y随x的增大而减小.∴y1>y3.∴y1>y2.答案:(1)A(2)>方法总结1.将抛物线解析式写成y=a(x-h)2+k的形式,则顶点坐标为(h,k),对称轴为直线x=h,也可应用对称轴公式x=-b2a ,顶点坐标⎝⎛⎭⎪⎫-b2a,4ac-b24a来求对称轴及顶点坐标.2.比较两个二次函数值大小的方法:(1)直接代入自变量求值法;(2)当自变量在对称轴两侧时,看两个数到对称轴的距离及函数值的增减性判断;(3)当自变量在对称轴同侧时,根据函数值的增减性判断.触类旁通1已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A.a>0 B.当x>1时,y随x的增大而增大C.c<0 D.3是方程ax2+bx+c=0的一个根考点二、利用二次函数图象判断a,b,c的符号【例2】如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a +b+c=0;②b>2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是__________.(只要求填写正确命题的序号)解析:由图象可知过(1,0),代入得到a+b+c=0;根据-b2a=-1,推出b=2a;根据图象关于对称轴对称,得出与x轴的交点是(-3,0),(1,0);由a-2b+c=a-2b-a-b=-3b<0,根据结论判断即可.答案:①③方法总结根据二次函数的图象确定有关代数式的符号,是二次函数中的一类典型的数形结合问题,具有较强的推理性.解题时应注意a决定抛物线的开口方向,c决定抛物线与y轴的交点,抛物线的对称轴由a,b共同决定,b2-4ac决定抛物线与x轴的交点情况.当x=1时,决定a+b+c的符号,当x=-1时,决定a-b+c的符号.在此基础上,还可推出其他代数式的符号.运用数形结合的思想更直观、更简捷.触类旁通2小明从如图的二次函数y=ax2+bx+c的图象中,观察得出了下面五个结论:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0,你认为其中正确的结论有()A.2个 B.3个C.4个 D.5个考点三、二次函数图象的平移【例3】二次函数y=-2x2+4x+1的图象怎样平移得到y=-2x2的图象()A.向左平移1个单位,再向上平移3个单位B.向右平移1个单位,再向上平移3个单位C.向左平移1个单位,再向下平移3个单位D.向右平移1个单位,再向下平移3个单位解析:首先将二次函数的解析式配方化为顶点式,然后确定如何平移,即y=-2x2+4x+1=-2(x-1)2+3,将该函数图象向左平移1个单位,再向下平移3个单位就得到y=-2x2的图象.答案:C方法总结二次函数图象的平移实际上就是顶点位置的变换,因此先将二次函数解析式转化为顶点式确定其顶点坐标,然后按照“左加右减、上加下减”的规律进行操作.触类旁通3将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数解析式是()A.y=(x-1)2+2 B.y=(x+1)2+2 C.y=(x-1)2-2 D.y=(x+1)2-2考点四、确定二次函数的解析式【例4】如图,四边形ABCD是菱形,点D的坐标是(0,3),以点C为顶点的抛物线y=ax2+bx+c恰好经过x轴上A,B两点.(1)求A,B,C三点的坐标;(2)求经过A,B,C三点的抛物线的解析式.解:(1)由抛物线的对称性可知AE=BE.∴△AOD≌△BEC.∴OA=EB=EA.设菱形的边长为2m,在Rt△AOD中,m2+(3)2=(2m)2,解得m=1.∴DC=2,OA=1,OB=3.∴A ,B ,C 三点的坐标分别为(1,0),(3,0),(2,3). (2)解法一:设抛物线的解析式为y =a (x -2)2+3,代入A 的坐标(1,0),得a =- 3. ∴抛物线的解析式为y =-3(x -2)2+ 3.解法二:设这个抛物线的解析式为y =ax 2+bx +c ,由已知抛物线经过A (1,0),B (3,0),C (2,3)三点,得⎩⎪⎨⎪⎧ a +b +c =0,9a +3b +c =0,4a +2b +c =3,解这个方程组,得⎩⎪⎨⎪⎧ a =-3,b =43,c =-3 3.∴抛物线的解析式为y =-3x 2+43x -3 3.方法总结 用待定系数法求二次函数解析式,需根据已知条件,灵活选择解析式:若已知图象上三个点的坐标,可设一般式;若已知二次函数图象与x 轴两个交点的横坐标,可设交点式;若已知抛物线顶点坐标或对称轴与最大(或小)值,可设顶点式.触类旁通4 已知抛物线y =-12x 2+(6-m 2)x +m -3与x 轴有A ,B 两个交点,且A ,B 两点关于y 轴对称.(1)求m 的值;(2)写出抛物线的关系式及顶点坐标.考点五、二次函数的实际应用【例5】 我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售收益为:每投入x 万元,可获得利润P =-1100(x -60)2+41(万元).当地政府拟在“十二·五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的收益为:每投入x 万元,可获利润Q =-99100(100-x )2+2945(100-x )+160(万元). (1)若不进行开发,求5年所获利润的最大值是多少;(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少;(3)根据(1)、(2),该方案是否具有实施价值?解:(1)当x =60时,P 最大且为41万元,故五年获利最大值是41×5=205(万元).(2)前两年:0≤x ≤50,此时因为P 随x 的增大而增大,所以x =50时,P 值最大且为40万元,所以这两年获利最大为40×2=80(万元).后三年:设每年获利为y 万元,当地额为x 万元,则外地额为(100-x )万元,所以y =P +Q =⎣⎡⎦⎤-1100(x -60)2+41+⎝⎛⎭⎫-99100x 2+2945x +160=-x 2+60x +165=-(x -30)2+1 065,表明x =30时,y 最大且为1 065,那么三年获利最大为1 065×3=3 195(万元),故五年获利最大值为80+3 195-50×2=3 175(万元).(3)有极大的实施价值.方法总结 运用二次函数的性质解决生活和实际生产中的最大值和最小值问题是最常见的题目类型,解决这类问题的方法是:1.列出二次函数的关系式,列关系式时,要根据自变量的实际意义,确定自变量的取值范围.2.在自变量取值范围内,运用公式法或配方法求出二次函数的最大值和最小值. 触类旁通5一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x 倍,则预计今年年销售量将比去年年销售量增加x 倍(本题中0<x ≤11).(1)用含x 的代数式表示,今年生产的这种玩具每件的成本为__________元,今年生产的这种玩具每件的出厂价为__________元;(2)求今年这种玩具的每件利润y (元)与x 之间的函数关系式;(3)设今年这种玩具的年销售利润为w 万元,求当x 为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.[品鉴经典考题]1.(湖南株洲)如图,已知抛物线与x 轴的一个交点为A (1,0),对称轴是x =-1,则抛物线与x 轴的另一个交点坐标是( )A .(-3,0)B .(-2,0)C .x =-3D .x =-2 2.(湖南郴州)抛物线y =(x -1)2+2的顶点坐标是( )A .(-1,2)B .(-1,-2)C .(1,-2)D .(1,2)3. (湖南娄底)已知二次函数y =x 2-(m 2-2)x -2m 的图象与x 轴交于点A (x 1,0)和点B (x 2,0),x 1<x 2,与y 轴交于点C ,且满足1x 1+1x 2=12.(1)求这个二次函数的解析式;(2)探究:在直线y =x +3上是否存在一点P ,使四边形P ACB 为平行四边形?如果有,求出点P 的坐标;如果没有,请说明理由.4.(湖南长沙)在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x ,25≤x ≤30,25-0.5x ,30<x ≤35(年获利=年销售收入-生产成本-成本).(1)当销售单价定为28元时,该产品的年销售量为多少万件?(2)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少?(3)第二年,该公司决定给希望工程捐款Z 万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围.5. (湖南湘潭)如图,抛物线y =ax 2-32x -2(a ≠0)的图象与x 轴交于A ,B 两点,与y 轴交于C 点,已知B 点坐标为(4,0).(1)求抛物线的解析式;(2)试探究△ABC 的外接圆的圆心位置,并求出圆心坐标;(3)若点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.[研习预测试题]1.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)2.由二次函数y =2(x -3)2+1,可知( )A .其图象的开口向下B .其图象的对称轴为直线x =-3C .其最小值为1D .当x <3时,y 随x 的增大而增大3.已知函数y =(k -3)x 2+2x +1的图象与x 轴有交点,则k 的取值范围是( )A .k <4B .k ≤4C .k <4且k ≠3D .k ≤4且k ≠34.如图,平面直角坐标系中,两条抛物线有相同的对称轴,则下列关系正确的是( )(第4题图) A .m =n ,k >h B .m =n ,k <h C .m >n ,k =hD .m <n ,k =h5.如图,已知二次函数y =x 2+bx +c 的图象经过点A (-1,0),B (1,-2),该图象与x 轴的另一交点为C ,则AC 长为__________.(第5题图)6.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:x …-2-1012…y …04664…从上表可知,下列说法中正确的是__________.(填写序号)①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c的最大值为6;③抛物线的对称轴是直线x=1 2;④在对称轴左侧,y随x增大而增大.7.抛物线y=-x2+bx+c的图象如图所示,若将其向左平移2个单位,再向下平移3个单位,则平移后的解析式为__________.8.长江中下游地区发生了特大旱情,为抗旱保丰收,某地政府制定了农户购买抗旱设备的补贴办法,其中购买Ⅰ型、Ⅱ型抗旱设备所的金额与政府补贴的额度存在下表所示的函数对应关系.(1)分别求y1和y2的函数解析式;(2)有一农户同时对Ⅰ型、Ⅱ型两种设备共10万元购买,请你设计一个能获得最大补贴金额的方案,并求出按此方案能获得的最大补贴金额.9.如图,已知二次函数L1:y=x2-4x+3与x轴交于A,B两点(点A在点B的左边),与y轴交于点C.(1)写出二次函数L 1的开口方向、对称轴和顶点坐标;(2)研究二次函数L 2:y =kx 2-4kx +3k (k ≠0).①写出二次函数L 2与二次函数L 1有关图象的两条相同的性质;②若直线y =8k 与抛物线L 2交于E ,F 两点,问线段EF 的长度是否发生变化?如果不会,请求出EF 的长度;如果会,请说明理由. 参考答案【知识梳理】一、ax 2+bx +c (1)y =ax 2+bx +c (a ,b ,c 是常数,a ≠0) (2)(h ,k )二、小 大三、y 轴 左 右四、形状六、2.横坐标 4.-b a c a导学必备知识自主测试1.C2.D ∵抛物线与x 轴有两个交点,∴b 2-4ac >0;与y 轴交点在(0,0)与(0,1)之间,∴0<c <1,∴(2)错;∵-b 2a >-1,∴b 2a<1,∵a <0,∴2a <b ,∴2a -b <0; 当x =1时,y =a +b +c <0,故选D.3.-3 由题意,得m 2-7=2且m -3≠0,解得m =-3.4.y =x 2+x -2 因为抛物线向下平移2个单位,则y 值在原来的基础上减2,所以新抛物线的表达式是y =x 2+x -2.5.解:(1)由题意,得(1-2)2+m =0,解得m =-1,∴y =(x -2)2-1.当x =0时,y =(0-2)2-1=3,∴C (0,3).∵点B 与C 关于直线x =2对称,∴B (4,3).于是有⎩⎪⎨⎪⎧ 0=k +b ,3=4k +b ,解得⎩⎪⎨⎪⎧ k =1,b =-1.∴y =x -1.(2)x 的取值范围是1≤x ≤4.探究考点方法触类旁通1.D触类旁通2.C ∵抛物线开口向上,∴a >0;∵抛物线与y 轴交于负半轴,∴c <0;对称轴在y 轴右侧,a ,b 异号,故b <0,∴abc >0.由题图知当x =-1时,y >0,即a -b +c >0.对称轴是直线x =13, ∴-b 2a =13,即2a +3b =0; 由⎩⎪⎨⎪⎧a -b +c >0,2a +3b =0,得c -52b >0. 又∵b <0,∴c -4b >0.∴正确的结论有4个.触类旁通3.A 因为将二次函数y =x 2向右平移1个单位,得y =(x -1)2,再向上平移2个单位后,得y =(x -1)2+2,故选A.触类旁通4.解:(1)∵抛物线与x 轴的两个交点关于y 轴对称,∴抛物线的对称轴即为y 轴.∴-6-m 22×⎝⎛⎭⎫-12=0. ∴m =±6.又∵抛物线开口向下,∴m -3>0,即m >3. ∴m =6.(2)∵m =6,∴抛物线的关系式为y =-12x 2+3,顶点坐标为(0,3). 触类旁通5.解:(1)(10+7x ) (12+6x )(2)y =(12+6x )-(10+7x )=2-x .(3)∵w =2(1+x )(2-x )=-2x 2+2x +4,∴w =-2(x -0.5)2+4.5.∵-2<0,0<x ≤11,∴当x =0.5时,w 最大=4.5(万元).答:当x 为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元. 品鉴经典考题1.A 点A 到对称轴的距离为2,由抛物线的对称性知,另一个交点的横坐标为-3,所以另一个交点坐标为(-3,0).2.D3.解:(1)由已知得x 1+x 2=m 2-2,x 1x 2=-2m .∵1x 1+1x 2=12,即x 1+x 2x 1x 2=12, ∴m 2-2-2m =12, 解得m =1或m =-2.当m =1时,y =x 2+x -2,得A (-2,0),B (1,0);当m =-2时,y =x 2-2x +4,与x 轴无交点,舍去.∴这个二次函数的解析式为y =x 2+x -2.(2)由(1)得A (-2,0),B (1,0),C (0,-2).假设存在一点P ,使四边形P ACB 是平行四边形,则PB ∥AC 且PB =AC ,根据平移知识可得P (-1,2),经验证P (-1,2)在直线y =x +3上,故在直线y =x +3上存在一点P (-1,2),使四边形P ACB 为平行四边形.4.解:(1)当x =28时,y =40-28=12.所以,产品的年销售量为12万件.(2)①当25≤x ≤30时,W =(40-x )(x -20)-25-100=-x 2+60x -925=-(x -30)2-25,故当x =30时,W 最大为-25,即公司最少亏损25万元;②当30<x ≤35时,W =(25-0.5x )(x -20)-25-100=-12x 2+35x -625=-12(x -35)2-12.5,故当x =35时,W 最大为-12.5,及公司最少亏损12.5万元,综上所述,的第一年,公司亏损,最少亏损是12.5万元;(3)①当25≤x ≤30时,W =(40-x )(x -20-1)-12.5-10=-x 2+61x -862.5, 令W =67.5,则-x 2+61x -862.5=67.5,化简得x 2-61x +930=0,x 1=30,x 2=31,此时,当两年的总盈利不低于6.75万元时,x =30.②当30<x ≤35时,W =(25-0.5x )(x -20-1)-12.5-10=-12x 2+35.5x -547.5, 令W =67.5,则-12x 2+35.5x -547.5=67.5, 化简得x 2-71x +1 230=0,x 1=30,x 2=41,此时,当两年的总盈利不低于67.5万元时,30<x ≤35.所以,到第二年年底,两年的总盈利不低于67.5万元,此时销售单价的范围是30≤x ≤35.5.解:(1)将点B (4,0)代入y =ax 2-32x -2(a ≠0)中,得a =12.∴抛物线的解析式为y =12x 2-32x -2. (2)∵当12x 2-32x -2=0时,解得x 1=4,x 2=-1, ∴A 点坐标为(-1,0),则OA =1.∵当x =0时,y =12x 2-32x -2=-2,∴C 点坐标为(0,-2),则OC =2.在Rt △AOC 与Rt △COB 中,OA OC =OC OB =12, ∴Rt △AOC ∽Rt △COB .∴∠ACO =∠CBO .∴∠ACB =∠ACO +∠OCB =∠CBO +∠OCB =90°.∴△ABC 为直角三角形.∴△ABC 的外接圆的圆心为AB 中点,其坐标为⎝⎛⎭⎫32,0.(3)连接OM .设M 点坐标为⎝⎛⎭⎫x ,12x 2-32x -2,则S △MBC =S △OBM +S △OCM -S △OBC =12×4×⎝⎛⎭⎫-12x 2+32x +2+12×2×x -12×2×4 =-(x -2)2+4.∴当x =2时,△MBC 的面积有最大值为4,点M 的坐标为(2,-3).研习预测试题1.A 2.C3.D 由题意,得22-4(k -3)≥0,且k -3≠0,解得k ≤4且k ≠3,故选D.4.A5.3 ∵把A (-1,0),B (1,-2)代入y =x 2+bx +c 得⎩⎪⎨⎪⎧1-b +c =0,1+b +c =-2,解得⎩⎪⎨⎪⎧b =-1,c =-2,∴y =x 2-x -2,解x 2-x -2=0得x 1=-1,x 2=2, ∴C 点坐标为(2,0),∴AC =3.6.①③④ 由图表可知当x =0时,y =6;当x =1时,y =6,∴抛物线的对称轴是直线x =12,③正确;∵抛物线与x 轴的一个交点为(-2,0),对称轴是直线x =12,∴抛物线与x 轴的另一个交点为(3,0),①正确;由图表可知,在对称轴左侧,y 随x 增大而增大,④正确;当x =12时,y 取得最大值,②错误. 7.y =-x 2-2x 由题中图象可知,对称轴为直线x =1,所以-b -2=1,即b =2.把点(3,0)代入y =-x 2+2x +c ,得c =3.故原图象的解析式为y =-x 2+2x +3,即y =-(x -1)2+4,然后向左平移2个单位,再向下平移3个单位,得y =-(x -1+2)2+4-3,即y =-x 2-2x .8.解:(1)由题意,得5k =2,∴k =25,∴y 1=25x ;⎩⎪⎨⎪⎧ 4a +2b =2.4,16a +4b =3.2,∴⎩⎨⎧ a =-15,b =85,∴y 2=-15x 2+85x . (2)设该农户t 万元购Ⅱ型设备,(10-t )万元购Ⅰ型设备,共获补贴Q 万元.∴y 1=25(10-t )=4-25t ,y 2=-15t 2+85t . ∴Q =y 1+y 2=4-25t -15t 2+85t =-15t 2+65t +4=-15(t -3)2+295.∴当t =3时,Q 最大=295. ∴10-t =7.即7万元购Ⅰ型设备,3万元购Ⅱ型设备,能获得最大补贴金额,最大补贴金额为5.8万元.9.解:(1)二次函数L 1的开口向上,对称轴是直线x =2,顶点坐标(2,-1).(2)①二次函数L 2与L 1有关图象的两条相同的性质:对称轴为直线x =2或顶点的横坐标为2;都经过A (1,0),B (3,0)两点.②线段EF 的长度不会发生变化.∵直线y =8k 与抛物线L 2交于E ,F 两点,∴kx 2-4kx +3k =8k ,∵k ≠0,∴x 2-4x +3=8,解得x 1=-1,x 2=5.∴EF =x 2-x 1=6,∴线段EF 的长度不会发生变化.。

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

中考数学 第一部分 基础知识过关 第三章 函数及其图象 第12讲 二次函数精练

第12讲二次函数A组基础题组一、选择题1.(2018陕西)对于抛物线y=ax2+(2a-1)x+a-3,当x=1时,y>0,则这条抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限2.(2018威海)抛物线y=ax2+bx+c(a≠0)如图所示,下列结论错误的是( )A.abc<0B.a+c<bC.b2+8a>4acD.2a+b>03.(2017甘肃兰州)将抛物线y=3x2-3向右平移3个单位长度,得到的新抛物线的表达式为( )A.y=3(x-3)2-3B.y=3x2C.y=3(x+3)2-3D.y=3x2-64.如图,一次函数y1=kx+n(k≠0)与二次函数y2=ax2+bx+c(a≠0)的图象相交于A(-1,5),B(9,2)两点,则关于x的不等式kx+n≥ax2+bx+c的解集为( )A.-1≤x≤9B.-1≤x<9C.-1<x≤9D.x≤-1或x≥95.在同一坐标系中,一次函数y=-mx+n2与二次函数y=x2+m的图象可能是( )二、填空题6.(2017湖北武汉)已知关于x的二次函数y=ax2+(a2-1)x-a的图象与x轴的一个交点的坐标为(m,0).若2<m<3,则a的取值范围是.7.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1 m宽的门.已知计划中的材料可建墙体(不包括门)总长为27 m,则能建成的饲养室面积最大为m2.8.如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为.三、解答题9.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为 m,到墙边的距离分别为 m, m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10 m,则最多可以连续绘制几个这样的拋物线型图案?B组提升题组一、选择题1.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,正确的是( )A.没有交点B.有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧2.(2018枣庄)下图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是( )A.b2<4acB.ac>0C.2a-b=0D.a-b+c=03.(2018潍坊)已知二次函数y=-(x-h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,则h的值为( )A.3或6B.1或6C.1或3D.4或64.(2018菏泽)已知二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a与反比例函数y=在同一平面直角坐标系中的图象大致是( )二、填空题5.(2017青岛)若抛物线y=x2-6x+m与x轴没有交点,则m的取值范围是.6.(2018淄博)已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C 是线段AD的三等分点,则m的值为.三、解答题7.(2017广东)如图,在平面直角坐标系中,抛物线y=-x2+ax+b交x轴于A(1,0),B(3,0)两点,点P是抛物线上在第一象限内的一点,直线BP与y轴相交于点C.(1)求抛物线y=-x2+ax+b的解析式;(2)当点P是线段BC的中点时,求点P的坐标;(3)在(2)的条件下,求sin∠OCB的值.8.(2018陕西)已知抛物线L:y=x2+x-6与x轴相交于A、B两点(点A在点B的左侧),并与y 轴相交于点C.(1)求A、B、C三点的坐标,并求△ABC的面积;(2)将抛物线L向左或向右平移,得到抛物线L',且L'与x轴相交于A'、B'两点(点A'在点B'的左侧),并与y轴相交于点C',要使△A'B'C'和△ABC的面积相等,求所有满足条件的抛物线的函数表达式.二次函数的综合应用培优训练一、选择题1.向上发射一枚炮弹,经x秒后的高度为y千米,且时间与高度的关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9.5秒B.第10秒C.第10.5秒D.第11秒2.烟花厂为成都春节特别设计制作了一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=-t2+12t+30,若这种礼炮在升空到最高点时引爆,则从点火升空到引爆需要的时间为( )A.3 sB.4 sC.5 sD.6 s3.二次函数y=ax2+bx+c(a≠0)图象的一部分如图所示,x=-1是对称轴,下列结论:①<0;②a-b+c=-9a;③若(-3,y1),是抛物线上两点,则y1>y2;④将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=a(x2-9).其中正确的是( )A.①②③B.①③④C.①②④D.①②③④二、填空题4.科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如表:温度t/℃-4 -2 0 1 4植物高度增长量l/mm 41 49 49 46 25科学家经过猜想并推测出l与t之间是二次函数关系.由此可以推测最适合这种植物生长的温度为℃.5.如图,直线y=mx+n与抛物线y=ax2+bx+c交于A(-1,p),B(4,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是.三、解答题6.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的运营规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1 100元.(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)(2)当每辆车的日租金为多少元时,每天的净收入最多?7.我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元/台,就可多售出50台.供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;(2)求售价x的范围;(3)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?8.如图,直线y=x+2与抛物线y=ax2+bx+6(a≠0)相交于A和B(4,m)两点,点P是线段AB上异于A、B的动点,过点P作PC⊥x轴于点D,交抛物线于点C.(1)求抛物线的解析式;(2)是否存在这样的P点,使线段PC的长有最大值?若存在,求出这个最大值;若不存在,请说明理由.9.如图,直线y=-x+3与x轴,y轴分别交于B(3,0),C(0,3)两点,抛物线y=ax2+bx+c过A(1,0),B,C三点.(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方的一个动点,过点M作MN∥y轴交直线BC于点N,求线段MN 的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是以BN为腰的等腰三角形?若存在,求出点P的坐标,若不存在,请说明理由.10.如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=-x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=-x2+bx+c的对称轴l上是否存在点F,使△DFQ为直角三角形,若存在,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.11.如图1,平面直角坐标系中,二次函数y=-x2+bx+c的图象与坐标轴分别交于点A、B、C,其中点A(0,8),OB=OA.(1)求二次函数的表达式;(2)若OD=OB,点F为该二次函数在第二象限内图象上的动点,E为DF的中点.①当△CEF的面积最大时,求出点E的坐标;②如图2,将△CEF绕点E旋转180°,C点落在M处,若M点恰好在该抛物线上,求出此时△CEF 的面积.12.如图,直线y=-x+2与x轴交于B点,与y轴交于C点,A点坐标为(-1,0).(1)求过A、B、C三点的抛物线的解析式;(2)在直线BC上方的抛物线上有一点D,过D作DE⊥BC于E,作DF∥y轴交BC于F,求△DEF 周长的最大值;(3)在满足第(2)问的条件下,在线段BD上是否存在一点P,使∠DFP=∠DBC.若存在,求出点P 的坐标;若不存在,说明理由.13.如图,在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点C.抛物线y=ax2+bx+c的对称轴是x=-且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC,BC.求四边形PABC面积的最大值,并求出此时点P的坐标;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.第12讲二次函数A组基础题组一、选择题1.C 当x=1时,y=a+2a-1+a-3>0,解得a>1,又根据抛物线顶点坐标公式可得-<0,=<0,所以这条抛物线的顶点一定在第三象限,故选C.2.D A.由图象开口可知:a<0,由对称轴可知:->0,∴b>0,∴由抛物线与y轴的交点可知:c>0,∴abc<0,故A正确;B.由图象可知:x=-1时,y<0,∴y=a-b+c<0,∴a+c<b,故B正确;C.由图象可知:顶点的纵坐标大于2,∴>2,∵a<0,∴4ac-b2<8a,∴b2+8a>4ac,故C正确;D.对称轴x=-<1,a<0,∴2a+b<0,故D错误.故选D.3.A4.A5.D二、填空题6.答案-3<a<-2或<a<解析把(m,0)代入y=ax2+(a2-1)x-a得am2+(a2-1)m-a=0,m==,解得m1=,m2=-a,∵2<m<3,∴2<<3或2<-a<3,解得<a<或-3<a<-2.7.答案75解析设垂直于墙的材料长为x米,则平行于墙的材料长为27+3-3x=30-3x,则总面积S=x(30-3x)=-3x2+30x=-3(x-5)2+75,故饲养室的最大面积为75平方米.8.答案(,2)解析∵Rt△OAB的顶点A(-2,4)在抛物线y=ax2(a≠0)上,∴4=4a,解得a=1,∴抛物线的解析式为y=x2,∵AB⊥x轴,∴B(-2,0),∴OB=2,∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,∴D点在y轴上,且OD=OB=2,∴D(0,2),∵DC⊥OD,∴DC∥x轴,∴P点的纵坐标为2,代入y=x2,得2=x2,解得x=(负值舍去),∴P(,2).三、解答题9.解析(1)根据题意得B,C,把B,C代入y=ax2+bx(a≠0)得解得∴拋物线的函数关系式为y=-x2+2x,∴图案最高点到地面的距离==1 m.(2)令y=0,即-x2+2x=0,解得x1=0,x2=2,∵10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.B组提升题组一、选择题1.D ∵a>1,∴Δ=(-2a)2-4a=4a(a-1)>0,∴ax2-2ax+1=0有两个不相等的实数根,即函数图象与x轴有两个交点,x=>0,故选D.2.D ∵抛物线与x轴有两个交点,∴b2-4ac>0,即b2>4ac,所以A选项错误;∵抛物线开口向上,∴a>0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴ac<0,所以B选项错误;∵二次函数图象的对称轴是直线x=1,∴-=1,∴2a+b=0,所以C选项错误;∵抛物线过点A(3,0),二次函数图象的对称轴是x=1,∴抛物线与x轴的另一个交点为(-1,0),∴a-b+c=0,所以D选项正确.故选D.3.B 对于二次函数y=-(x-h)2(h为常数),当x=h时,函数有最大值0,又当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为-1,故h<2或h>5.当h<2,2≤x≤5时,y随x的增大而减小,故当x=2时,y有最大值,此时-(2-h)2=-1,解得h1=1,h2=3(舍去);当h>5,2≤x≤5时,y随x的增大而增大,故当x=5时,y有最大值,此时-(5-h)2=-1,解得h1=6,h2=4(舍去),综上可知h=1或6.故选B.4.B ∵二次函数y=ax2+bx+c的图象开口向上,∴a>0,∵该抛物线对称轴位于y轴的右侧,∴a、b异号,即b<0.∵当x=1时,y<0,∴a+b+c<0.∴一次函数y=bx+a的图象经过第一、二、四象限,反比例函数y=的图象分布在第二、四象限,故选B.二、填空题5.答案m>9解析∵抛物线y=x2-6x+m与x轴没有交点,∴Δ<0,即(-6)2-4×1×m<0,解得m>9.6.答案 2解析如图,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x-3=0,(x-1)(x+3)=0,x1=1,x2=-3,∴A(-3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,故答案为2.三、解答题7.解析(1)把A(1,0),B(3,0)代入抛物线y=-x2+ax+b,得解得∴抛物线的解析式为y=-x2+4x-3.(2)当点P是线段BC的中点时,易得点P的横坐标为,当x=时,y=,所以点P的坐标为.(3)由(2)得点C的坐标为,∴OC=,又OB=3,∴BC==.∴sin∠OCB===.8.解析(1)令y=0,得x2+x-6=0,解得x=-3或x=2,∴A(-3,0),B(2,0).∴AB=5,令x=0,得y=-6,∴C(0,-6),∴OC=6,∴S△ABC=AB·OC=×5×6=15.(2)由题意得A'B'=AB=5.要使S△A'B'C'=S△ABC,只要抛物线L'与y轴的交点为C'(0,-6)或C'(0,6)即可. 设所求抛物线L':y=x2+mx+6,y=x2+nx-6.∵抛物线L'与抛物线L的顶点的纵坐标相同,∴=,=,解得m=±7,n=±1(n=1舍去).∴抛物线L'的函数表达式为y=x2+7x+6,y=x2-7x+6或y=x2-x-6.二次函数的综合应用培优训练一、选择题1.C 当x=7时,y=49a+7b;当x=14时,y=196a+14b.根据题意得49a+7b=196a+14b,∴b=-21a,根据二次函数图象的对称性及抛物线的开口方向,得当x=-=10.5时,y最大,即高度最高.故选C.2.B ∵礼炮在升空到最高点时引爆,且二次函数图象的开口向下,∴高度h取最大值时,t=-,即t=-=4.故选B.3.D ∵二次函数的图象开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∴<0,故①正确;∵抛物线的对称轴x=-=-1,∴b=2a,当x=2时,y=0,∴4a+2b+c=0,∴4a+4a+c=0,∴c=-8a,∴a-b+c=-9a,故②正确;∵抛物线的对称轴为x=-1,∴当x=-1时,抛物线有最大值,-3距离-1有2个单位长度,距离-1有个单位长度,∴y1>y2,故③正确;设抛物线的解析式为y=a(x+1)2+k,将抛物线沿x轴向右平移一个单位后得出平移后的解析式y=ax2+k,∵c=-8a,∴a+k=-8a,∴k=-9a,∴将抛物线沿x轴向右平移一个单位后得到的新抛物线的表达式为y=ax2-9a,即y=a(x2-9),故④正确.正确结论为①②③④.故选D.二、填空题4.答案-1解析设l=at2+bt+c(a≠0),将(0,49),(1,46),(4,25)代入后得方程组解得所以l与t之间的二次函数解析式为l=-t2-2t+49,当t=-=-1时,l有最大值50,即最适合这种植物生长的温度是-1 ℃.5.答案x<-1或x>4解析由题图可知,当x<-1或x>4时,直线y=mx+n的图象在抛物线y=ax2+bx+c的上方,∴不等式mx+n>ax2+bx+c的解集为x<-1或x>4.三、解答题6.解析(1)由题意知,若观光车能全部租出,则0<x≤100,由50x-1 100>0,解得x>22,∵x是5的倍数,∴每辆车的日租金至少应为25元.(2)设每天的净收入为y元,当0<x≤100时,y1=50x-1 100,∵y1随x的增大而增大,∴当x=100时,y1的最大值为50×100-1 100=3 900;当x>100时,y2=x-1 100=50x-x2+20x-1 100=-x2+70x-1 100=-(x-175)2+5 025,当x=175时,y2的最大值为5 025,5 025>3 900,故当每辆车的日租金为175元时,每天的净收入最多,是5 025元.7.解析(1)根据题中条件售价每降低10元/台,月销售量就可多售出50台,则月销售量y(台)与售价x(元/台)之间的函数关系式为y=200+50×,化简得y=-5x+2 200.(2)根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务,则解得300≤x≤350.所以售价x的范围为300≤x≤350.(3)w=(x-200)(-5x+2 200),整理得w=-5(x-320)2+72 000.∵x=320在300≤x≤350内,∴当x=320时,w有最大值,为72 000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72 000元.8.解析(1)∵B(4,m)在直线y=x+2上,∴m=6,即B(4,6),∵A和B(4,6)在抛物线y=ax2+bx+6上,∴解得∴抛物线的解析式为y=2x2-8x+6.(2)存在.设动点P的坐标为(n,n+2),点C的坐标为(n,2n2-8n+6),∴PC=(n+2)-(2n2-8n+6)=-2n2+9n-4=-2+,∵-2<0,∴抛物线开口向下,有最大值,∴当n=时,线段PC的长有最大值.9.解析(1)由题意将点A(1,0)、B(3,0)、C(0,3)代入抛物线y=ax2+bx+c中,得解得∴抛物线的解析式为y=x2-4x+3.(2)设点M的坐标为(m,m2-4m+3),∵MN∥y轴,∴点N的坐标为(m,-m+3).∵A(1,0),B(3,0)在抛物线上且点M是抛物线在x轴下方的一个动点.∴1<m<3.∵线段MN=-m+3-(m2-4m+3)=-m2+3m=-+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为,∴PB==,PN=,BN==.△PBN以BN为腰的等腰三角形,分二种情况:①当PB=BN,即=时,解得n=±,此时点P的坐标为或.②当PN=BN,即=时,解得n=,此时点P的坐标为或.综上可知:在抛物线的对称轴l上存在点P,使△PBN是以BN为腰的等腰三角形,点P的坐标为或或或.10.解析(1)将A、C两点坐标代入抛物线解析式,得解得∴抛物线的解析式为y=-x2+x+8.(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10-m),∴S=·CP·QE=m×(10-m)=-m2+3m.②∵S=·CP·QE=m×(10-m)=-m2+3m=-(m-5)2+, ∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△DFQ为直角三角形,∵抛物线y=-x2+x+8的对称轴为x=,D的坐标为(3,8), Q的坐标为(3,4),当∠FDQ=90°时,F1,当∠FQD=90°时,则F2,当∠DFQ=90°时,设F,则FD2+FQ2=DQ2,即+(8-n)2++(n-4)2=16,解得n=6±,∴F3,F4,满足条件的点F共有四个,分别为F1,F2,F3,F4,6-.11.解析(1)∵OA=8,∴OB=OA=4,∴B(4,0),∵y=-x2+bx+c的图象过点A(0,8),B(4,0), ∴解得∴二次函数的表达式为y=-x2-x+8.(2)①当y=0时,-x2-x+8=0,解得x1=4,x2=-8,∴C点坐标为(-8,0),∵D点坐标为(0,4),∴设直线CD的解析为y=kx+d(k≠0),故解得故直线DC的解析为y=x+4.如图,过点F作y轴的平行线交DC于点P,设F点坐标为,则P点坐标为, 则FP=-m2-m+4,∴S△FCD=·FP·OC=×-m2-m+4×8=-m2-6m+16,∵E为FD中点,∴=×=-m2-3m+8=-(m+3)2+,当m=-3时,有最大值,∴-m2-m+8=-×9+3+8=,E点纵坐标为×=,∴F,∴E.②∵F点坐标为,C点坐标为(-8,0),D点坐标为(0,4),∴M,又∵M点在抛物线上,∴-(m+8)2-(m+8)+8=-m2-m+12,解得m=-7,故=-m2-3m+8=.12.解析(1)直线y=-x+2与x轴交于B(2,0),与y轴交于C(0,2), 设过A、B、C的抛物线的解析式为y=ax2+bx+c(a≠0),把A(-1,0),B(2,0),C(0,2)的坐标代入,解得a=-1,b=1,c=2,∴抛物线的解析式为y=-x2+x+2.(2)设D(x,-x2+x+2),F(x,-x+2),∴DF=(-x2+x+2)-(-x+2)=-x2+2x,所以x=1时,DF最大=1,∵OB=OC,∴△OBC为等腰直角三角形,∵DE⊥BC,DF∥y轴,∴∠DFE=∠OCB=45°,∴△DEF为等腰直角三角形,∴△DEF周长的最大值为1+.(3)存在.如图,当△DEF周长最大时,D(1,2),F(1,1).延长DF交x轴于H,作PM⊥DF于M,则DB=,DH=2,OH=1,当∠DFP=∠DBC时,△DFP∽△DBF,∴=,∴DP=,∴===,∴PM=,DM=,∴P点的横坐标为OH+PM=1+=,P点的纵坐标为DH-DM=2-=,∴P.13.解析(1)对于y=x+2,当x=0时,y=2,当y=0时,x=-4,∴C(0,2),A(-4,0),由抛物线的对称性可知:点A与点B关于x=-对称,∴点B的坐标为(1,0). ∵抛物线y=ax2+bx+c过A(-4,0),B(1,0),∴可设抛物线解析式为y=a(x+4)(x-1),又∵抛物线过点C(0,2),∴2=-4a,∴a=-,∴y=-x2-x+2.(2)设P.过点P作PQ⊥x轴交AC于点Q,∴Q,∴PQ=-m2-m+2-=-m2-2m,∵=×PQ×(x C-x A)=×PQ×4=2PQ=-m2-4m=-(m+2)2+4,∴当m=-2时,△PAC的面积有最大值4,易知S△ACB=×OC×AB=×2×5=5.则四边形PABC面积的最大值是9,此时P(-2,3).(3)存在.在Rt△AOC中,tan∠CAO=,在Rt△BOC中,tan∠BCO=,∴∠CAO=∠BCO,∵∠BCO+∠OBC=90°,∴∠CAO+∠OBC=90°,∴∠ACB=90°,∴△ABC∽△ACO∽△CBO,如下图:①当M点与C点重合,即M(0,2)时,△MAN∽△BAC;②根据抛物线的对称性,当M(-3,2)时,△MAN∽△ABC;③当点M在第四象限时,设M n,-n2-n+2,则N(n,0), ∴MN=n2+n-2,AN=n+4,当=时,MN=AN,即n2+n-2=(n+4),整理得n2+2n-8=0,解得n1=-4(舍),n2=2,∴M(2,-3);当=时,MN=2AN,即n2+n-2=2(n+4),整理得n2-n-20=0,解得n1=-4(舍),n2=5,∴M(5,-18).综上所述,存在M1(0,2),M2(-3,2),M3(2,-3),M4(5,-18),使得以点A、M、N为顶点的三角形与△ABC相似.。

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案)

中考数学总复习《二次函数》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知二次函数2281y x x =-+,当11x -≤≤时,函数y 的最小值是( )A .1B .5-C .6-D .7-2.把一抛物线向上平移3个单位,再向左平移1个单位得到的解析式为22y x =,则原抛物线的解析式为( ) A .()2213y x =-+B .()2213y x =++C .()2213y x =+-D .()2213y x =--3.新定义:若一个点的纵坐标是横坐标的3倍,则称这个点为“三倍点”,如:()1,3A 与()2,6B --,()0,0C 等都是“三倍点”.若二次函数2y x x c =--+的图像在31x -<<的范围内,至少存在一个“三倍点”,则c 的取值范围是( )A .45c -≤<B .43c -≤<-C .164c -≤<D .114c -≤< 4.如图为2y x bx c =++的图象,则( )A .0b > 0c <B .0b > 0c >C .0b < 0c >D .0b < 0c < 5.把抛物线22y x =-先向右平移6个单位长度,再向下平移2个单位长度后,所得函数的表达式为( )A .22(6)2y x =-++B .22(6)2y x =-+-C .22(6)2y x =--+D .22(6)2y x =---6.如图,抛物线2y ax c =-经过正方形OACB 的三个顶点A ,B ,C ,点C 在y 轴上,则ac 的值为( )A .1B .2C .3D .47.如图,菱形ABCD 的边长为3cm ,=60B ∠︒动点P 从点B 出发以3cm /s 的速度沿着边BC CD DA --运动,到达点A 后停止运动;同时动点Q 从点B 出发,以1cm/s 的速度沿着边BA 向A 点运动,到达点A 后停止运动.设点P 的运动时间为(s)x ,BPQ 的面积为()2cm y ,则y 关于x 的函数图象为( )A .B .B .C .D .8.已知在平面直角坐标系中,抛物线1C 的图象如图所示,对称轴为直线2x =-,将抛物线1C 向右平移2个单位长度得到抛物线2C :2y ax bx c =++ (a 、b 、c 为常数,且0a ≠),则代数式b c a +-与0的大小关系是( )A .0b c a +-<B .0b c a +-=C .0b c a +->D .不能确定二、填空题9.若关于x 的二次函数2321y x x m =-+-的值恒为正数,则m 的取值范围为 . 10.将抛物线2(1)2y x =++先向右平移3个单位,再向下平移4个单位,则所得抛物线的解析式为 .11.小华酷爱足球运动一次训练时,他将足球从地面向上踢出,足球距地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系为:2412h t t =-+,则足球距离地面的最大高度为 m .12.如图是抛物线型拱桥,当拱顶离水面2m 时,水面宽4m ,若水面下降1m ,则水面宽度增加 m .(结果可保留根号)13.如图,抛物线()20y ax bx c a =++≠的对称轴是直线2x =-,且抛物线与x 轴交于A ,B两点,若5OA OB =,则下列结论中:①0abc >;①()220a c b +->;①50a c +=;①若m 为任意实数,则224am bm b a ++≥,正确的是 .(填序号)三、解答题 14.已知抛物线23y ax bx =++交x 轴于()()1030A B ,,,两点 (1)求抛物线的函数表达式;(2)当x 取何值时,y 随x 的增大而减小.15.如图,抛物线214y x bx c =++过点()0,0O ,()10,0E 矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上.设动点B 坐标为(),0t .(1)求抛物线的函数表达式及顶点坐标;(2)当t 为何值时矩形ABCD 的周长有最大值?最大值是多少?16.“潼南柠檬”获评国家地理标志商标,被认定为全国名特优新农产品,柠檬即食片是其加工产品中非常受欢迎的一款零食.一家超市销售了净重500g 一袋的柠檬即食片,进价为每袋10元.销售过程中发现,如果以单价14元销售,那么一个月内可售出200袋.根据销售经验,提高销售单价会导致销售量减少,即销售单价每提高1元,每月销售量相应减少20袋.根据物价部门规定,这种柠檬即食片的销售单价不得低于进价且不得高于18元.(1)求每月销售量y (件)与销售单价x (元)之间的函数关系式;(2)设超市每月销售柠檬即食片获得离利润为w (元),当销售单价定为多少元时,每月可获得最大利润?最大利润是多少?(3)若超市想每月销售柠檬即食片所得利润w 稳定在900元,销售单价应定为多少元?17.如图,一名同学推铅球,铅球出手后行进过程中离地面的高度y (单位:m )与水平距离x (单位:m )近似满足函数关系212123y x x c =-++.已知铅球落地时的水平距离为10m .(1)求铅球出手后水平距离与这名同学相距多远时,铅球离地面最高?(2)在铅球出手后的行进过程中,当它离地面的高度为5m 3时,此时铅球的水平距离是多少?18.我市某企业安排20名工人生产甲、乙两种产品,根据生产经验,每人每天生产2件甲产品或1件乙产品(每人每天只能生产一种产品).甲产品生产成本为每件10元;若安排1人生产一件乙产品,则成本为38元,以后每增加1人,平均每件乙产品成本降低2元.规x x≥人生产乙产品.定甲产品每天至少生产20件.设每天安排()1(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品生产成本(元)甲10-乙x402x(2)为了增加利润,企业须降低成本,该企业如何安排工人生产才能使得每天的生产总成本最低?最低成本是多少?参考答案:1.B2.D3.A4.D5.D6.B7.D8.C9.43m > 10.2(2)2y x =--11.912.()264-13.③④/④③14.(1)243y x x =-+(2)当2x <,y 随x 的增大而减小15.(1)抛物线的函数表达式为21542y x x =-,顶点坐标为2554⎛⎫- ⎪⎝⎭,; (2)当1t =时,矩形ABCD 的周长有最大值,最大值为412.16.(1)()480201018y x x =-≤≤; (2)当销售单价定为17元时,每月可获得最大利润;每月获得最大利润为980元.(3)当销售单价定为15元时,每月获得利润可稳定在900元.17.(1)铅球出手后水平距离与这名同学相距3m 远时,铅球离地面最高为3m(2)此时铅球的水平距离为8m18.安排10名工人生产甲产品,10名工人生产乙产品才能使得每天的生产总成本最低,最低成本是400元。

2020重庆中考复习数学第12题二次函数专题训练二含答案

2020重庆中考复习数学第12题二次函数专题训练二含答案

2020年重庆中考复习二次函数专题训练二1.(2020•南岸区校级模拟)如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y 轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个解:抛物线开口向下,a<0,对称轴为x=1>0,a、b异号,因此b>0,与y轴交点为(0,3),因此c=3>0,于是abc<0,故结论①是正确的;由对称轴为x =﹣=1得2a+b=0,当x=﹣1时,y=a﹣b+c<0,所以a+2a+c<0,即3a+c <0,又a<0,4a+c<0,故结论②不正确;当y=3时,x1=0,即过(0,3),抛物线的对称轴为x=1,由对称性可得,抛物线过(2,3),因此方程ax2+bx+c=3的有两个根是x1=0,x2=2;故③正确;抛物线与x轴的一个交点(x1,0),且﹣1<x1<0,由对称轴x=1,可得另一个交点(x2,0),2<x2<3,因此④是正确的;根据图象可得当x<0时,y随x增大而增大,因此⑤是正确的;正确的结论有4个,故选:A.2.(2019秋•沙坪坝区校级月考)如图,二次函数y=ax2+bx+c的图象经过点A(﹣3,0),其对称轴为直线x=﹣1,有下列结论:①abc<0;②a+b+c<0;③5a+4c<0;④4ac﹣b2>0;⑤若P (﹣5,y1),Q(m,y2)是抛物线上两点,且y1>y2,则实数m的取值范围是﹣5<m<3.其中正确结论的个数是()A.1 B.2 C.3 D.4解:①观察图象可知:a>0,b>0,c<0,∴abc<0,∴①正确;②当x=1时,y=0,即a+b+c =0,∴②错误;③对称轴x=﹣1,即﹣=﹣1得b=2a,当x =时,y<0,即a +b+c<0,即a+2b+4c<0,∴5a+4c<0.∴③正确;④因为抛物线与x轴有两个交点,所以△>0,即b2﹣4ac>0,∴4ac﹣b2<0.∴④错误;⑤∵(﹣5,y1)关于直线x=﹣1的对称点的坐标是(3,y1),∴当y1>y2时,﹣5<m<3.∴⑤正确.故选:C3.如图是二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)图象的一部分,它与x轴的一个交点A在点(2,0)和点(3,0)之间,图象的对称轴是x=1,对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是()A.①②④B.①②⑤C.②③④D.③④⑤解:①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴x =﹣=1,∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当x=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选:A.4.(2019秋•九龙坡区校级期中)如图,抛物线y=ax2+bx+c(a≠0)过点(3,0),且对称轴为直线x=1.下列说法,其中正确的是()①abc<0 ②b2﹣4ac>0;③a﹣b+c<0;④b﹣c >2a A.①②B.①③④C.②④ D.①②④解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0),其对称轴为直线x=1,∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(3,0)和(﹣1,0),且b=﹣2a,由图象知:a<0,c>0,b>0,b2﹣4ac>0,∴abc<0故结论①②正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣1,0),∴a﹣b+c=0,故结论③错误;∵a﹣b+c=0,a<0,∴2a﹣b+c<0,∴b﹣c>2a,故结论④正确;故结论正确的有①②④,故选:D.5.(2019秋•涪陵区校级月考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的结论有()①abc<0;②2a+b=0;③b2﹣4ac<0;④9a+3b+c>0;⑤c+8a<0.A.1个B.2个C.3个D.4个解:∵图象的开口向下,与y轴的交点在y轴的正半轴上,对称轴是直线x=1,∴a<0,c>0,﹣=1,即2a+b=0,b>0,∴abc<0,故①②正确;∵抛物线的图象和x轴有两个交点,∴b2﹣4ac>0,故③错误;∵抛物线的图象的对称轴是直线x=1,和x轴的一个交点坐标是(﹣1,0),∴另一个交点坐标是(3,0),即当x=3时,y=a×32+b×3+c=0,故④错误;∵2a+b=0,即b=﹣2a,代入解析式得:y=ax2﹣2ax+c,当x=3时,y=9a﹣6a+c=3a+c=0,∵a<0,∴3a+c+5a=8a+c<0,故⑤正确;即正确的有3个,故选:C.6.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①abc>0;②﹣3<x2<﹣2;③4a﹣2b+c<﹣1;④a﹣b>am2+bm(m≠﹣1);⑤a >;其中,正确的结论有()A.5 B.4 C.3 D.2解:①对称轴在y轴左侧,则ab同号,c<0,故abc<0,故错误;②对称轴为直线x=﹣1,0<x1<1,则﹣3<x2<﹣2,正确;③对称轴为直线x=﹣1,则b=2a,4a﹣2b+c=c<﹣1,故正确;④x=﹣1时,y=ax2+bx+c=a﹣b+c,为最小值,故a﹣b+c<am2+bm+c,故错误;⑤x=1时,y=a+b+c=3a+c>0,即3a>﹣c,而c<﹣1,故a >,正确;故选:C.7.(2019•重庆模拟)如图,二次函数y=ax2+bx+c的图象与x轴交于A,B(﹣1,0)两点,与y 轴交于点C,则下列四个结论:①ac<0;②2a+b=0;③﹣1<x<3时,y<0;④4a+c<0.其中所有正确结论的序号是()A.①②④B.①③④C.①②③D.②③④解:∵抛物线开口向下,∴a<0,∵抛物线与y轴相交于正半轴,∴c>0,则ac<0,即①正确,该二次函数的对称轴为:x =﹣=1,整理得:2a+b=0,即②正确,∵抛物线对称轴为x=1,点B的坐标为:(﹣1,0),则点A的坐标为:(3,0),由图象可知:当1<x<3时,y>0,即③错误,由图象可知,当x=﹣1时,函数值为0,把x=﹣1代入y=ax2+bx+c得:a﹣b+c=0,∵b=﹣2a,∴3a+c=0,∵a<0,∴4a+c<0 即④正确,正确结论的序号是①②④,故选:A.8.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过点(﹣1,0),下列四个结论:①如果点(﹣,y1)和(2,y2)都在抛物线上,那么y1<y2;②b2﹣4ac>0;③m(am+b)<a+b(m≠1的实数);④=﹣3;其中正确的有()A.4个B.3个C.2个D.1个解:∵对称轴为直线x=1,∴﹣=1,∴b=﹣2a,∵经过点(﹣1,0),∴a﹣b+c=0,∴c=﹣3a,∴y=ax2+bx+c=a(x2﹣2x﹣3),由图象可知,a <0;①将点(﹣,y1)和(2,y2)分别代入抛物线解析式可得y1=﹣a,y2=﹣3a,∴y1<y2;②由图象可知,抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0;③由图象可知,当x=1时,函数有最大值1,∴对任意m,则有m(am+b)<a+b;②==﹣3;∴①②③④正确,故选:A.9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m =0没有实数根,下列结论:①abc>0;②a﹣b+c<0;③m>﹣2;④二次函数y=ax2+bx+c (a≠0),最小值为﹣2,其中正确的个数有()A.1 B.2 C.3 D.4解:①对称轴在y轴右侧,则ab<0,而c<0,故abc>0正确,符合题意;②当x=﹣1时,y=a﹣b+c>0,故原选项错误,不符合题意;③关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,即y=ax2+bx+c与y=m没有交点,故m <﹣2,原选项错误,不符合题意;④从图象看二次函数y=ax2+bx+c(a≠0)的最小值为﹣2,故符合题意;故选:B.10.(2019秋•曾都区期末)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),点A(4,y1)是该抛物线上一点,若点D(x2,y2)是抛物线上任意一点,有下列结论:①4a﹣2b+c>0;②若y2>y1,则x2>4;③若0≤x2≤4,则0≤y2≤5a;④若方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,则﹣1<x1<x2<3.其中正确结论的个数是()A.1个B.2个C.3个D.4个解:①∵二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(1,﹣4a),∴x =,且﹣4a=a+b+c,∴b=﹣2a,c=﹣3a,∴4a﹣2b+c=4a+4a﹣3a=5a>0(∵抛物线开口向上,则a>0),于是①的结论正确;②∵点A(4,y1)关于直线x=1的对称点为(﹣2,y1),∴当y2>y1,则x2>4或x2<﹣2,于是②错误;③当x=4时,y1=16a+4b+c=16a﹣8a﹣3c=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,于是③错误;④∵方程a(x+1)(x﹣3)=﹣1有两个实数根x1和x2,且x1<x2,∴抛物线y=a(x+1)(x﹣3)与直线y=﹣1交点的坐标(x1,﹣1)和(x2,﹣1),∵抛物线y=a(x+1)(x﹣3)=0时,x=﹣1或3,即抛物线y=a(x+1)(x﹣3)=0与x轴的两个交点坐标分别为(﹣1,0)和(3,0),∴﹣1<x1<x2<3,于是④正确.故选:B.11.(2020•下陆区模拟)抛物线y=ax2+bx+c的对称轴为直线x=﹣1,图象过(1,0)点,部分图象如图所示,下列判断中:其中正确的个数是()①abc>0;②b2﹣4ac>0;③9a﹣3b+c=0;④若点(﹣2.5,y1),(﹣0.5,y2)均在抛物线上,则y1>y2;⑤5a﹣2b+c<0.A.2个B.3个C.4个D.5个解:①由图象开口向上,则a>0,故b>0,∵c<0,∴abc<0,故①错误.②∵抛物线与x轴有两个交点,∴b2﹣4ac>0,故②正确.③∵抛物线与x轴的一个交点是(1,0),对称轴是x=﹣1,∴抛物线与x轴的另一个交点是(﹣3,0),∴9a﹣3b+c=0,故③正确.④∵点(﹣0.5,y2)在抛物线上,对称轴为x=﹣1,∴(﹣1.5,y2)也在抛物线上,∵﹣1.5>﹣2.5,且(﹣1.5,y2),(﹣2.5,y1)都在对称轴的左侧,∴y1>y2,故④正确.⑤∵抛物线对称轴x=﹣1,经过(1,0),∴﹣=﹣1,a+b+c=0,∴b=2a,c=﹣3a,∴5a﹣2b+c=5a﹣4a﹣3a=﹣2a<0,∴⑤正确.故正确的判断是②③④⑤共4个.故选:C.12.(2020•成华区模拟)已知抛物线y=ax2+bx+c的对称轴为直线x=2,与x轴的一个交点坐标为(4,0)其部分图象如图所示,下列结论其中结论正确的是()①抛物线过原点;②4a+b=0;③a﹣b+c<0;④抛物线线的顶点坐标为(2,b)⑤当x<2时,y随x增大而增大A.①②③B.③④⑤C.①②④D.①④⑤解:①∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),∴抛物线与x轴的另一交点坐标为(0,0),结论①正确;②∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,且抛物线过原点,∴﹣=2,c=0,∴b=﹣4a,c=0,∴4a+b=0,结论②正确;③∵当x=﹣1时,y值为正,∴a﹣b+c>0,结论③错误;④当x=2时,y=ax2+bx+c=4a+2b+c=(4a+b+c)+b=b,∴抛物线的顶点坐标为(2,b),结论④正确;⑤观察函数图象可知:当x<2时,y随x增大而减小,结论⑤错误.综上所述,正确的结论有:①②④.故选:C.13.(2020•枣阳市校级模拟)已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①a+b+c<0;②a﹣b+c>1;③abc>0;④9a﹣3b+c<0;⑤c﹣a>1.其中所有正确结论的序号是()A.①②B.①③④C.①②③④D.①②③④⑤解:由图象可知,a<0,c=1,对称轴x =﹣=﹣1,∴b=2a,①∵当x=1时,y<0,∴a+b+c<0,故正确;②∵当x=﹣1时,y>1,∴a﹣b+c>1,故正确;③abc=2a2>0,故正确;④由图可知当x=﹣3时,y<0,∴9a﹣3b+c<0,故正确;⑤c﹣a=1﹣a>1,故正确;∴①②③④⑤正确,故选:D.14.(2020•凉山州一模)二次函数y=ax2+bx+c的图象如图所示、则下列结论:①abc>0;②a﹣5b+9c>0;③3a+c<0,正确的是()A.①③B.①②C.①②③D.②③解:①∵抛物线的对称轴在y轴的左侧,∴ab>0,由图象可知:c>0,∴abc>0,故①正确;③∵x =﹣=﹣1,∴b=2a,∴a﹣5b+9c=9c﹣9a=9(c﹣a)>0,故②正确,③∵x =﹣=﹣1,∴b=2a,由图象可知:9a﹣3b+c<0,∴9a﹣6a+c<0,即3a+c<0,故③正确;故选:C.15.(2020•龙岗区模拟)如图,二次函数y=ax2+bx+c(a≠0)图象经过点(﹣1,2),下列结论中正确的有()①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,A.1个B.2个C.3个D.4个解:①由函数的图象可得:当x=﹣2时,y<0,即y=4a﹣2b+c<0,故①正确;②由函数的图象可知:抛物线开口向下,则a<0;抛物线的对称轴大于﹣1,即x =﹣>﹣1,得出2a﹣b<0,故②正确;③已知抛物线经过(﹣1,2),即a﹣b+c=2(1),由图象知:当x=1时,y<0,即a+b+c<0(2),联立(1)(2),得:a+c<1,故③正确;④由于抛物线的对称轴大于﹣1,所以抛物线的顶点纵坐标应该大于2,即:>2,由于a<0,所以4ac﹣b2<8a,即b2+8a>4ac,故④正确,故选:D.16.(2019秋•铁锋区期末)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x =﹣,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0时,y随x的增大而增大:④若m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根,则m<﹣3且n>2:⑤<0,其中正确的结论有()A.2个B.3个C.4个D.5个解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),其对称轴为直线x =﹣∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),且a=b由图象知:a<0,c>0,b<0,∴abc>0,故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0),∴9a﹣3b+c=0∵a=b,∴c=﹣6a,∴3a+c=﹣3a>0,故结论②正确;∵当x <﹣时,y随x 的增大而增大;当﹣<x<0时,y随x的增大而减小,故结论③错误;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3,0)和(2,0),∴y=ax2+bx+c=a(x+3)(x﹣2)∵m,n(m<n)为方程a(x+3)(x﹣2)+3=0的两个根∴m,n(m<n)为方程a(x+3)(x﹣2)=﹣3的两个根∴m,n(m<n)为函数y=a(x+3)(x﹣2)与直线y=﹣3的两个交点的横坐标结合图象得:m<﹣3且n>2,故结论④成立;∵当x =﹣时,y =>0,∴<0,故结论⑤正确;故选:C.。

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

2022中考数学 第一轮 考点系统复习 第三章 函数第12讲 二次函数的图象与性质(练本)课件

设直线BC的解析式为y=kx+b′.
将点B(-3,0),C(0,3)代入,

3k b b 3,
0,解得
k b
1, 3,
∴直线BC的解析式为y=x+3.
∵S△CPD∶S△BPD=1∶2,即
1 CD PN 2 1 BD PN
,1
2

CD BD
1 2
2
,∴BD=2CD,

BD BC
BD BD CD
4.(2021·绍兴)关于二次函数y=2(x-4)2+6的最大值或最小值,下列说法正 确的是( D )
A.有最大值4 C.有最大值6
B.有最小值4 D.有最小值6
5.对于二次函数y=3(x-2)2+1的图象,下列说法正确的是( C )
A.开口向下 C.有最低点
B.对称轴是直线x=-2 D.与x轴有两个交点
中考先锋数学 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给
那些善于独立思考的人,给那些具有锲而不舍的人。2022年3月下午7时13分22.3.319:13March 3, 2022
3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022年3月3日星期四7时13分37秒19:13:373 March 2022
解得
a
b
1, 2,
∴抛物线的解析式为y=-x2-2x+3=-(x+1)2+4,
∴顶点坐标为(-1,4).
(2)连接PB,PO,PC,BC.PO交BC于点D,当S△CPD∶S△BPD=1∶2时,求点
D的坐标.
解:过点D作DM⊥y轴于点M,过点P作PN⊥BC于点N.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第12讲 二次函数第1课时 二次函数的图象与性质重难点1 二次函数的图象和性质二次函数y =2x 2+bx +c 的图象经过点A(2,1),B(0,1).(1)求该二次函数的表达式;(2)二次函数图象的顶点坐标为(1,-1),对称轴为直线x =1,最小值为-1; (3)若C ,D 是抛物线上两点,且点C(3,7),点D(a ,7),则a 的值为-1;(4)若点P(3+n 2,y 1),Q(4+n 2,y 2)在抛物线上,试判断y 1与y 2的大小;(写出判断的理由)(5)将该函数图象向右平移,当图象经过点(1,1)时,A ,B 两点随图象移至A′,B′,求△OBB′的面积; (6)将该函数图象向上平移k(k 是正整数)个单位长度,使平移后的图象与x 轴无交点,求k 的最小值.【自主解答】 解:(1)二次函数y =2x 2+bx +c 的图象经过点(2,1),(0,1).∴⎩⎪⎨⎪⎧8+2b +c =1,c =1,解得⎩⎪⎨⎪⎧b =-4,c =1. ∴该二次函数的表达式是y =2x 2-4x +1.(4)∵4+n 2>3+n 2>1, ∴P,Q 都在对称轴的右边.又∵2>0,函数的图象开口向上,在对称轴的右边y 随x 的增大而增大, ∴y 1<y 2.(5)设函数图象向右平移m(m >0)个单位长度,则平移后函数的表达式为y =2(x -1-m)2-1, ∵图象经过点(1,1),∴2m 2-1=1,解得m =1.∴S △O BB′=12OB·BB′=12×1×1=12.(6)将抛物线y =2x 2-4x +1的图象向上平移k(k 是正整数)个单位长度后的解析式为y =2x 2-4x +1+k , ∴方程2x 2-4x +1+k =0无根,∴Δ<0, ∴16-8(1+k)<0.∴k>1. ∵k 是正整数, ∴k 的最小值为2. 方法指导1.求抛物线y =ax 2+bx +c(a≠0)的对称轴、顶点坐标有两种方法,一是利用顶点公式(-b 2a ,4ac -b24a),二是通过配方得到y =a(x -h)2+k 的形式.2.比较抛物线上点的纵坐标大小的基本方法有以下三种:(1)利用抛物线上对称点的纵坐标相等,把各点转化到对称轴的同侧,再利用二次函数的增减性进行比较; (2)当已知抛物线的解析式及相应点的横坐标时,可先求出相应点的纵坐标,然后比较大小;(3)利用“开口向上,抛物线上的点距离对称轴越近,点的纵坐标越小,开口向下,抛物线上的点距离对称轴越近,点的纵坐标越大”比较大小.如本例(4).3.与x 轴有无交点,就是将其转化为一元二次方程求解,若无交点,即是要求Δ<0;有一个交点,即是Δ=0;有两个交点,即是Δ>0.【变式训练1】 (2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是(D )A .图象与y 轴的交点坐标为(0,1)B .图象的对称轴在y 轴的右侧C .当x <0时,y 的值随x 值的增大而减小D .y 的最小值为-3【变式训练2】 (2017·泰安)已知二次函数y =ax 2+bx +c 的y 与x 的部分对应值如下表:x -1 0 1 3 y-3131下列结论:①抛物线的开口向下;②其图象的对称轴为直线x =1;③当x <1时,函数值y 随x 的增大而增大;④方程ax 2+bx +c =0有一个根大于4.其中正确的结论有(B )A .1个B .2个C .3个D .4个重难点2 同一坐标系中的函数图象共存问题(2018·德州)如图,函数y =ax 2-2x +1和y =ax -a(a 是常数,且a≠0)在同一平面直角坐标系的图象可能是(B ),A ) ,B ) ,C ) ,D )方法指导同一法:一般可以先假定其中一种函数的图象(如:一次函数,反比例函数),再根据函数图象得到该函数解析式中字母的范围,去判断另一个函数图象是否正确.如:例2A 选项,若一次函数图象正确,则a<0,这与抛物线开口向上相矛盾.故A 选项错误.【变式训练3】 (2018·永州)在同一平面直角坐标系中,反比例函数y =b x (b≠0)与二次函数y =ax 2+bx(a≠0)的图象可能是(D ),A ),B ) ,C ) ,D )重难点3 二次函数图象与字母系数的关系(2018·达州)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0;②9a+3b +c >0;③若点M(12,y 1),点N(52,y 2)是函数图象上的两点,则y 1<y 2;④-35<a <- 25.其中正确结论有(D )A .1个B .2个C .3个D .4个【思路点拨】①利用开口方向、对称轴以及与y轴交点纵坐标即可判断a,b,c的正负性;②根据抛物线与x轴交点坐标以及对称轴,可判断抛物线与x轴的另外一个交点为(5,0),根据图象可知当x=3时,y>0,即可判断9a+3b+c与0的大小关系;③根据点M、点N与对称轴的关系即可判断y1与y2的大小关系;④根据抛物线的对称轴x=2,以及二次函数经过点(-1,0)可得出a,b,c之间的关系,再根据2<c<3即可判断a的取值范围.,方法指导解答二次函数的图象信息问题,通常先抓住抛物线的对称轴和顶点坐标,抛物线与两坐标轴的交点坐标情况,再依据图象与字母系数之间的关系求解.常考的一些式子的判断方法如下:(1)判断2a+b与0的关系,需比较对称轴与1的大小;判断2a-b与0的关系,需比较对称轴与-1的大小;(2)判断a+b+c与0的关系,需看x=1时的纵坐标,即比较x=1时函数值与0的大小;判断a-b+c与0的关系,需看x=-1时的纵坐标,即比较x=-1时函数值与0的大小;(3)判断4a+2b+c与0的关系,需看x=2时的纵坐标,即比较x=2时函数值与0的大小;判断4a-2b+c 与0的关系,需看x=-2时的纵坐标,即比较x=-2时函数值与0的大小;(4)判断9a+3b+c与0的关系,需看x=3时的纵坐标,即比较x=3时函数值与0的大小;判断9a-3b+c 与0的关系,需看x=-3时的纵坐标,即比较x=-3时函数值与0的大小;(5)判断某个字母的取值范围,通常找出两个等式,将所求字母用其他字母(容易得出范围)表示,然后解不等式. 【变式训练4】(2018·深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是(C) A.abc>0 B.2a+b<0C.3a+c<0 D.ax2+bx+c-3=0有两个不相等的实数根【变式训练5】(2018·荆门)二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有(B) A.1个B.2个C.3个D.4个考点1二次函数的图象与性质1.(2018·岳阳)抛物线y=3(x-2)2+5的顶点坐标是(C)A.(-2,5) B.(-2,-5) C.(2,5) D.(2,-5)2.(2018·上海)下列对二次函数y=x2-x的图象的描述,正确的是(C)A.开口向下B.对称轴是y轴C.经过原点D.在对称轴右侧部分是下降的3.(2017·连云港)已知抛物线y=ax2(a>0)过A(-2,y1),B(1,y2)两点,则下列关系式一定正确的是(C)A .y 1>0>y 2B .y 2>0>y 1C .y 1>y 2>0D .y 2>y 1>04.(2018·青岛)已知一次函数y =b a x +c 的图象如图,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是(A ),A ) ,B ),C ),D )5.如图,抛物线y =ax 2+bx +c 的顶点为B(1,-3),与x 轴的一个交点A 在(2,0)和(3,0)之间,下列结论中:①bc>0;②2a+b =0;③a-b +c >0;④a-c =3,正确的有(A )A .4个B .3个C .2个D .1个6.(2018·陕西)对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在(C )A .第一象限B .第二象限C .第三象限D .第四象限考点2 二次函数图象的平移7.(2018·广安)抛物线y =(x -2)2-1可以由抛物线y =x 2平移而得到,下列平移正确的是(D )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度 8.(2018·广西)将抛物线y =12x 2-6x +21向左平移2个单位长度后,得到新抛物线的解析式为(D )A .y =12(x -8)2+5B .y =12(x -4)2+5C .y =12(x -8)2+3D .y =12(x -4)2+3考点3 二次函数与方程、不等式9.(2018·襄阳)已知二次函数y =x 2-x +14m -1的图象与x 轴有交点,则m 的取值范围是(A )A .m≤5B .m≥2C .m <5D .m >210.(2017·苏州)若二次函数y =ax 2+1的图象经过点(-2,0),则关于x 的方程a(x -2)2+1=0的实数根为(A )A .x 1=0,x 2=4B .x 1=-2,x 2=6C .x 1=32,x 2=52D .x 1=-4,x 2=011.(2017·咸宁)如图,直线y =mx +n 与抛物线y =ax 2+bx +c 交于A(-1,p),B(4,q)两点,则关于x 的不等式mx +n>ax 2+bx +c 的解集是x<-1或x>4.考点4 确定二次函数的解析式12.已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).(1)求此抛物线的解析式;(2)如果点A 关于该抛物线对称轴的对称点是B 点,且抛物线与y 轴的交点是C 点,求△ABC 的面积.解:(1)设抛物线的解析式为y =a(x -3)2+5,将A(1,3)代入上式得3=a(1-3)2+5,解得a =-12.∴抛物线的解析式为y =-12(x -3)2+5.(2)∵A(1,3),抛物线对称轴为直线x =3, ∴B(5,3).令x =0,y =-12(0-3)2+5=12,则C(0,12).∴△ABC 的面积=12×(5-1)×(3-12)=5.13.(2018·泸州)已知二次函数y =ax 2+2ax +3a 2+3 (其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为(D )A .1或-2B .- 2 或 2C . 2D .114.(2018·湖州)在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y =ax 2-x +2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是(A )A .a≤-1或14≤a<13B .14≤a<13C .a≤14或a >13D .a≤-1或a≥1415.(2018·淄博)已知抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m(m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧).若B ,C 是线段AD 的三等分点,则m 的值为2或8.16.(2017·济宁)已知函数y =mx 2-(2m -5)x +m -2的图象与x 轴有两个公共点.(1)求m 的取值范围,写出当m 取范围内最大整数时函数的解析式; (2)题(1)中求得的函数记为C 1.①当n≤x≤-1时,y 的取值范围是1≤y≤-3n ,则n 的值为-2; ②函数C 2:y =2(x -h)2+k 的图象由函数C 1的图象平移得到,其顶点P 落在以原点为圆心,半径为5的圆内或圆上.设函数C 1的图象顶点为M ,求点P 与点M 距离最大时函数C 2的解析式.解:(1)由题意,得⎩⎪⎨⎪⎧m≠0,[-(2m -5)]2-4m (m -2)>0.解得m<2512,且m≠0.当m =2时,函数解析式为y =2x 2+x. (2)②∵y=2x 2+x =2(x +14)2-18,∴图象顶点M 的坐标为(-14,-18),由图形可知当P 为射线MO 与圆在第一象限的交点时,距离最大.∵点P 在直线OM 上,由O(0,0),M(-14,-18)可求得直线解析式为y =12x ,设P(a ,b),则有a =2b ,根据勾股定理可得PO 2=(2b)2+b 2, 解得a =2,b =1.∴PM 最大时函数C 2的解析式为y =2(x -2)2+1.第2课时 二次函数的综合应用重难点1 二次函数的实际应用(2018·黄冈)我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y(万件)与月份x(月)的关系为:y =⎩⎪⎨⎪⎧x +4(1≤x≤8,x 为整数),-x +20(9≤x≤12,x 为整数),每件产品的利润z(元)与月份x(月)的关系如下表:x 123 4 5 6 7 8 9 101112 z1918 17 16 15 14 13 12 11 10 1010(1)请你根据表格求出每件产品利润z(元)与月份x(月)的关系式;(2)若月利润w(万元)=当月销售量y(万件)×当月每件产品的利润z(元),求月利润w(万元)与月份x(月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少?【自主解答】 解:(1)当1≤x≤9时,设每件产品利润z(元)与月份x(月)的关系式为z =kx +b ,⎩⎪⎨⎪⎧k +b =19,2k +b =18,得⎩⎪⎨⎪⎧k =-1,b =20. 即当1≤x≤9时,z =-x +20, 当10≤x≤12时,z =10,由上可得,z =⎩⎪⎨⎪⎧-x +20(1≤x≤9,x 为整数),10(10≤x≤12,x 为整数).(2)当1≤x≤8时,w =(x +4)(-x +20)=-x 2+16x +80.当x =9时,w =(-9+20)×(-9+20)=121.当10≤x≤12时,w =(-x +20)×10=-10x +200. 由上可得,w =⎩⎪⎨⎪⎧-x 2+16x +80(1≤x≤8,x 为整数),121(x =9),-10x +200(10≤x≤12,x 为整数).(3)当1≤x≤8时,w =-x 2+16x +80=-(x -8)2+144,∴当x =8时,w 取得最大值,此时w =144. 当x =9时,w =121.当10≤x≤12时,w =-10x +200,则当x =10时,w 取得最大值,此时w =100,由上可得,当x 为8时,月利润w 有最大值,最大值144万元. 【变式训练1】 (2017·潍坊)工人师傅用一块长为10 dm ,宽为6 dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12 dm 2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?解:(1)裁剪示意图如图:设裁掉的正方形边长为x dm,由题意,得(10-2x)(6-2x)=12,即x2-8x+12=0.解得x1=2,x2=6(舍去).答:裁掉的正方形的边长为2 dm.(2)∵长不大于底面宽的五倍,∴10-2x≤5(6-2x).∴0<x≤2.5.设总费用为y,由题意,得y=0.5×2[(10-2x)x+(6-2x)x]+2(10-2x)(6-2x)=4x2-48x+120=4(x-6)2-24.∵对称轴为直线x=6,开口向上,∴当0<x≤2.5时,y随x的增大而减小.∴当x=2.5时,y最小=4×(2.5-6)2-24=25.答:当裁掉边长为2.5 dm的正方形时,总费用最低为25元.【变式训练2】(2018·滨州)如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=-5x2+20x,请根据要求解答下列问题:(1)在飞行过程中,当小球的飞行高度为15 m时,飞行时间是多少?(2)在飞行过程中,小球从飞出到落地所用时间是多少?(3)在飞行过程中,小球飞行高度何时最大?最大高度是多少?解:(1)当y=15时,15=-5x2+20x.解得x1=1,x2=3.答:在飞行过程中,当小球的飞行高度为15 m时,飞行时间是1 s或3 s.(2)当y=0时,0=-5x2+20x.解得x3=0,x4=4.∵4-0=4,∴在飞行过程中,小球从飞出到落地所用时间是4 s.(3)y=-5x2+20x=-5(x-2)2+20,∴当x=2时,y取得最大值,此时,y=20.答:在飞行过程中,小球飞行高度第2 s时最大,最大高度是20 m.重难点2二次函数与几何图形的综合(2018·泰安T24,11分)如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(-4,0),B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,-2),连接AE.(1)求二次函数的解析式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;,方法指导运用二次函数的性质求实际问题的最大值和最小值的一般方法是:(1)列出二次函数的解析式,并根据自变量的实际意义,确定取值范围;(2)配方法利用公式求顶点;(3)检查顶点是否在自变量的取值范围内或检查所求最值是不是符合要求(例如抛物线开口向上求最小值,开口向下求最大值).若在,则函数在顶点处取得最大值或最小值;若不在,则在自变量的取值范围内,根据增减性确定.K拓展点1:面积问题方法指导1.利用二次函数解决实际问题,第一步是建立二次函数模型,一般都是根据两个变量之间的等量关系建立.K2.利用二次函数探究实际生活中的最值问题,需先建立二次函数模型,列出二次函数关系式,整理成顶点式,函数最值应结合自变量取值范围求解,最值不一定是顶点的纵坐标,画出函数在自变量取值范围内的图象,图象上的最高点的纵坐标是函数的最大值,图象上的最低点的纵坐标是函数的最小值.拓展点2:抛物线型问题利用二次函数解决抛物线型问题的基本思路是将实际问题中的条件转化为数学问题方法指导中的条件,本例中就是将飞行高度转化为纵坐标,然后列出一元二次方程求解;飞机飞出与落地时y值均为0,令纵坐标为0,就可以得到问题的答案;小球飞行的最大高度即是求抛物线所对应的二次函数的最大值.K(3)抛物线对称轴上是否存在点P ,使△AEP 为等腰三角形?若存在,请直接写出所有P 点的坐标,若不存,在请说明理由.【思路点拨】 (1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D 坐标,过点D 作DG⊥x 轴,交AE 于点F ,表示△ADE 的面积,运用二次函数分析最值即可;(3)设出点P 坐标,分PA =PE ,PA =AE ,PE =AE 三种情况讨论分析即可.解:(1)∵二次函数y =ax 2+bx +c 经过点A(-4,0),B(2,0),C(0,6),∴⎩⎪⎨⎪⎧16a -4b +c =0,4a +2b +c =0,c =6,解得⎩⎪⎨⎪⎧a =-34,b =-32,c =6.1分 ∴二次函数的解析式为y =-34x 2-32x +6.3分(2)由A(-4,0),E(0,-2),可求AE 所在直线解析式为y =-12x -2.4分过点D 作DH⊥x 轴,交AE 于点F ,交x 轴于点G ,过点E 作EH⊥DF,垂足为H. 设D(m ,-34m 2-32m +6),则点F(m ,-12m -2).∴DF =-34m 2-32m +6-(-12m -2)=-34m 2-m +8.5分∴S △ADE =S △ADF +S △EDF =12×DF·A G +12DF·EH =12×DF·AG+12×DF·EH =12×4·DF =2×(-34m 2-m +8)=-32(m +23)2+503.7分∴当m =-23时,△ADE 的面积取得最大值为503.8分(3)y =-34x 2-32x +6的对称轴为直线x =-1,设P(-1,n),又E(0,-2),A(-4,0).可求PA =9+n 2,PE =1+(n +2)2,AE =16+4=2 5.当PA =PE 时,9+n 2=1+(n +2)2,解得n =1,此时P(-1,1);当PA =AE 时,9+n 2=2 5 ,解得n =±11,此时点P 坐标为(-1,±11);当PE =AE 时,1+(n +2)2=25,解得n =-2±19,此时点P 坐标为(-1,-2±19). 综上所述,P 点的坐标为(-1,1),(-1,±11),(-1,-2±19).11分,例题剖析本例为二次函数的综合应用,涉及待定系数法、割补法求三角形面积、等腰三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中表示出△ADE 的面积是解题的关键,在(3)中表示出三边的长度是解题的关键,难点在于需分三种情况讨论.本题考查知识点较多,综合性较强,难度较大.方法指导链接专题复习(七)边栏解题方法. K1.(2018·连云港)已知学校航模组设计制作的火箭的升空高度h(m )与飞行时间t(s )满足函数表达式h =-t 2+24t +1.则下列说法中正确的是(D )A .点火后9 s 和点火后13 s 的升空高度相同B .点火后24 s 火箭落于地面C .点火后10 s 的升空高度为139 mD .火箭升空的最大高度为145 m2.(2018·北京)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m )与水平距离x(单位:m )近似满足函数关系y =ax 2+bx +c(a≠0).如图记录了某运动员起跳后的x 与y 的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为(B )A .10 mB .15 mC .20 mD .22.5 m第2题图第3题图3.(2018·沈阳)如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900 m (篱笆的厚度忽略不计),当AB =150m 时,矩形土地ABCD 的面积最大.4.便民商店经营一种商品,在销售过程中,发现一周利润y(元)与每件销售价x(元)之间的关系满足y =-2x 2+80x +750,由于某种原因,售价只能满足15≤x≤22,那么一周可获得的最大利润是1__550元.5.(2018·武汉)飞机着陆后滑行的距离y(单位:m )关于滑行时间t(单位:s )的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是24m .6.(2017·义乌)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50 m .设饲养室长为x(m ),占地面积为y(m 2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2 m 宽的门,且仍使饲养室的占地面积最大.小敏说:“只要饲养室长比(1)中的长多2 m 就行了.”请你通过计算,判断小敏的说法是否正确.解:(1)∵y=x·50-x 2=-12(x -25)2+6252,∴当x =25时,占地面积y 最大,即当饲养室长为25 m 时,占地面积最大. (2)∵y=x·50-(x -2)2=-12(x -26)2+338,∴当x =26时,占地面积y 最大,即当饲养室长为26 m 时,占地面积最大. ∵26-25=1≠2, ∴小敏的说法不正确.7.(2017·德州)随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高2 m 的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1 m 处达到最高,水柱落地处离池中心3 m .(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?解:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.由题意可设抛物线的函数解析式为y =a(x -1)2+h(0≤x≤3). 抛物线过点(0,2)和(3,0),代入抛物线解析式,可得⎩⎪⎨⎪⎧4a +h =0,a +h =2.解得⎩⎪⎨⎪⎧a =-23,h =83. 所以抛物线解析式为y =-23(x -1)2+83(0≤x≤3).化为一般式为y =-23x 2+43x +2(0≤x≤3).(2)由(1)中抛物线解析式y =-23(x -1)2+83(0≤x≤3)知,当x =1时,y =83.所以抛物线水柱的最大高度为83m .8.(2018·江西)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y 与x 的函数关系式,并写出x 的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.解:(1)设y 与x 的函数关系式为y =kx +b ,将(10,200),(15,150)代入,得⎩⎪⎨⎪⎧10k +b =200,15k +b =150,解得⎩⎪⎨⎪⎧k =-10,b =300.∴y 与x 的函数关系式为y =-10x +300(8≤x≤30). (2)设每天销售获得的利润为w , 则w =(x -8)y=(x -8)(-10x +300)=-10(x -19)2+1 210. ∵8≤x≤30,∴当x =19时,w 取得最大值,最大值为1 210.(3)由(2)知,当获得最大利润时,定价为19元/千克, 则每天的销售量为y =-10×19+300=110(千克), ∵保质期为40天,∴总销售量为40×110=4 400. 又∵4 400<4 800, ∴不能销售完这批蜜柚.9.(2018·济宁)如图,已知抛物线y =ax 2+bx +c(a≠0)经过点A(3,0),B(-1,0),C(0,-3). (1)求该抛物线的解析式;(2)若以点A 为圆心的圆与直线BC 相切于点M ,求切点M 的坐标;(3)若点Q 在x 轴上,点P 在抛物线上,是否存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形?若存在,求点P 的坐标;若不存在,请说明理由.解:(1)把A(3,0),B(-1,0),C(0,-3)代入抛物线解析式,得⎩⎪⎨⎪⎧9a +3b +c =0,a -b +c =0,c =-3,解得⎩⎪⎨⎪⎧a =1,b =-2,c =-3.则该抛物线解析式为y =x 2-2x -3.(2)过点A 作AM⊥BC 于点M ,过点M 作MH⊥x 轴于点H. ∴∠BOC=∠AMB=∠AHM=90°. 易证△BOC∽△BMA∽△MHA. ∴BC OC =AB AM ,AM AB =AH AM ,OB OC =MH AH. ∵A(3,0),B(-1,0),C(0,-3), ∴BC=12+32=10,OC =3,AB =4,OA =3.∴AM=6510,AH =185,MN =65,OH =35.∴M(-35,-65).(3)存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形.分三种情况考虑:设Q(x ,0),P(m ,m 2-2m -3),当四边形BCQP 为平行四边形时,由B(-1,0),C(0,-3),根据平移规律,得-1+x =0+m ,0+0=-3+m 2-2m -3,解得m =1±7,x =2±7.当m =1+7时,m 2-2m -3=8+27-2-27-3=3,即P(1+7,3);当m =1-7时,m 2-2m -3=8-27-2+27-3=3,即P(1-7,3); 当四边形BCPQ 为平行四边形时,由B(-1,0),C(0,-3).根据平移规律,得-1+m =0+x ,0+m 2-2m -3=-3+0,解得m =0或2. 当m =0时,P(0,-3)(舍);当m =2时,P(2,-3).当四边形BQCP 为平行四边形时,由B(-1,0),C(0,-3),根据平移规律,得-1+0=x +m ,0+(-3)=0+m 2-2m -3,解得m =0或2.当m =0时,P(0,-3)(舍);当m =2时,P(2,-3).综上,存在以点B ,C ,Q ,P 为顶点的四边形是平行四边形,P 的坐标为(1+7,3)或(1-7,3)或(2,-3).。

相关文档
最新文档