晶体结构的对称性-从点阵到空间群

合集下载

晶体结构的对称性-从点阵到空间群

晶体结构的对称性-从点阵到空间群



晶胞的大小和形状可以用晶胞参数来表示,即用晶胞的三个 边的长度a, b, c三个边之间的夹角a, b, g表示。
晶胞包含描述晶体结构所需的最基本结构信息。如果知道了

晶胞中全部原子的坐标,就有了晶体结构的全部信息。
一般写作:晶体结构=点阵+结构基元;但准确的描述应为:
晶体结构=点阵*结构基元 ;晶体结构=结构基元@点阵
周期性排列形成的固体物质。晶体有以下的共同
性质: 1. 均匀性; 2. 各向异性; 3. 自范性; 4. 对称性; 5.稳定性。
对称性的不同含义
物体的组成部分之间或不同物体之间特征的对应、 等价或相等的关系。(希腊字根=类似尺寸的。) 由于平衡或和谐的排列所显示的美。 形态和(在中分平面、中心或一个轴两侧的)组元 的排列构型的精确对应。

在二个C2轴之间角平分线的一个垂直平面叫作双面镜面,σ
d
( dihedral
plane )。
通过yz面的反映。
旋转倒反轴-反轴

旋转倒反轴,简称反轴 (Axis of inversion ,
Rotoinversion axis),其对称操作是先进行旋转操
作(n)后立刻再进行倒反操作,这样的复合操作称
1. 2. 3. 4.
石墨晶体结构
三维点阵和晶胞
使用矢量a、b和c 指定点阵:在所有两个点阵点之间的矢量(r) 满足关系, r = ua + vb + wc, , 其中u、v和w是整数。
指定晶体中的任意点: r = (u+x)a + (v+y)b + (w+z)c ,其中u, v, w为整数 r = (ua + vb +wc) + (xa + yb +zc)

23晶体的对称性和分类

23晶体的对称性和分类
晶体的对称性可以从晶体外形的规则性上反映 出来,如sc、bcc、fcc结构的立方晶体,绕晶胞的任 一基矢轴旋转π/2或π/2的整数倍的操作,都能使晶 体的外形保持不变,这就是晶体的对称性.
操作前后晶体保持自身重合的操作,称为对称 操作.
晶体借以进行对称操作的轴、平面或点.称为对 称元素(简称对称素).
6)表示纯转动对称操作(或转动轴);i表示中心反演
(或对称中心);m表示镜面反映(或对称镜面)。
这种表示方法属于国际符号(International
notation)标记法,是海尔曼(Hermann)和毛衮
(Mauguin)制订的,在晶体结构分析中经常使用。
还有一套标记法,是固体物理中惯用的标记, 是熊夫利(Schoenflies)制订的,因此称为熊夫利 符号(Schoenflies notation). 熊夫利符号中Cn 表 示旋转轴;Sn 表示旋转反演轴;Ci 表示中心反 演;Cs 表示镜面反映。
x x
y
y
cos
z
sin
z
y
sin
z
cos
x 1 0 0 x
y0 cos siny z 0 sin cos z
所以,绕x轴旋转的变换矩阵为:
1 0
0
Ax
0
cos
sin
0 sin cos
同理可得绕y轴和绕z轴的变换矩阵
cos 0 sin
Ay
0
1
0
sin 0 cos
cos sin 0
晶体中允许的转动对称轴只能是1、2、3、4和6次轴, 称为晶体的对称性定律
晶体的对称性定律的证明 B
A
如图,A为格点,B为离A最近的 格点之一,则与 平A 行B 的格点

晶体对称性

晶体对称性
6次反轴为3次轴加对称面
准 晶
晶体中只有1, 2,3,4,6 次旋转轴,没有 5次轴和大于6 次以上的轴,可 以直观的从只有正方形、长方形、正三角形、正六边形可以重复布满平面, 而 5 边形和 n (>6)边形不能布满平面空间来直观理解。因此固体中不可能存 在 5 次轴曾是大家的共识,然而1984年美国科学家Shechtman在急冷的铝 锰合金中发现了晶体学中禁戒的 20 面体具有的 5 次对称性,这是对传统晶 体观念的一次冲击。
晶体的宏观对称性的描述
原子的周期性排列形成晶格,不同的晶格表现出不同 的宏观对称性 概括晶体宏观对称性的方法是考察晶体在正交变换的 不变性 三维情况下,正交变换的表示:
x x ' a11 y y ' a 12 z z' a 13
−1 ������ = 0 0
0 0 −1 0 0 −1
0 0 −1
1 0 ������(������������) = 0 1 0 0 1 0 ������ = 0 1 0 0 0 0 1
像转操作(Rotary reflection):
������������������������ ������ ������ = ������������������������ 0
目前普遍的认识是:晶体的必要条件是其 构成原子的长程有序,而不是平移对称性, 具有 5 次对称性的准晶体(Quasicrystal) 就是属于原子有严格的位置有序,而无平 移对称性的晶体。它的图像可从二维 Penrose拼图中得到理解。实际是一种准 周期结构,是介于周期晶体和非晶玻璃之 间的一种新的物质形态—准晶态。
(3). 底心单斜
C2 , Cs , C2 h

第六章 6.2 晶体结构的对称性

第六章  6.2 晶体结构的对称性
2 2 2 1 2
范氏半径 (层间分子间距离 平均值)
426.9 441.2 217 pm ~~~ 218pm 4
48
分子形状的构建(分子的大小与形状) 分子长 键长+2×范德华半径 = 272+2×218 = 708 pm 最大处直径
2×范德华半径 = 2×218 = 436 pm
晶体体积及晶体密度的计算
1. 晶体的宏观对称元素
晶体的理想外形在宏观观察中表现出来的对称 元素,称为晶体的宏观对称元素。
自然界中复杂条件下形成的晶体,多数不具有理想外形,不是 单晶而是多晶(其中不是同一空间点阵贯穿始终);即使是单晶,多 数也不具有理想外形:
天 然




人工培养的晶体,外形可能随生长条件而变,
通过严格的条件控制,可生长出外形相当完美的单
若某一方向存在镜面,则是与该方向垂直的镜面;
若在某一方向同时存在旋转轴(或反轴)与镜面时, 则用分数 形式来表示,将n(或n )记在分子位置, 将m记在分母位置. 例:立方晶系: 第32号点群:Oh— 4 3 2
其国际符号的意义:
m
m
第一位表示:在与a平行方向有一四重轴,与a垂直的方向有一镜面。 第二位表示:在与 a+b+c (体对角线)平行方向上有一三重反轴。 第三位表示:在与a+b(面对角线)平行方向有一个二重轴和与之垂 直的方向有一镜面。
晶体的旋转轴仅限于 n=1, 2, 3, 4, 6. 不可能出现 5及大于6的轴次, 这是晶体的点阵结构所决定的.
9
轴 次 定 理 的 数 学 证 明
证明
B' B ma 2a cos 2 n
A‘

6-晶体结构详解

6-晶体结构详解
等价原子: 晶体中每隔相等的距离就重复出现的原子。
等价原子有完全相同的化学环境。
平移对称性
在某给定方向上,相距最近的两个等价原子之间的距离为a, 则将晶体沿该方向平行移动距离na(n为整数)晶体就复原, 这种性质就是晶体的平移对称性。 连接晶体中任意两个等价原子得一矢量a,将晶体沿着该矢量 平移a或a的整数倍na,晶体复原。
NaCl 晶胞: 面心立方 复晶胞(4)
c
b a
石墨 晶胞:平行六面体 素晶胞
原子坐标
将晶胞的晶轴a, b, c的方向取作三个坐标轴x, y, z的方向(按右手 定则) ,从晶胞的坐标原点指向原子的位置矢量 r 可以表示为: r = x a + yb + zc (x, y, z)称为该原子的坐标。
(1). 金属Na (2). 金属铜
a c b b
a
b
c
平移对称性:晶体沿a方向平移na复原,沿b方向平移mb复原, 沿c方向平移lc复原。 平移矢量: na + mb + lc
(3). NaCl
(4). 金刚石
c
b c a a
b
(5). 石墨
c
b
a
2. 点阵和结构单元
重复单位: 晶体内部原子、离子或分子, 在三维空间作周期性重 复排列。每个重复单位的化学组成相同,空间结构相同,若 忽略晶体的表面效应,重复单位周围的环境也相同。 重复单位: 单个原子或分子,离子团或多个分子。
点阵点位于立方体的顶点
Na
点阵点:黑点 ,位于立方体的顶点与体心
结构单元= 1个Na = 1个平行六面体 = ½立方体

Cu
点阵点:黑点,位于立方体的顶点与面心
结构单元 = 1个Cu = 斜平行六面体

大学化学《结构化学-晶体结构》课件

大学化学《结构化学-晶体结构》课件

3、各种晶体生长中会自发形成确定的多面体外形。 晶体在生长过程中自发形成晶面,晶面相交成
为晶棱,晶棱聚成顶点,使晶体具有某种多面体外 形的特点。
熔融的玻璃体冷却时,随着温度降低,粘度变 大,流动性变小,逐渐固化成表面光滑的无定形物, 工匠因此可将玻璃体制成各种形状的物品,它与晶 体有棱、有角、有晶面的情况完全不同。 4、晶体有确定的熔点而非晶态没有。
1.平移—点阵:
平移是晶体结构中最基本的对称操作, 可用T来表示
Tmnp=ma+nb+pc
m,n,p为任意整数 即一个平移矢量Tmnp作用在晶体三维点 阵上,使点阵点在a方向平移m单位,b方向 平移n单位,c方向平移p单位后,点阵结构 仍能复原。
⑵ 晶体的对称操作和对称元素受到点阵的制约: 其中旋转轴、螺旋轴和反轴的轴次只能为1、2、3、 4、6等几种;螺旋轴和滑移面中的滑移量也只能符 合点阵结构中平移量的几种数值。
晶体结构中可能存在的对称元素有:对称中心 ();镜面(m);轴次为1、2、3、4、6的旋转轴(1,2, 3,4,6)、螺旋轴(21,31,32,41,42,43,61,62,63,64,65)、反轴
学习要点
⑴晶体结构周期性与点阵。 ⑵ 7 个 晶 系 和 14 种 Bravias 空 间 格 子 。 ⑶晶胞、晶面间距。 ⑷ 晶体(X射线)衍射方向―Laue方程和Bragg方程。 ⑸ 晶体衍射强度与立方晶系的系统消光。
学时安排 学时----- 6学时
第八章.晶体的点阵结构和晶体的性质
晶体
远古时期,人类从宝石开始认识晶体。红 宝石、蓝宝石、祖母绿等晶体以其晶莹剔透 的外观,棱角分明的形状和艳丽的色彩,震 憾人们的感官。名贵的宝石镶嵌在帝王的王 冠上,成为权力与财富的象征,而现代人类 合成出来晶体,如超导晶体YBaCuO、光学 晶体BaB2O4、LiNbO3、磁学晶体NdFeB等 高科技产品,则推动着人类的现代化进程。

晶体学第二章-6

晶体学第二章-6

平移轴(translation axis ):一条直线,沿此直线平移一定距离可使晶体的等同部分重合,即整个晶体复原。

¾平移轴:布拉菲点阵中的任意行列¾平移轴的移距:使晶体复原的最小平移距离,即行列上相邻两点间距对称操作:平移t晶格平移矢量——原胞基矢的线性组合平移群{}332211a l a l a l v v v ++螺旋轴n s2131、3241、42、436l 、62、63、64、65•0<s <n/2;采用右手系(右螺旋轴),螺距为τ=(s /n )t 。

•若n/2<s <n ;采用左手系(左螺旋轴),螺距为τ=(1-s /n )t 。

•若s =n/2;中性螺旋轴,左右手系等效。

螺旋轴21,31,3241意为按左旋方向旋转90度后移距1/4 t 。

43意为按右旋方向旋转90度后移距1/4 t;6462螺旋轴61,62,63,64,65滑移面(glide plane):一假想平面,对此平面反映后平行于该平面平移一定距离可使晶体中每一个质点与其等同的质点重合,即整个晶体复原。

国际符号a,b,c,n,d¾滑移面(像移面):一种复合的对称要素¾辅助几何要素有两个:一个假想的平面和平行此平面的某一直线方向¾平移的距离(移距):该方向行列结点间距的一半对称操作:反映+ 平移(联合操作)¾沿晶轴方向移距为轴单位的1/2¾滑移矢量为a/2,b/2,c/2d ——金刚石型滑移面¾沿面对角线或体对角线滑移¾滑移矢量:(a+b)/4, (b+c)/4, (a+c)/4,(a+b+c)/4nn ——对角线滑移面¾沿面对角线或体对角线滑移¾滑移矢量:(a+b)/2, (b+c)/2, (a+c)/2,(a+b+c)/2滑移面a,b,c,n,dA:各种滑移面在3个轴方向上滑移矢量分布B:滑移面平行于投影面的投影C:滑移面垂直于投影面的投影晶体中可能存在的对称元素类型及符号:二、二维空间群1. 二维晶体的宏观对称元素:6个对称轴(1,2,3,4,6)、对称面(m)2. 二维晶系、布拉菲点阵与点群:¾晶轴只能取a和b,只剩下一个角度。

晶体的对称性及晶体的分类

晶体的对称性及晶体的分类
4、旋转反演轴、又称倒反轴(习惯符号为 Lni )
相应的对称操作是旋转加反演。如果一个晶体绕某一轴线旋转一个晶体点阵所许可的角 度后,紧接着依此轴线上的一特殊点加以反演,晶体能与操作前重合的话,则此晶体具有旋
转反演对称性。该轴称为旋转反演轴,习惯符号用 Lni 表示之。n 表示旋转轴次,i 表示反演。
3次



4次
6次
习惯符号 L1 L2 L3 L4 L6
表 2-1 宏观对称要素及其符号
国际符号
图示符号
相当的对称要素及其组合
1
2
3
4
6
L3*L2
c L1i
1
L1i
L2s
p L2i
m( 2 )
L2i
L1s
L3i
3
L3*c
L6s
L 4i
4
包含L2
L 4s
L6i
6
L3*p
L3s
30
2-1-2 晶体的微观对称性
2-1-1 晶体的宏观对称性
凡是能呈现在晶体外形或物化性质上的对称性称为宏观对称性。晶体的宏观对称性与刚 体的对称性类同,因此先介绍刚体的对称性所需遵守的条件。
一、刚体的对称变换 所谓刚体,是指任何两点间的距离在对称操作前后保持不变的物体。用数学方法表示, 对称操作就是线性变换。晶体的对称操作在这一点上是与刚体类同的。因此我们先讨论刚体 对称操作所要遵守的规律。对于一般晶体应采用斜坐标系,但为方便起见,这里采用直角坐 标系,但并不影响结论的正确性。 设经过某对称操作,把物体中的任一点 M(xyz),变成 M’(x’y’z’),即它两的位矢为:
⎜⎛ − 1 A= ⎜ 0
⎜⎝ 0
0 cos θ sin θ
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
晶体结构的对称性-董成
全同操作
❖ (1)全同操作(Identity),符号表示为1 (E),对 应于物体不动的对称操作,对应的变换矩阵 为单位矩阵。
注意:符号表示为国际符号也称为赫尔曼-毛古因HermannMauguin符号,括号内为熊夫利斯Schönflies 符号。
矩阵表示
晶体结构的对称性-董成
❖ 由于平衡或和谐的排列所显示的美。 ❖ 形态和(在中分平面、中心或一个轴两侧的)组元
的排列构型的精确对应。
晶体结构的对称性-董成
晶格
晶体结构的对称性-董成
晶体点阵与晶体对称性
❖ 在每个重复周期都选取一个代表点,就可以 用三维空间点阵来描述晶体的平移对称性。 而平移对称性是晶体最为基本的对称性。整 个点阵沿平移矢量 t=ua+vb+wc
点阵点。
5. 晶体结构: 原子在晶体中的周期性排列。 它可以通过在每 点阵点安放一个称为基元(或型主)的一组原子来描述。
晶体结构的对称性-董成
不要混淆点阵点和原子
1. 阵点是在空间中无穷小的点。 2. 原子是实在物体。 3. 阵点不必处于原子中心。
晶体结构= 结构基元@点阵 晶体结构是在每 个点阵点上安放 一个结构基元。
晶体结构的对称性从点阵到空间群
中国科学院物理研究所 董成
晶体结构的对称性-董成
主要内容
❖ 晶体的平移对称性:三维点阵和晶胞 ❖ 晶体学中的对称操作元素: (旋转轴、倒反中心、镜面、反轴、映轴、螺
旋轴和滑移面) ❖ 晶体学点群,晶系和点阵型式 ❖ 空间群及其应用:空间群符号,等效点系,
分数坐标,不对称单位
❖ 在操作中保持空间中至少一个点不动的对称操作称为点对称 操作,如简单旋转和镜像转动(反映和倒反)是点式操作;使空 间中所有点都运动的对称操作称为非点式操作,如平移,螺 旋转动和滑移反映。
晶体结构的对称性-董成
对称操作和对称元素
❖ 对称操作: 一个物体运动或变换,使得变换后的物体与变 换前不可区分(复原,重合)。
长的分数表示,在0-1之间变化。晶胞原点的分数坐标总是0,
0,0。 用相同分数座标x、y和z指定的所有位置都对称等价。 (由于晶体的三维周期性,在分数坐标上加减任意整数, 仍然表示平移对称的等价位置。)
晶体结构的对称性-董成
晶体学中的对称操作元素
❖ 分子和晶体都是对称图像,是由若干个相等的部分或单元按 照一定的方式组成的。对称图像是一个能经过不改变其中任 何两点间距离的操作后复原的图像。这样的操作称为对称操 作。
旋转轴
❖ (2)旋转轴(旋转轴) :绕某轴反时针旋转q =360/n度, n称 为旋转轴的次数(或重数),符号为n (Cn)。其变换矩阵为:
此平行六面体称为晶胞。
晶体结构的对称性-董成
晶胞
❖ 如上确定的六面体称为晶胞,由矢量a, b和c确定的方向称 为晶体学的晶轴 X, Y, Z。
❖ 如果晶胞中只包含一个阵点,则这种晶胞被称为初基的 (primitive)。
❖ 晶胞的大小和形状可以用晶胞参数来表示,即用晶胞的三个
边的长度a, b, c三个边之间的夹角a, b, g表示。
满足关系, r = ua + vb + wc, , 其中u、v和w是整数。
指定晶体中的任意点:
r = (u+x)a + (v+y)b + (w+z)c ,其中u, v, w为整数
r = (ua + vb +wc) + (xa + yb +zc) x, y, z是在晶胞之内指定一个位置的分数座标。 x, y, z用晶胞边
晶体结构的对称性-董成
晶体性质
晶体是原子(包括离子,原子团)在三维空间中 周期性排列形成的固体物质。晶体有以下的共同 性质: 1. 均匀性; 2. 各向异性; 3. 自范性; 4. 对称性; 5.稳定性。
晶体结构的对称性-董成
对称性的不同含义
❖ 物体的组成部分之间或不同物体之间特征的对应、 等价或相等的关系。(希腊字根=类似尺寸的。)
❖ 晶胞包含描述晶体结构所需的最基本结构信息。如果知道了 晶胞中全部原子的坐标,就有了晶体结构的全部信息。
一般写作:晶体结构=点阵+结构元;但准确的描述应为:
晶体结构=点阵*结构基元 ;晶体结构=结构基元@点阵
晶体结构的对称性-董成
晶胞的选取
❖ 晶胞的选取可以有多种方式,但在实际确定晶胞时,要尽 可能选取对称性高的初基单胞,还要兼顾尽可能反映晶体 内部结构的对称性,所以有时使用对称性较高的非初基胞惯用晶胞。
(u、v, w为任意整数) 平移,得到的新空间点
阵与平移前一样,称沿矢量t的平移为平移对
称操作。
晶体结构的对称性-董成
晶体点阵与晶体对称性
❖ 点阵是一组无限的点,连接其中任意两点可以得到一个矢 量,点阵按此矢量平移后都能复原。三维空间点阵是在三 维空间中点的无限阵列,其中所有的点都有相同的环境。 选任意一个阵点作为原点,三个不共面的矢量a, b和c作为 坐标轴的基矢,这三个矢量得以确定一个平行六面体如下:
❖ 对称元素:在对称操作中保持不变的几何图型:点、轴或面。
❖ 点群: 保留一点不变的对称操作群。 ❖ 空间群:为扩展到三维物体例如晶体的对称操作群,由点群
对称操作和平移对称操作组合而成;由 32 晶体学点群与 14 个Bravais 点阵组合而成;空间群是一个单胞(包含单胞带 心)的平移对称操作;反射、旋转和旋转反演等点群对称性 操作、以及螺旋轴和滑移面对称性操作的组合。
(1)符合整个空间点阵的对称性。 (2)晶轴之间相交成的直角最多。 (3)体积最小。 (4)晶轴交角不为直角时,选最短的晶轴,且交角接近直角。
晶体结构的对称性-董成
点阵、结构和单胞
1. 点阵:晶体的周期性,忽略填充空间的实际结构(分子) 。 2. 点阵矢量:由点阵矢量移动晶体到一个等效位置的平移。 3. 初基点阵矢量: 可选择的最小点阵矢量。 4. 初基晶胞: 初基点阵矢量定义的平行六面体,仅包含一个
晶体结构的对称性-董成
三维晶胞的原子计数
❖ 在晶胞不同位置的原子由不同数目 的晶胞分享:
1. 顶角原子 1/8 2. 棱上原子 1/4 3. 面上原子 1/2 4. 晶胞内部 1
晶体结构的对称性-董成
石墨晶体结构
晶体结构的对称性-董成
三维点阵和晶胞
使用矢量a、b和c 指定点阵:在所有两个点阵点之间的矢量(r)
相关文档
最新文档