综合设计三 3位半直流数字电压表

合集下载

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim
【设计背景及意义】
随着科技的不断发展,数字电压表在各个领域的应用越来越广泛。

三位半数字电压表作为一种常见的测量仪器,具有高精度、高稳定性、易于操作等优点。

本文将介绍如何使用Multisim软件设计一款三位半数字直流电压表,以满足实际应用需求。

【设计原理】
三位半数字直流电压表的设计主要依据以下原理:
1.采用分压式电路实现电压测量;
2.利用模数转换器将模拟信号转换为数字信号;
3.通过数字显示电路将数字信号转换为直观的电压值。

【设计步骤】
1.打开Multisim软件,新建一个项目;
2.添加所需元器件,包括电阻、电容、二极管、晶体管、运算放大器等;
3.连接电路,构建分压式电压测量电路、模数转换电路和数字显示电路;
4.设置元器件参数,如电阻值、电容值等;
5.添加电源和信号源,设置电压值;
6.配置仿真参数,进行仿真实验;
7.分析仿真结果,优化电路设计。

【仿真结果及分析】
经过多次仿真实验,得到以下结果:
1.电压测量范围:0~100V;
2.电压测量精度:0.5%;
3.数字显示:三位半液晶显示屏;
4.响应速度:≤1秒。

通过分析仿真结果,可以看出设计的三位半数字直流电压表具备较高的精度和响应速度,能够满足大部分实际应用场景的需求。

【总结与展望】
本文通过Multisim软件设计了一款三位半数字直流电压表,详细介绍了设计原理、步骤及仿真结果。

在今后的工作中,可以进一步优化电路设计,提高电压表的性能,如降低功耗、扩大测量范围等。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim三位半数字直流电压表是一种常用的测试仪器,用于测量直流电路中的电压值。

它具有简单易用、精度高、测量范围广等特点,被广泛应用于电子工程、电力工程、通信工程等领域。

在设计multisim 电路仿真软件时,三位半数字直流电压表也是必不可少的组成部分。

我们需要了解三位半数字直流电压表的原理。

它采用了数字显示技术,将测量到的电压值以数字形式显示在屏幕上。

一般情况下,三位半数字直流电压表的显示范围为0-1999,即可以显示0.000V-1.999V之间的电压值。

它通过测量电路中的电压,将模拟信号转换为数字信号,并通过显示器显示出来。

在multisim中设计三位半数字直流电压表,首先需要选择合适的元件进行连接。

常见的元件有电阻、电容、二极管等。

在连接电路时,需要注意保证电路的稳定性和准确性。

电路的稳定性可以通过合理选择元件值来实现,而准确性则需要根据实际需求来确定。

在连接电路之后,我们需要设置multisim的参数。

首先是设置电源电压,这是为了模拟实际电路中的电源情况,保证电路能够正常工作。

其次是设置测量范围,根据需要选择合适的范围。

最后是设置显示方式,可以选择数码管显示或液晶显示等方式。

完成电路的连接和参数设置后,我们可以进行仿真实验。

在multisim中,可以设置不同的输入电压值,观察三位半数字直流电压表的显示结果。

通过对比实际测量值和显示值,可以评估电路的准确性和稳定性。

除了基本的测量功能,三位半数字直流电压表还可以具备其他功能,如自动量程切换、峰值保持等。

这些功能可以通过添加适当的电路元件和控制电路来实现。

在multisim中,可以根据需要进行扩展和改进,使三位半数字直流电压表具备更多的功能和应用。

设计multisim电路仿真软件时,三位半数字直流电压表是一个不可或缺的元件。

它能够对直流电路中的电压进行准确测量,并以数字形式显示出来。

通过合理连接电路和设置参数,我们可以在multisim中模拟实际的测量过程,并评估电路的性能。

三位半直流数字电压电流表

三位半直流数字电压电流表

安徽机电职业技术学院课题设计三位半直流数字电压电流表系别电气工程系专业应用电子班级电子3102姓名孙保成学号13011030552012~ 2013学年第一学期指导教师评语等级签名日期摘要随着科学技术的发展,数字电压、电流表的种类越来越多,功能越来越丰富,当然应用的领域也越来越广泛,给人们的工作和生活带来许多方便。

本文主要介绍的是基于ICL7107数字电压、电流表的设计的设计,ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器位驱动器于一体的大规模集成电路,ICL7107是目前广泛应用于数字测量系统的一种31/2位A/D转换器,能够直接驱动共阳极数字显示器,够成数字电压表,外接电阻即可构成数字电流表,此电路简洁完整,稍加改造就可以够成其他电路,如数字电子秤、数字温度计的等专门传感器的测量工具。

ICL7107是目前广泛应用于数字测量系统是一种集三位半转换器段驱动器、位驱动器于一体的大规模集成电路,主要用于对不同电压的测量和许多工程上的应用,调频接口电路,它采用的是双积分原理完成A/D 转换,全部转换电路用CMOS大规模集成电路设计。

应用了ICL7107芯片数码管显示器等,芯片第一脚是供电,正确电压时DC5V,连接好电源把所需要测量的物品连接在表的两个端口,从而可以在显示器上看到所需要的结果。

在软件设计上,主要编写了实现计数频率的调节和单片机功能的相关程序,最后把软件设计和硬件设计结合到一起,然后进行调试。

本文阐述了硬件设计中具体的硬件结构和功能和软件设计中具体写入的程序还有相应的调试过程。

关键词:ICL7107芯片、数字电压表、数字电流表、小数点的自动切换目录摘要 (3)第一章三位半数字电压表的设计方案 (7)1.1 题目及设计目的 (7)1.2 设计要求 (7)1.3 方案设计 (7)1.4 三位半数字电压表的设计思想 (7)1.5 三位半数字电压表的总原理图及其特点 (8)1.5.1 三位半数字电压表的特点 (8)1.6 ICL7107的介绍 (9)1.6.1 引脚的介绍 (9)1.6.2 ICL7107的性能特点 (11)1.7 电路的基本结构及系统图 (12)1.7.1 基本结构 (12)1.7.2 电路的系统图 (13)第二章数字电压电流表中小数点的自动切换 (14)2.1切换原理 (14)2.2.电压表原理 (16)2.3.电流表原理 (17)第三章 PCB板的设计 (19)3.1 Protel99 SE软件介绍 (19)3.2 绘制原理图并进行分析 (20)3.3 PCB板的设计 (21)第四章电路板的焊接及电路调试过程 (22)4.1 焊接的注意事项 (22)4.2 焊接的过程 (22)4.3调试前准备工作及电路总体调试 (23)4.3.1调试仪器 (23)4.3.2调试方法 (23)4.3.3 测试结果分析 (23)4.3.4 元器件清单 (23)第五章总结 (26)参考文献 (26)绪论随着社会的发展,电子市场越来越多,电子产品也越来越普遍,一些高科技的产品以代替了一些旧的产品。

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim

三位半数字直流电压表设计multisim(最新版)目录1.引言2.三位半数字直流电压表的原理3.multisim 软件的使用4.设计过程5.测试结果6.结论正文1.引言数字电压表是一种常用的电子测量仪器,可以测量直流电压、交流电压、脉冲电压等。

随着科技的发展,数字电压表的设计和制造技术也在不断提高,使得数字电压表的性能和精度得到了极大的提升。

在本文中,我们将介绍一种三位半数字直流电压表的设计方法,该方法使用了multisim 软件进行仿真和设计。

2.三位半数字直流电压表的原理数字电压表的原理是基于模拟电压表和模数转换器的。

模拟电压表可以测量连续变化的模拟电压信号,而模数转换器则可以将模拟电压信号转换为数字电压信号。

数字电压表通常由一个模数转换器和一个数字显示器组成,模数转换器将模拟电压信号转换为数字电压信号,数字显示器则将数字电压信号显示出来。

三位半数字直流电压表是一种精度较高的数字电压表,它可以测量最大电压为±1.5V 的直流电压信号。

它的设计原理是基于三个半电池的电路,通过调整三个半电池的电压来实现对直流电压信号的测量。

3.multisim 软件的使用multisim 软件是一种电子电路仿真软件,它可以用来设计和仿真各种电子电路,包括放大器、滤波器、振荡器等。

在本文中,我们将使用multisim 软件来设计和仿真三位半数字直流电压表。

首先,我们需要在 multisim 软件中创建一个新的项目,然后添加所需的元器件,包括电源、电阻、电容、二极管、三极管等。

接下来,我们需要绘制电路图,并进行电路仿真。

在仿真过程中,我们可以通过观察电路的波形和参数来调整电路的性能和精度。

4.设计过程在设计三位半数字直流电压表时,我们需要考虑以下几个方面:首先,我们需要选择合适的元器件,包括模数转换器、电源、电阻、电容等。

这些元器件的选取应根据电路的性能要求和成本考虑。

其次,我们需要设计电路的拓扑结构,包括放大器、滤波器、模数转换器等。

综合实验三 位直流数字电压表

综合实验三    位直流数字电压表

综合实验三213位直流数字电压表一、实验目的 1、了解双积分式A / D 转换器的工作原理2、熟悉213位A / D 转换器CC14433的性能及其引脚功能3、掌握用CC14433构成直流数字电压表的方法二、实验原理直流数字电压表的核心器件是一个间接型A / D 转换器,它首先将输入的模拟电压信号变换成易于准确测量的时间量,然后在这个时间宽度里用计数器计时,计数结果就是正比于输入模拟电压信号的数字量。

1、V -T 变换型双积分A / D 转换器图3-1是双积分ADC 的控制逻辑框图。

它由积分器(包括运算放大器A 1 和RC 积分网络)、过零比较器A 2,N 位二进制计数器,开关控制电路,门控电路,参考电压V R 与时钟脉冲源CP图3-1 双积分ADC 原理框图转换开始前,先将计数器清零,并通过控制电路使开关 S O 接通,将电容C 充分放电。

由于计数器进位输出Q C =0,控制电路使开关S 接通v i ,模拟电压与积分器接通,同时,门G 被封锁,计数器不工作。

积分器输出v A 线性下降,经零值比较器A 2 获得一方波v C ,打开门G ,计数器开始计数,当输入2n个时钟脉冲后t =T 1,各触发器输出端D n-1~D O 由111…1回到000…0,其进位输出Q C =1,作为定时控制信号,通过控制电路将开关S转换至基准电压源-V R ,积分器向相反方向积分,v A 开始线性上升,计数器重新从0开始计数,直到t =T 2,v A 下降到0,比较器输出的正方波结束,此时计数器中暂存二进制数字就是v i 相对应的二进制数码。

2、213位双积分A / D 转换器CC14433的性能特点 CC14433是CMOS 双积分式213位A / D 转换器,它是将构成数字和模拟电路的约7700多个MOS 晶体管集成在一个硅芯片上,芯片有24只引脚,采用双列直插式,其引脚排列与功能如图18-2所示。

图3-2 CC14433引脚排列引脚功能说明:V AG (1脚):被测电压V X 和基准电压V R 的参考地V R (2脚):外接基准电压(2V 或200mV )输入端V X (3脚):被测电压输入端R 1(4脚)、R 1 /C 1(5脚)、C 1(6脚):外接积分阻容元件端C 1=0.1μf (聚酯薄膜电容器),R 1=470K Ω(2V 量程);R 1=27K Ω(200mV 量程)。

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表 说明书

CJ5135系列三位半直流电压电流数字面板表使用说明书CJ5135系列数显直流电压电流表具有精度高,稳定性好,抗干扰性能优越,显示清晰,工艺精良。

产品外观大方,小巧精致美观,品质优良。

产品特点:产品应用:CJ5135系列数显直流电压电流表,可广泛应用于各种仪器仪表,教学设备,电力电子,工业自动化控制设备,医疗器械,交直流稳压电源,教学设备等作为直流电参数显示部件,提升产品档次,为各类指针式仪表的首选更新换代品。

主要技术参数:(执行标准GB/14913-2002)1. 工作电源:DC 5V±5%单电源 或DC:9V 12V 24V,AC220V可定做2. 工作电流:≤50mA3. 基本量程:±199.9mV或±1.999V4. 输入阻抗:≥1MΩ5. 准确度:±(0.2%读数+2个字)6. 过量程显示:第一位显示"1"或"-1",后三位全不显示7. 工作温度:0-50℃8. 工作湿度:≤85%RH9. 显示字高:LED 0.56"10.外型尺寸:79×42×25(40)(mm)11.开孔尺寸:75×39(mm)12.其他性能:自动归零,自动极性转换.产品连接线说明:仪表接线及开孔尺寸如图所示:CJ5135系列接线图外形及安装尺寸以上接线图仅供参考,请以仪表壳体上的接线图为准温馨提示:本公司其它产品有:液晶显示的温度计,电压/电流面板表,数字调节仪,温控表,智能计数器,时间继电器,频率转速表,JD194系列电量变送器,CD194系列电力仪表,多功能电量测量仪表,DCDC电源模块,公司可根据客户要求定制非标产品.注意事项:1.仪表输入方式根据用户电路不同可分为两种,a:信号地、电源地、模拟地,如三地全部连接在一起就是“共地”,此种情况适用于采用独立工作电源的设备,稳定性好,抗干扰能力强;b:信号地独立,电源地和模拟地相连接,我们称为“浮地”,此情况适用于独立电源、差动放大信号输入设备;用户应根据实际用情况选择合适的输入方式。

智能仪器课程设计

智能仪器课程设计

智能仪器课程设计课程设计名称3位半数字电压表学生姓名、学号谭彩铭(0501170118)指导教师牛国柱2009-1-16课程设计要求设计一3位半直流数字电压表,满足下列要求1、量程为20mV,200mV,2V,20V,200V,测量精度要求0.1%2、3位半数码显示3、工作状态显示4、开机自检5、配简单键盘,如量程切换6、配微型打印机接口由实际操作中遇到的问题找解决方案实际搭建的数字电压表的量程为20mV,200mV,2V和8V,能完成量程的自动切换,并有各种量程状态以及超、欠量程的指示灯显示。

原理图附录一所示。

对应的完整汇编程序见附录三。

1 原理图总体思路由于采用3位半AD转换器TC14433,提供的基准电压为2V,可测电压量程为2V,故大于2V的待测电压衰减后输入,小于2V的待测电压放大后输入。

衰减和放大由51单片机控制控制模拟开关4051,4052来完成。

调试当中,发现若输入电压为负时,比例放大就不准确了,且相差较大,故又用运放和模拟开关搭建了一反相控制电路。

原理图当中,U15为用OP07搭建的电压跟随器,用于增大输入阻抗,减小输出阻抗,以减少对待测电压的影响。

U16为用OP07搭建的一反相器。

U1用于若发现待测电压为负,让待测电压反相后进入后续电路。

U6作用同U15。

U1用于控制是否将待测电压衰减1/4后进入后续电路。

U4和U7用于控制是否对电压进行衰减以及衰减多少。

U17作用同U15。

U2为用MC1403搭建的2V电压源,用于输出较准确的电压源给TC14433作为基准电压。

2 AD转换部分TC14433中,EOC与DU端相连,选择连续工作方式。

EOC与51单片机的中端口0相连,由中断方式采集数据。

中断0采集数据服务子程序如图2所示。

3 升降量程及量程状态指示灯显示程序控制升降量程即控制模拟开关4051和4052,是否对待测电压进行放大或衰减。

如何有效的控制量程的自动转换是一较难点,尤其是保证程序的健壮性。

直流数字电压表设计

直流数字电压表设计
直流数字电压表设 计
3. 数字电压表的测量原理与主要器件性能分析
直流数字电压表的核心器件是一个间接型A / D转换器: 3.1.双积分A/D转换器 1).转换方式 :V-T型间接转换ADC。输入的模拟电压信 号变换成易于准确测量的时间量,然后在这个时间宽度 里用计数器计时,计数结果就是正比于输入模拟电压信 号的数字量。 2).电路结构 :图-1是这种转换器的原理电路,
2021/8/2
2
③计数器和定时器 :由n+1个触发器FF0~FFn-1串联组成n级计数器。 对 输入时钟脉冲CP计数,以便把与输入电压平均值成正比的时间间隔转变 成数字信号输出。当计数到2n个时钟脉冲时,FF0~FFn-1均回到0态, 而FFn翻转到1态,Qn=1后开关 S1从位置A转接到B。 ④时钟脉冲控制门:时钟脉冲源标准周期Tc,作为测量时间间隔的标准时 间。当vC=1时,门打开,时钟脉冲通过门加到触发器FF0的输入端。
①清零:控制电路提供CR信号使计数器清零,同时使开关S1闭合,待积 分电容放电完毕后,再使S1断开。 ②第1积分对被测电压进行定时积分:当t=t0时,开关S1接通对被测电压 VX ,积分器A1对VX正向积分,输出电压 VO上升, 当VO>0时(t= t=t1), 从过零比较器A2翻转,输出由低电平跳到高电平打开闸门起,计数器在 CP作用下从0开始计数,经过预定时间T1= t2-t1(预置数N)以后产生溢出 脉冲,通过逻辑控制电路使开关S1换接基准电压VR,定时积分结束.
④结论:VX= VREFN2/N1
2021/8/2
4
10.CLK1 11.CLK0
时钟
2021/8/2
图-2 MC14433的电路结构图
多路选择开关
锁存器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档