2013年挑战中考数学压轴题预测附(精选中考题训练)
2013年中考数学压轴题精选

2013年中考数学冲刺必备压轴题汇编安徽10.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是( )A .10B .54C . 10或54D .10或172解析:考虑两种情况.要分清从斜边中点向哪个边沿着垂线段过去裁剪的.解答:解:如下图,54)44()22(22=++⨯,1054)44()32(22=++⨯14.如图,P 是矩形ABCD 内的任意一点,连接PA 、PB 、PC 、PD ,得到△PAB 、△PBC 、△PCD 、△PDA ,设它们的面积分别是S 1、S 2、S 3、S 4,给出如下结论: ①S 1+S 2=S 3+S 4 ② S 2+S 4= S 1+ S 3 ③若S 3=2 S 1,则S 4=2 S 2 ④若S 1= S 2,则P 点在矩形的对角线上其中正确的结论的序号是_____________解析:过点P 分别向AD 、BC 作垂线段,两个三角形的面积之和42S S +等于矩形面积的一半,同理,过点P 分别向AB 、CD 作垂线段,两个三角形的面积之和31S S +等于矩形面积的一半. 31S S +=42S S +,又因为21S S =,则32S S +=ABCD S S S 2141=+,所以④一定成立 安徽22.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,△BDG 与四边形ACDG 的周长相等,设BC =a 、AC =b 、AB =c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△BDG 与△DFG 相似,求证:BG ⊥CG . 解(1)∵D 、C 、F 分别是△ABC 三边中点 ∴DE ∥21AB ,DF ∥21AC , 又∵△BDG 与四边形ACDG 周长相等 即BD +DG +BG =AC +CD +DG +AG∴BG =AC +AG ∵BG =AB -AG ∴BG =2AC AB +=2cb +(2)证明:BG =2c b +,FG =BG -BF =2c b +-22bc = ∴FG =DF ,∴∠FDG =∠FGD 又∵DE ∥AB∴∠EDG =∠FGD ∠FDG =∠EDG ∴DG 平分∠EDF (3)在△DFG 中,∠FDG =∠FGD , △DFG 是等腰三角形,∵△BDG 与△DFG 相似,∴△BDG 是等腰三角形,∴∠B =∠BGD ,∴BD =DG , 则CD = BD =DG ,∴B 、CG 、三点共圆, ∴∠BGC =90°,∴BG ⊥CG23.如图,排球运动员站在点O 处练习发球,将球从O 点正上方2m 的A 处发出,把球看成点,其运行的高度y (m )与运行的水平距离x (m )满足关系式y =a (x -6)2+h .已知球网与O 点的水平距离为9m ,高度为2.43m ,球场的边界距O 点的水平距离为18m 。
挑战中考数学压轴题[2013中考版]
![挑战中考数学压轴题[2013中考版]](https://img.taocdn.com/s3/m/6c2d75340912a21614792956.png)
图1
动感体验
请打开几何画板文件名―12 黄冈 25‖,拖动点 C 在 x 轴正半轴上运动,观察左图,可以体验到,EC 与 BF 保持平行,但是∠BFC 在无限远处也不等于 45° .观察右图,可以体验到,∠CBF 保持 45° ,存在 ∠BFC=∠BCE 的时刻.
思路点拨
1.第(3)题是典型的―牛喝水‖问题,当 H 落在线段 EC 上时,BH+EH 最小. 2.第(4)题的解题策略是:先分两种情况画直线 BF,作∠CBF=∠EBC=45° ,或者作 BF//EC.再 用含 m 的式子表示点 F 的坐标.然后根据夹角相等,两边对应成比例列关于 m 的方程.
满分解答
4
b ). 4 (2)如图 2,过点 P 作 PD⊥x 轴,PE⊥y 轴,垂足分别为 D、E,那么△PDB≌△PEC. 因此 PD=PE.设点 P 的坐标为(x, x). 如图 3,联结 OP. 1 b 1 5 所以 S 四边形 PCOB=S△PCO+S△PBO= x b x bx =2b. 2 4 2 8 16 16 16 解得 x .所以点 P 的坐标为( , ). 5 5 5
所以 C、Q、B 三点共线.因此
BO QA ,即 b QA .解得 QA 4 .此时 Q(1,4). b CO OA 1 4
图4
图5
考点伸展
第(3)题的思路是,A、C、O 三点是确定的,B 是 x 轴正半轴上待定的点,而∠QOA 与∠QOC 是 互余的,那么我们自然想到三个三角形都是直角三角形的情况. 这样,先根据△QOA 与△QOC 相似把点 Q 的位置确定下来,再根据两直角边对应成比例确定点 B 的位置. 如图中,圆与直线 x=1 的另一个交点会不会是符合题意的点 Q 呢? 如果符合题意的话,那么点 B 的位置距离点 A 很近,这与 OB=4OC 矛盾.
2013年全国部分地市中考数学压轴题集(含答案)

2013年全国各地中考压轴试题精选代数几何综合1、(2013年潍坊市压轴题)如图,抛物线c bx ax y ++=2关于直线1=x 对称,与坐标轴交于C B A 、、三点,且4=AB ,点⎪⎭⎫ ⎝⎛232,D 在抛物线上,直线是一次函数()02≠-=k kx y 的图象,点O 是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形OBDC 的面积,求k 的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于N M 、两点,问在y 轴正半轴上是否存在一定点P ,使得不论k 取何值,直线PM 与PN 总是关于y 轴对称?若存在,求出P 点坐标;若不存在,请说明理由.答案:(1)因为抛物线关于直线x =1对称,AB =4,所以A (-1,0),B (3,0), 由点D (2,1.5)在抛物线上,所以⎩⎨⎧=++=+-5.1240c b a c b a ,所以3a +3b =1.5,即a +b =0.5,又12=-a b ,即b=-2a,代入上式解得a =-0.5,b =1,从而c =1.5,所以23212++-=x x y . (2)由(1)知23212++-=x x y ,令x =0,得c (0,1.5),所以CD //AB ,令kx -2=1.5,得l 与CD 的交点F (23,27k ),令kx -2=0,得l 与x 轴的交点E (0,2k),根据S 四边形OEFC =S 四边形EBDF 得:OE +CF =DF +BE , 即:,511),272()23(272=-+-=+k k k k k 解得(3)由(1)知,2)1(21232122+--=++-=x x x y 所以把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为221x y -= 假设在y 轴上存在一点P (0,t ),t >0,使直线PM 与PN 关于y 轴对称,过点M 、N 分别向y 轴作垂线MM 1、NN 1,垂足分别为M 1、N 1,因为∠MPO =∠NPO ,所以Rt △MPM 1∽Rt △NPN 1, 所以1111PN PM NN MM =,………………(1) 不妨设M (x M ,y M )在点N (x N ,y N )的左侧,因为P 点在y 轴正半轴上, 则(1)式变为NMN M y t y t x x --=-,又y M =k x M -2, y N =k x N -2, 所以(t +2)(x M +x N )=2k x M x N ,……(2) 把y =kx -2(k ≠0)代入221x y -=中,整理得x 2+2kx -4=0, 所以x M +x N =-2k , x M x N =-4,代入(2)得t =2,符合条件,故在y 轴上存在一点P (0,2),使直线PM 与PN 总是关于y 轴对称.考点:本题是一道与二次函数相关的压轴题,综合考查了考查了二次函数解析式的确定,函数图象交点及图形面积的求法,三角形的相似,函数图象的平移,一元二次方程的解法等知识,难度较大.点评:本题是一道集一元二次方程、二次函数解析式的求法、相似三角形的条件与性质以及质点运动问题、分类讨论思想于一体的综合题,能够较好地考查了同学们灵活应用所学知识,解决实际问题的能力。
2013年中考压轴题预测

12013中考数学压轴题预测(第28题,12分)函数图象中点的存在性问题1.1 因动点产生的相似三角形问题 例1、如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示); (2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q ,使得△QCO 、△QOA 和△QAB 中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.图11.2 因动点产生的等腰三角形问题例1、如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△P AC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图12例2、如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1341.3 因动点产生的直角三角形问题 例1、 如图1,抛物线233384y xx =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求点A 、B 的坐标;(2)设D 为已知抛物线的对称轴上的任意一点,当△ACD 的面积等于△ACB 的面积时,求点D 的坐标;(3)若直线l 过点E (4, 0),M 为直线l 上的动点,当以A 、B 、M 为顶点所作的直角三角形有且只有....三个时,求直线l 的解析式.图11.4 因动点产生的平行四边形问题例1、如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图251.5 因动点产生的梯形问题例1、如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点的直Array线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移的过程中与△COD重叠部分的面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.671.6 因动点产生的面积问题 例 1、如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.图18。
2013年中考数学压轴题专项练习

2013年中考数学压轴题专项练习1,观察下列一组等式: 11×2=1-12,12×3=12-13,13×4=13-14,….解答下列问题:将以上三个等式两边分别相加得: 11×2+12×3+13×4=1-12+12-13+13-14.(1)对于任意的正整数n:1n(n+1)=.【证】(2)计算: 11×2+12×3+13×4+…+12011×2012=.【解】(3)已知m为正整数化简: 11×3+13×5+15×7+…+1(2m-1)(2m+1)=.2、在△ABC中,AB=AC,D是线段BC的延长线上一点,以AD为一边在AD的右侧..作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图1,点D在线段BC的延长线上移动,若∠BAC=30°,则∠DCE=.(2)设∠BAC=α,∠DCE=β:①如图1,当点D在线段BC的延长线上移动时,α与β之间有何的数量关系?请说明理由;②当点D在直线BC上(不与B、C重合)移动时,α与β之间有何的数量关系?请直接写出你的结论.AB C D EB C B CA A备用图备用图3、某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的售价和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图甲),一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图乙).根据图象提供的信息解答下面问题:(1)一件商品在3月份出售时的利润是多少元?(利润=售价-成本)(2)求出图(乙)中表示的一件商品的成本Q(元)与时间t(月)之间的函数关系式;(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30000件,请你计算该公司在一个月内最少获利多少元?4、阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离;即,也就是说,|x|表示在数轴上数x与数0对应点之间的距离;这个结论可以推广为表示在数轴上,对应点之间的距离;例1:解方程,容易看出,在数轴下与原点距离为2点的对应数为±2,即该方程的解为x=±2例2:解不等式▏x-1▏>2,如图,在数轴上找出▏x-1▏=2的解,即到1的距离为2的点对应的数为-1、3,则▏x-1▏>2的解为x<-1或x>3例3:解方程。
2013中考数学压轴题(含答案)

1、如图12,已知直线12y x =与双曲线(0)k y k x =>交于A B ,两点,且点A 的横坐标为4. (1)求k 的值;(2)若双曲线(0)ky k x =>上一点C 的纵坐标为8,求A O C △的面积;(3)过原点O 的另一条直线l 交双曲线(0)ky k x =>于P Q ,两点(P 点在第一象限),若由点A B P Q ,,,为顶点组成的四边形面积为24,求点P 的坐标.解:(1)∵点A 横坐标为4 , ∴当 x = 4时,y = 2 .∴ 点A 的坐标为( 4,2 ).∵ 点A 是直线 与双曲线 (k>0)的交点 , ∴ k = 4 ×2 = 8 .(2) 解法一:如图12-1,∵ 点C 在双曲线上,y = 8时,x = 1∴ 点C 的坐标为 ( 1, 8 ) .过点A 、C 分别做x 轴、y 轴的垂线,垂足为M 、N ,得矩形DMON .S 矩形ONDM = 32 , S △ONC = 4 , S △CDA = 9, S △OAM = 4 .S △AOC = S 矩形ONDM - S △ONC - S △CDA - S △OAM = 32 - 4 - 9 - 4 = 15 .解法二:如图12-2,过点 C 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点C 在双曲线8y x =上,当y = 8时,x = 1 .∴ 点C 的坐标为 ( 1, 8 ).图12O x A y B x y 21x y 8=∵ 点C 、A 都在双曲线8y x =上 ,∴ S △COE = S △AOF = 4 。
∴ S △COE + S 梯形CEFA = S △COA + S △AOF .∴ S △COA = S 梯形CEFA .∵ S 梯形CEFA = 12×(2+8)×3 = 15 ,∴ S △COA = 15 .(3)∵ 反比例函数图象是关于原点O 的中心对称图形 ,∴ OP=OQ ,OA=OB .∴ 四边形APBQ 是平行四边形 .∴ S △POA = S 平行四边形APBQ = ×24 = 6 .设点P 的横坐标为m (m > 0且4m ≠),得P ( m , ) .过点P 、A 分别做x 轴的垂线,垂足为E 、F ,∵ 点P 、A 在双曲线上,∴S △POE = S △AOF = 4 .若0<m <4,如图12-3,∵ S △POE + S 梯形PEFA = S △POA + S △AOF ,∴ S 梯形PEFA = S △POA = 6 .∴ 18(2)(4)62m m +⋅-=.4141m8解得m = 2,m = - 8(舍去) .∴ P (2,4).若 m > 4,如图12-4,∵ S △AOF + S 梯形AFEP = S △AOP + S △POE ,∴ S 梯形PEFA = S △POA = 6 .∴18(2)(4)62m m +⋅-=,解得m = 8,m = - 2 (舍去) .∴ P (8,1).∴ 点P 的坐标是P (2,4)或P (8,1).2、如图,抛物线212y x mx n =++交x 轴于A 、B 两点,交y 轴于点C ,点P 是它的顶点,点A的横坐标是-3,点B 的横坐标是1.(1)求m 、n 的值;(2)求直线PC 的解析式;(3)请探究以点A 为圆心、直径为5的圆与直线 PC 的位置关系,并说明理由.(参考数:2 1.41≈,3 1.73≈,5 2.24≈) 解: (1)由已知条件可知: 抛物线212y x mx n =++经过A (-3,0)、B (1,0)两点. ∴ 903,210.2m n m n ⎧=-+⎪⎪⎨⎪=++⎪⎩ ……………………………………2分解得 31,2m n ==-. ………………………3分 (2) ∵21322yx x =+-, ∴ P (-1,-2),C 3(0,)2-. …………………4分设直线PC 的解析式是y kx b =+,则2,3.2k b b -=-+⎧⎪⎨=-⎪⎩ 解得13,22k b ==-. ∴ 直线PC 的解析式是1322yx =-. …………………………6分 说明:只要求对1322k b ==-,,不写最后一步,不扣分.(3) 如图,过点A 作AE ⊥PC ,垂足为E .设直线PC 与x 轴交于点D ,则点D 的坐标为(3,0). ………………………7分 在Rt△O CD 中,∵ O C =32,3O D =, ∴ 2233()3522C D =+=. …………8分∵ O A =3,3O D =,∴AD =6. (9)分 ∵ ∠C O D =∠AED =90o ,∠CD O 公用,∴ △C O D ∽△AED . ……………10分 ∴ OCC D AEAD =, 即335226AE =. ∴ 655AE =. …………………11分 ∵ 65 2.688 2.55> ,∴ 以点A 为圆心、直径为5的圆与直线PC 相离. …………12分。
中考数学压轴题100题精选(21-30题)2013

中考数学压轴题100题精选(21-30题)(答案在本人文辑中寻找)【021】如图,点P 是双曲线11(00)k y k x x=<<,上一动点,过点P 作x 轴、y 轴的垂线,分别交x 轴、y 轴于A 、B 两点,交双曲线y =xk 2(0<k 2<|k 1|)于E 、F 两点. (1)图1中,四边形PEOF 的面积S 1= ▲ (用含k 1、k 2的式子表示); (2)图2中,设P 点坐标为(-4,3).①判断EF 与AB 的位置关系,并证明你的结论;②记2PEF OEF S S S ∆∆=-,S 2是否有最小值?若有,求出其最小值;若没有,请说明理由。
【022】一开口向上的抛物线与x 轴交于A (m -2,0),B (m +2,0)两点,记抛物线顶点为C ,且AC ⊥BC .(1)若m 为常数,求抛物线的解析式;(2)若m 为小于0的常数,那么(1)中的抛物线经过怎么样的平移可以使顶点在坐标原点?(3)设抛物线交y 轴正半轴于D 点,问是否存在实数m ,使得△BCD 为等腰三角形?若存在,求出m 的值;若不存在,请说明理由.【023】如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式;(3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.【024】如图,已知ABC ∆为直角三角形,90ACB ∠=︒,AC BC =,点A 、C 在x 轴上,点B 坐标为(3,m )(0m >),线段AB 与y 轴相交于点D ,以P (1,0)为顶点的抛物线过点B 、D . (1)求点A 的坐标(用m 表示); (2)求抛物线的解析式;(3)设点Q 为抛物线上点P 至点B 之间的一动点,连结PQ 并延长交BC 于点E ,连结 BQ 并延长交AC 于点F ,试证明:()FC AC EC +为定值.ADCB P MQ60°【025】如图12,直线4+-=x y 与两坐标轴分别相交于A 、B 点,点M 是线段AB 上任意一点(A 、B 两点除外),过M 分别作MC ⊥OA 于点C ,MD ⊥OB 于D .(1)当点M 在AB 上运动时,你认为四边形OCMD 的周长是否发生变化?并说明理由; (2)当点M 运动到什么位置时,四边形OCMD 的面积有最大值?最大值是多少?(3)当四边形OCMD 为正方形时,将四边形OCMD 沿着x 轴的正方向移动,设平移的距离为)40<<a a (,正方形OCMD 与△AOB 重叠部分的面积为S .试求S 与a 的函数关系式并画出该函数的图象.图12(1)图12(2)图12(3)【026】如图11,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3(1)延长HF交AB于G,求△AHG的面积.(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图12).探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.【027】阅读材料:如图12-1,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高(h )”.我们可得出一种计算三角形面积的新方法:ah S ABC 21=∆,即三角形面积等于水平宽与铅垂高乘积的一半. 解答下列问题:如图12-2,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B . (1)求抛物线和直线AB 的解析式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结PA ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆; (3)是否存在一点P ,使S △PAB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.图12-2xC Oy ABD 1 1【028】如图,已知抛物线与x 交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
2013年中考数学压轴题 2-含答案

1.如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由.解:(1)由题意,可设抛物线的解析式为y =a (x -2)2+1.∵抛物线经过原点,∴a (0-2)2+1=0,∴a =-41. ∴抛物线的解析式为y =-41(x -2)2+1=-41x 2+x . ························· 3分 (2)△AOB 和所求△MOB 同底不等高,若S △MOB =3S △AOB ,则△MOB 的高是△AOB 高的3倍,即M 点的纵坐标是-3. ············································································· 5分∴-41x 2+x =-3,整理得x 2-4x -12=0,解得x 1=6,x 2=-2. ∴满足条件的点有两个:M 1(6,-3),M 2(-2,-3) ····························· 7分(3)不存在. ········································································································ 8分理由如下:由抛物线的对称性,知AO =AB ,∠AOB =∠ABO .若△OBN ∽△OAB ,则∠BON =∠BOA =∠BNO .设ON 交抛物线的对称轴于A ′ 点,则A ′ (2,-1).∴直线ON 的解析式为y =-21x .由21x =-41x 2+x ,得x 1=0,x 2=6. ∴N (6,-3).过点N 作NC ⊥x 轴于C .在Rt △BCN 中,BC =6-4=2,NC =3∴NB =2232+=13.∵OB =4,∴NB ≠OB ,∴∠BON ≠∠BNO ,∴△OBN 与△OAB 不相似. 同理,在对称轴左边的抛物线上也不存在符合条件的N 点.∴在x 轴下方的抛物线上不存在点N ,使△OBN 与△OAB 相似. ····· 10分2.如图,在直角坐标系中,点A 的坐标为(-2,0),连结OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB .(1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.(1)如图1,过点B 作BM ⊥x 轴于M .由旋转性质知OB =OA =2.∵∠AOB =120°,∴∠BOM =60°.∴OM =OB ·cos60°=2×21=1,BM =OB ·sin60°=2×23=3. ∴点B 的坐标为(1,3). ··········································· 1分(2)设经过A 、O 、B 三点的抛物线的解析式为y =ax 2+bx +c∵抛物线过原点,∴c =0. ∴⎪⎩⎪⎨⎧=+=-3024b a b a 解得⎪⎪⎩⎪⎪⎨⎧==33233b a ∴所求抛物线的解析式为y =33x 2+332x . ······································ 3分 (3)存在. ·········································································································· 4分如图2,连接AB ,交抛物线的对称轴于点C ,连接OC .∵OB 的长为定值,∴要使△BOC 的周长最小,必须BC +OC 的长最小. ∵点A 与点O 关于抛物线的对称轴对称,∴OC =AC .∴BC +OC =BC +AC =AB .由“两点之间,线段最短”的原理可知:此时BC +OC 最小,点C 的位置即为所求.设直线AB 的解析式为y =kx +m ,将A (-2,0),B (1,3)代入,得⎪⎩⎪⎨⎧=+=+-302m k m k 解得⎪⎪⎩⎪⎪⎨⎧==33233m k∴直线AB 的解析式为y =33x +332. 抛物线的对称轴为直线x =332332⨯-=-1,即x =-1. 将x =-1代入直线AB 的解析式,得y =33×(-1)+332=33. ∴点C 的坐标为(-1,33). ································································· 6分 (4)△PAB 有最大面积. ·················································································· 7分如图3,过点P 作y 轴的平行线交AB 于点D .∵S △PAB =S △PAD +S △PBD=21(y D -y P )(x B -x A ) =21[(33x +332)-(33x 2+332x )](1+2) =-23x 2-23x +3 =-23(x +21)2+839 ∴当x =-21时,△PAB 的面积有最大值,最大值为839.··············· 8分 此时y P =33×(-21)2+332×(-21)=-43. ∴此时P 点的坐标为(-21,-43). ···················································· 9分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年挑战中考数学压轴题预测+精选中考题训练2013中考数学压轴题练习1.如图,在平面直角坐标系中,O 为坐标原点,P 是反比例函数y =x6(x >0)图象上的任意一点,以P 为圆心, PO 为半径的圆与x 、y 轴分别交于点A 、B .(1)判断P 是否在线段AB 上,并说明理由;(2)求△AOB 的面积;(3)Q 是反比例函数y =x6(x >0)图象上异于点P 的另一点,请以Q 为圆心,QO 半径画圆与x 、y 轴分别交于点M 、N ,连接AN 、MB .求证:AN ∥MB .2.如图,在Rt △ABC 中,∠B =90°,AB =1,BC =21,以点C 为圆心,CB 为半径的弧交CA 于点D ;以点A 为圆心,AD 为半径的弧交AB 于点E . (1)求AE 的长度;(2)分别以点A 、E 为圆心,AB 长为半径画弧,两弧交于点F (F 与C 在AB 两侧),连接AF 、EF ,设EF 交弧DE 所在的圆于点G , 连接AG ,试猜想∠EAG 的大小,并说明理由.3.如图,有一张长为5宽为3的矩形纸片ABCD ,要通过适当的剪拼,得到一个与之面积相等的正方形.(I )该正方形的边长为15(结果保留根号):(II )现要求只能用两条裁剪线,请你设计一种裁剪的方法,在图中画出裁剪线,并简要说明剪拼的过程: 如图,(1)以BM =4为直径作半圆,在半圆上取一点N ,使MN =1,连接BN ,由勾股定理,得BN =15;(2)以A 为圆心,BN 长为半径画弧,交CD 于K 点,连接AK , (3)过B 点作BE ⊥AK ,垂足为E ,(4)平移△ABE ,△ADK ,得到四边形BEFG 即为所求.y x QPABO.4.如图①,小慧同学把一个正三角形纸片(即△OAB)放在直线l1上,OA边与直线l1重合,然后将三角形纸片绕着顶点A按顺时针方向旋转120°,此时点O运动到了点O1处,点B运动到了点B1处;小慧又将三角形纸片AO1B1绕点B1按顺时针方向旋转120°,此时点A运动到了点A1处,点O1运动到了点O2处(即顶点O经过上述两次旋转到达O2处).小慧还发现:三角形纸片在上述两次旋转的过程中,顶点O运动所形成的图形是两段圆弧,即1 O O和12O O,顶点O所经过的路程是这两段圆弧的长度之和,并且这两段圆弧与直线l1围成的图形面积等于扇形AOO1的面积、△AO1B1的面积和扇形B1O1O2的面积之和.小慧进行类比研究:如图②,她把边长为1的正方形纸片OABC放在直线l2上,OA边与直线l2重合,然后将正方形纸片绕着顶点^按顺时针方向旋转90°,此时点O运动到了点O1处(即点B处),点C运动到了点C1处,点B运动到了点B1处;小慧又将正方形纸片AO1C1B1绕顶点B1按顺时针方向旋转90°,……,按上述方法经过若干次旋转后.她提出了如下问题:问题①:若正方形纸片OABC接上述方法经过3次旋转,求顶点O经过的路程,并求顶点O在此运动过程中所形成的图形与直线l2围成图形的面积;若正方形纸片OA BC按上述方法经过5次旋转,求顶点O经过的路程;问题②:正方形纸片OABC按上述方法经过多少次旋转,顶点O经过的路程是412022π+?请你解答上述两个问题.5.阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆错误!未找到引用源。
的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.6.如图①,P为△ABC内一点,连接PA、PB、PC,在△PAB、△PBC和△PAC中,如果存在一个三角形与△ABC 相似,那么就称P为△ABC的自相似点.(1)如图②,已知R t△ABC中,∠ACB=90°,∠ABC>∠A,CD是AB上的中线,过点B作BE丄CD,垂足为E.试说明E是△ABC的自相似点;(2)在△ABC中,∠A<∠B<∠C.①如图③,利用尺规作出△ABC的自相似点P(写出作法并保留作图痕迹);②若△ABC的内心P是该三角形的自相似点,求该三角形三个内角的度数.7.如图,等腰梯形MNPQ的上底长为2,腰长为3,一个底角为60°.正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD在梯形的外面沿边MN、NP、PQ进行翻滚,翻滚到有一个顶点与Q重合即停止滚动.(1)请在所给的图中,用尺规画出点A在正方形整个翻滚过程中所经过的路线图;(2)求正方形在整个翻滚过程中点A所经过的路线与梯形MNPQ的三边MN、NP、PQ所围成图形的面积S.GF E D C BA8.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长;(3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长。
9.数学课上,张老师出示了问题:[来源:学科网ZXXK](1)经过思考,小明认为可以通过添加辅助线——过点O 作OM ⊥BC ,垂足为M 求解.你认为这个想法可行吗?请写出问题1的答案及相应的推导过程;(2)如果将问题1中的条件“四边形ABCD 是正方形,BC =1”改为“四边形ABCD 是平行四边形,BC =3,CD =2,”其余条件不变(如图25-2),请直接写出条件改变后的函数解析式; (3)如果将问题1中的条件“四边形ABCD 是正方形,BC =1”进一步改为:“四边形ABCD 是梯形,AD ∥BC ,B C a =,C D b =,A D c =(其中a ,b ,c 为常量)”其余条件不变(如图25-3),请你写出条件再次改变后y 关于x 的函数解析式以及相应的推导过程.如图25-1,四边形ABCD 是正方形, BC =1,对角线交点记作O ,点E 是边BC 延长线上一点.联结OE 交CD 边于F ,设C E x =,CF y =,求y 关于x 的函数解析式及其定义域.FOBDACE 图4-1题图F OBA CDE图4-2 FOBCAD E图4-310.如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP . (1)如图②,若M 为AD 边的中点, ①,△AEM 的周长=_____cm ; ②求证:EP=AE+DP ;(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.11.如图1,⊙O 中AB 是直径,C 是⊙O 上一点,∠ABC =45°,等腰直角三角形DCE 中∠DCE 是直角,点D 在线段AC 上.(1)证明:B 、C 、E 三点共线;(2)若M 是线段BE 的中点,N 是线段AD 的中点,证明:MN =2OM ;(3)将△DCE 绕点C 逆时针旋转α(00<α<900)后,记为△D 1CE 1(图2),若M 1是线段BE 1的中点,N 1是线段AD 1的中点,M 1N 1=2OM 1是否成立?若成立,请证明;若不成立,说明理由.12.如图,正方形ABCD 的四个顶点分别在四条平行线1l 、2l 、3l 、4l 上,这四条直线中相邻两条之间的距离依次为1h 、2h 、3h (1h >0,2h >0,3h >0). (1)求证:1h =3h ;(2)设正方形ABCD 的面积为S ,求证:S=21221)(h h h ++; (3)若12321=+h h ,当1h 变化时,说明正方形ABCD 的面积S 随1h 的变化情况.13.已知,矩形ABC D 中,4AB cm =,8BC cm =,A C 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、C E .求证四边形A F C E 为菱形,并求AF 的长;(2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和C D E ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.14.数学课上,李老师出示了这样一道题目:如图1,正方形ABC D 的边长为12,P 为边B C 延长线上的一点,E 为D P 的中点,D P 的垂直平分线交边D C 于M ,交边AB 的延长线于N .当6C P =时,EM 与E N 的比值是多少?经过思考,小明展示了一种正确的解题思路:过E 作直线平行于B C 交D C ,AB 分别于F ,G ,如图2,则可得:D F DEF CE P=,因为DE EP =,所以D F FC =.可求出EF 和E G 的值,进而可求得EM 与E N 的比值.(1) 请按照小明的思路写出求解过程.(2) 小东又对此题作了进一步探究,得出了D P M N =的结论.你认为小东的这个结论正确吗?l 1l 2 l 3l 4h 1h 2 h 3ABCDABC DEF图3-1 O图3-2 ABCD E FPQ 备用图ABCDE FPQ如果正确,请给予证明;如果不正确,请说明理由.15.如图,AB 是半圆O 的直径,AB =2.射线AM 、BN 为半圆的切线.在AM 上取一点D ,连接BD 交半圆于点C ,连接AC .过O 点作BC 的垂线OE ,垂足为点E ,与BN 相交于点F .过D 点做半圆的切线DP ,切点为P ,与BN 相交于点Q . (1)求证:△ABC ∽ΔOFB ;(2)当ΔABD 与△BFO 的面积相等时,求BQ 的长; (3)求证:当D 在AM 上移动时(A 点除外),点Q 始终是线段BF的中点.16.某数学兴趣小组开展了一次活动,过程如下:设∠BAC =θ(0°<θ<90°).现把小棒依次摆放在两射线AB ,AC 之间,并使小棒两端分别落在两射线上. (第4题)活动一:如图甲所示,从点A 1开始,依次向右摆放小棒,使小棒与小棒在两端点处互相垂直,A 1A 2为第1根小棒.数学思考:(1)小棒能无限摆下去吗?答: .(填“能”或“不能”) (2)设AA 1=A 1A 2=A 2A 3=1. ①θ= 度;②若记小棒A 2n-1A 2n 的长度为a n (n 为正整数,如A 1A 2=a 1,A 3A 4=a 2,),求此时a 2,a 3的值,并直接写出a n (用含n 的式子表示).图甲活动二:如图乙所示,从点A 1开始,用等长的小棒依次向右摆放,其中A 1A 2为第1根小棒,且A 1A 2= AA 1. 数学思考:(3)若已经向右摆放了3根小棒,则1θ= ,2θ= ,3θ= ;(用含θ的式子表示) (4)若只能..摆放4根小棒,求θ的范围.图乙17.数学课上,李老师出示了如下框中的题目.在等边三角形ABC 中,点E 在AB 上,点D 在CB 的延长线上,且ED=EC ,如图.试确定线段AE 与DB 的大小关系,并说明理由.EABCD小敏与同桌小聪讨论后,进行了如下解答: (1)特殊情况,探索结论当点E 为AB 的中点时,如图1,确定线段AE 与D B 的大小关系,请你直接写出结论:AE D B (填“>”,“<”或“=”). EA BCDEA BCD(2)特例启发,解答题目解:题目中,AE 与D B 的大小关系是:AE D B (填“>”,“<”或“=”).理由如下:如图2,过点E 作//E F B C ,交A C 于点F . (请你完成以下解答过程) (3)拓展结论,设计新题在等边三角形ABC 中,点E 在直线AB 上,点D 在直线B C 上,且E D E C =.若A B C ∆的边长为1,2A E =,求C D 的长(请你直接写出结果).18.已知:二次函数y =x 2+bx -3的图像经过点P (-2,5). (1)求b 的值,并写出当1<x ≤3时y 的取值范围;(2)设点P 1(m ,y 1)、P 2(m +1,y 2)、P 3(m +2,y 3)在这个二次函数的图像上. ①当m =4时,y 1、y 2、y 3能否作为同一个三角形的三边的长?请说明理由;②当m 取不小于5的任意实数时,y 1、y 2、y 3一定能作为同一个三角形三边的长,请说明理由.19.已知抛物线:y=x²-2x +m-1 与x 轴只有一个交点,且与y 轴交于A 点, 如图,设它的顶点为B(1)求m 的值;(2)过A 作x 轴的平行线,交抛物线于点C ,求证是△ABC 是等腰直角三角形;yxCEA O BF第2题图1 第2题图2(3)将此抛物线向下平移4个单位后,得到抛物线C',且与x 轴的左半轴交于E 点,与y 轴交于F 点,如图.请在抛物线C'上求点P ,使得△EFP 是以EF 为直角边的直角三角形.20.如图(1),矩形ABCD 的一边BC 在直角坐标系中x 轴上,折叠边AD,使点D 落在x 轴上点F 处,折痕为AE ,已知AB=8,AD=10,并设点B 坐标为(m,0),其中m >0.(1)求点E 、F 的坐标(用含m 的式子表示);(2)连接OA ,若△OAF 是等腰三角形,求m 的值;(3)如图(2),设抛物线y=a(x -m -6)2+h 经过A 、E 两点,其顶点为M ,连接AM ,若∠OAM=90°,求a 、h 、m 的值.2013挑战中考数学压轴题 (精选中考题训练)第一部分 函数图象中点的存在性问题1.1 因动点产生的相似三角形问题例1 2012年苏州市中考第29题如图1,已知抛物线211(1)444b y x b x =-++(b 是实数且b >2)与x 轴的正半轴分别交于点A 、B (点A 位于点B 是左侧),与y 轴的正半轴交于点C .(1)点B 的坐标为______,点C 的坐标为__________(用含b 的代数式表示);(2)请你探索在第一象限内是否存在点P ,使得四边形PCOB 的面积等于2b ,且△PBC 是以点P 为直角顶点的等腰直角三角形?如果存在,求出点P 的坐标;如果不存在,请说明理由;(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO、△QOA和△QAB中的任意两个三角形均相似(全等可看作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.图11.2 因动点产生的等腰三角形问题例1 2012年扬州市中考第27题如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1例2 2012年临沂市中考第26题如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图11.3 因动点产生的直角三角形问题1.3 因动点产生的直角三角形问题例1 2012年广州市中考第24题如图1,抛物线233384y x x =--+与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 、B 的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有.且只有...三个时,求直线l的解析式.图11.4 因动点产生的平行四边形问题如图1,在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△MAB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.图1 图21.5 因动点产生的梯形问题例2 2012年衢州市中考第24题如图1,把两个全等的Rt△AOB和Rt△COD方别置于平面直角坐标系中,使直角边OB、OD在x 轴上.已知点A(1,2),过A、C两点的直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 为等腰梯形?若存在,求出此时点P 的坐标;若不存在,请说明理由;(3)若△AOB 沿AC 方向平移(点A 始终在线段AC 上,且不与点C 重合),△AOB 在平移的过程中与△COD 重叠部分的面积记为S .试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.1.6 因动点产生的面积问题例 2 2012年河南省中考第23题如图1,在平面直角坐标系中,直线112y x =+与抛物线y =ax 2+bx -3交于A 、B 两点,点A 在x轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .(1)求a 、b 及sin ∠ACP 的值;(2)设点P 的横坐标为m .①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m的值;若不存在,请说明理由.图11.7因动点产生的相切问题例1 2012年河北省中考第25题如图1,A(-5,0),B(-3,0),点C在y轴的正半轴上,∠CBO=45°,CD//AB,∠CDA=90°.点P从点Q(4,0)出发,沿x轴向左以每秒1个单位长的速度运动,运动时间为t秒.(1)求点C的坐标;(2)当∠BCP=15°时,求t的值;(3)以点P为圆心,PC为半径的⊙P随点P的运动而变化,当⊙P与四边形ABCD的边(或边所在的直线)相切时,求t的值.图11.8因动点产生的线段和差问题例2 2012年山西省中考第26题如图1,在平面直角坐标系中,抛物线y=-x2+2x+3与x轴交于A、B两点,与y轴交于点C,点D是抛物线的顶点.(1)求直线AC的解析式及B、D两点的坐标;(2)点P是x轴上的一个动点,过P作直线l//AC交抛物线于点Q.试探究:随着点P的运动,在抛物线上是否存在点Q,使以A、P、Q、C为顶点的四边形是平行四边形?若存在,请直接写出符合条件的点Q的坐标;若不存在,请说明理由;(3)请在直线AC上找一点M,使△BDM的周长最小,求出点M的坐标.图1第二部分 图形运动中的函数关系问题2.1 由比例线段产生的函数关系问题例3 2011年上海市中考第25题在Rt △ABC 中,∠ACB =90°,BC =30,AB =50.点P 是AB 边上任意一点,直线PE ⊥AB ,与边AC 或BC 相交于E .点M 在线段AP 上,点N 在线段BP 上,EM =EN ,12sin 13E M P ∠=.(1)如图1,当点E 与点C 重合时,求CM 的长;(2)如图2,当点E 在边AC 上时,点E 不与点A 、C 重合,设AP =x ,BN =y ,求y 关于x 的函数关系式,并写出函数的定义域;(3)若△AME ∽△ENB (△AME 的顶点A 、M 、E 分别与△ENB 的顶点E 、N 、B 对应),求AP 的长.图1 图2 备用图2.2 由面积公式产生的函数关系问题例1 2012年广东省中考第22题如图1,抛物线213922y x x =--与x 轴交于A 、B 两点,与y 轴交于点C ,联结BC 、AC .(1)求AB 和OC 的长;(2)点E 从点A 出发,沿x 轴向点B 运动(点E 与点A 、B 不重合),过点E 作BC 的平行线交AC 于点D .设AE 的长为m ,△ADE 的面积为s ,求s 关于m 的函数关系式,并写出自变量m 的取值范围;(3)在(2)的条件下,联结CE ,求△CDE 面积的最大值;此时,求出以点E 为圆心,与BC 相切的圆的面积(结果保留π).图1例4 2011年山西省中考第26题如图1,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点,点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O—C—B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(t>0),△MPQ的面积为S.(1)点C的坐标为____________,直线l的解析式为____________;(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大?最大值是多少?图1。