三角函数的周期性12
三角函数的周期性及性质

三角函数的周期性及性质三角函数是数学中重要的一类函数,包括正弦函数、余弦函数和正切函数等。
它们具有周期性的特点,这是三角函数的一个重要性质。
本文将探讨三角函数的周期性及其相关性质。
一、正弦函数的周期性正弦函数是三角函数中最常见的一种函数。
它的图像是一条波浪线,具有周期性的特点。
正弦函数的周期是2π,也就是说,当自变量增加2π时,函数值会重复。
这是因为正弦函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的纵坐标值。
正弦函数的周期性可以用数学公式来表示,即sin(x + 2π) = sin(x)。
这个公式表明,在自变量增加2π的情况下,正弦函数的值保持不变。
这是正弦函数周期性的数学表达。
二、余弦函数的周期性余弦函数也是一种常见的三角函数。
它的图像是一条波浪线,与正弦函数的图像非常相似。
余弦函数的周期也是2π,与正弦函数相同。
这是因为余弦函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的横坐标值。
余弦函数的周期性可以用数学公式来表示,即cos(x + 2π) = cos(x)。
这个公式表明,在自变量增加2π的情况下,余弦函数的值保持不变。
这是余弦函数周期性的数学表达。
三、正切函数的周期性正切函数是三角函数中另一种重要的函数。
它的图像是一条无限延伸的直线,具有周期性的特点。
正切函数的周期是π,也就是说,当自变量增加π时,函数值会重复。
这是因为正切函数的图像是在坐标系中以原点为中心的一个圆的边界上的点的纵坐标值与横坐标值的比值。
正切函数的周期性可以用数学公式来表示,即tan(x + π) = tan(x)。
这个公式表明,在自变量增加π的情况下,正切函数的值保持不变。
这是正切函数周期性的数学表达。
四、三角函数的性质除了周期性外,三角函数还具有其他一些重要的性质。
其中一个是奇偶性。
正弦函数是奇函数,即sin(-x) = -sin(x),而余弦函数是偶函数,即cos(-x) = cos(x)。
这意味着正弦函数的图像关于y轴对称,而余弦函数的图像关于x轴对称。
三角函数的定义和性质

三角函数与复数的基本关系:复数可以表示为三角函数的形式,即z=r(cosθ+i sinθ)。
三角函数在复平面上的表示:复平面上,三角函数可以表示为点或向量,其模长和幅角分别对应于实部和虚部。
三角函数与复数在交流电中的应用:交流电的电压和电流可以用三角函数表示,而复数则可以更方便地描述正弦波的幅度和频率。
04
三角函数的扩展知识
反三角函数
添加标题
添加标题
添加标题
添加标题
性质:反三角函数具有连续性、单调性、奇偶性和周期性等性质。
定义:反三角函数是三角函数的反函数,表示为arcsin、arccos和arctan等。
图像:反三角函数的图像与三角函数图像关系密切,可以通过三角函数图像得出反三角函数图像。
应用:反三角函数在数学、物理和工程等领域有广泛应用,例如求解三角形、解决极值问题等。
三角恒等式和不等式
三角恒等式:表示三角函数之间关系的等式,如正弦、余弦、正切等函数之间的相互转化。
三角不等式:表示三角函数值大小关系的不等式,用于比较三角函数值的大小或证明不等关系。
三角恒等变换:通过三角函数的和差、倍角、半角等公式,进行恒等变换,简化表达式或证明等式。
三角不等式的证明方法:利用三角函数的性质和几何意义等方法,证明三角不等式的关系。
三角函数与复数在信号处理中的应用:信号处理中,信号常常被表示为复数形式的三角函数,这使得信号的合成、分析和滤波变得更加方便。
汇报人:XX
感谢观看
周期性:三角函数具有明显的周期性,图像呈现规律性的重复。
奇偶性:三角函数具有奇偶性,可以根据函数值的正负判断其奇偶性。
最大值和最小值:三角函数具有最大值和最小值,可以通过函数的极值点判断其最大值和最小值。
三角函数的周期性

.
4
正弦函数的周期性
2. y=sin(ωx) 的最小正周期
设ω>0,y =sin(ωx)的最小正周期设为L . 按定义 y = sin ω(x+L) = sin(ωx+ ωL) = sin ωx . 令ωx = x' 则有 sin (x' + ωL) = sin x' 因为sinx最小正周期是2π,所以有
都是
2π
而对复合函数 f (sinx)的周期性,由具体问题确定.
.
7
复合函数的周期性
1. 复合函数 f(sinx) 的周期性
【例题】 研究以下函数的周期性:
(1) 2 sinx ; (2) sin x
【解答】 (1)
2 sinx 的定义域为R,值域为
1 2
,
2
,作图可知,
它是最小正周期为2π的周期函数.
如 y sin3x π 的最小周期与 y = sin(3x)相同,都是 2 π
2
3
于是,余弦函数 ycox ssinπxsin xπ的最小正周期与
2 2
sinx的最小正周期相同,都是2π.
.
6
三角函数的单调性
二、复合函数的周期性
将正弦函数 y = sin x 进行周期变换x→ ωx,sinx →sinωx
后者周期变为 2π ( 0)
而在以下的各种变换中,如
(1)初相变换 sin ωx → sin( ωx+φ);
(2)振幅变换 sin( ωx +φ) → Asin( ωx+φ);
(3)纵移变换 Asin( ωx +φ) → Asin( ωx+φ)+m;
三角函数的周期性与变化规律

三角函数的周期性与变化规律三角函数是高等数学中的重要知识点之一,它们具有独特的周期性和变化规律。
在本文中,我将详细介绍三角函数的周期性及其相关的变化规律,并对其应用进行一些实际案例分析。
一、三角函数的周期性-----------------------三角函数包括正弦函数、余弦函数和正切函数,它们都具有周期性。
正弦函数的周期为2π,即在每个2π的区间内,函数的值将重复。
这是因为正弦函数的定义是在单位圆上,随着自变量的增长,对应的函数值会不断重复。
余弦函数也具有相同的周期,即在每个2π的区间内,函数的值会周期性地重复。
与正弦函数不同的是,余弦函数在自变量增长时,对应的函数值与正弦函数有90°(或π/2)的相位差。
正切函数的周期为π,即在每个π的区间内,函数的值将周期性地重复。
正切函数的定义是通过正弦函数和余弦函数来计算的,因此也具有相同的周期性。
二、三角函数的变化规律-----------------------1. 正弦函数的变化规律正弦函数的取值范围在[-1, 1]之间,且当自变量为0时,函数取得最小值0。
当自变量增加时,正弦函数的值会先上升到最大值1,然后下降到最小值-1,再回升到0,不断重复这一过程。
2. 余弦函数的变化规律余弦函数的取值范围也在[-1, 1]之间,且当自变量为0时,函数取得最大值1。
当自变量增加时,余弦函数的值会先下降到最小值-1,然后上升到最大值1,再下降到0,也会不断重复这一过程。
3. 正切函数的变化规律正切函数的取值范围是整个实数轴,即它可以取任意实数值。
正切函数在某些自变量的取值下是无界的,例如在π/2和3π/2等点。
当自变量增加时,正切函数的值会在相邻的两个无界点之间不断变换,呈现出周期性的特点。
三、三角函数的应用实例-----------------------三角函数的周期性和变化规律在物理学、工程学等领域中有广泛的应用。
下面将以振动和电路分析为例,说明三角函数在实际问题中的应用。
三角函数的图像和周期性

三角函数的图像和周期性三角函数是数学中的重要概念之一,它在许多领域中都有着广泛的应用。
本文将探讨三角函数的图像和周期性。
一、正弦函数的图像和周期性正弦函数是最基本的三角函数之一,它的图像呈现出连续的波动形态。
正弦函数的图像可以用一个周期内的变化来描述,其中一个周期是指正弦函数在一个完整波动周期内的变化情况。
正弦函数的图像在坐标平面上被表示为曲线,曲线穿过原点(0,0),且以周期为2π重复。
在一个周期内,正弦函数的值在-1到1之间变化。
当自变量增加时,正弦函数的值从0开始逐渐增大,直到到达一个最大值,然后再逐渐减小直到达到一个最小值,接着又逐渐增大,如此循环。
二、余弦函数的图像和周期性余弦函数是三角函数中的另一个基本函数,它的图像也是连续波动的。
余弦函数的图像可以通过对应的正弦函数图像垂直平移π/2个单位而得到。
余弦函数的图像同样以周期为2π重复,且曲线在自变量为0处取得最大值1。
与正弦函数不同的是,余弦函数的图像在一个周期内的起点是1,而不是0。
自变量的增加会导致余弦函数的值先减小到一个最小值,然后再逐渐增大直到达到一个最大值,如此循环。
三、正切函数的图像和周期性正切函数是三角函数中的另一个重要函数,它的图像呈现出间断和无穷性的特点。
正切函数的图像可以通过对应的正弦函数和余弦函数的商来得到。
正切函数的图像在自变量为奇数个π/2时处于无穷大的位置,在自变量为偶数个π/2时则为零。
正切函数的图像在一个周期内重复,并在自变量为π/2的整数倍时出现间断。
四、周期性的意义三角函数的周期性在实际问题中具有重要意义。
许多物理现象和自然现象都具有周期性的特点,例如天体运动、声波振动等。
通过使用三角函数及其周期性特点,我们可以更好地描述和分析这些现象。
周期性也在工程和技术领域中有着广泛应用。
例如,交流电的变化可以用正弦函数来表示,而正弦函数的周期性特点则对电力系统的稳定性和传输效率具有重要影响。
在计算机图形学中,三角函数的图像和周期性特点也被广泛应用。
精解三角函数的周期性

精解三角函数的周期性一、正弦函数的周期三角函数,以正弦函数y = sin x为代表,是典型的周期函数.幂函数y = xα 无周期性,指数函数y = a x无周期性,对数函数y =log a x无周期,一次函数y = kx+b、二次函数y = ax2+bx+c、三次函数y = ax3+bx2 + cx+d无周期性.周期性是三角函数独有的特性.1、正弦函数y=sin x的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP.正弦函数的周期性动点P每旋转一周,正弦线MP的即时位置和变化方向重现一次.同时还看到,当P的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y=sin x的最小正周期2π.2、y=sin(ωx)的最小正周期设ω>0,y =sin(ωx)的最小正周期设为L .按定义y= sin ω(x+L)= sin(ωx+ ωL)= sinωx .令ωx = x则有sin (x+ ωL)= sin x因为sin x最小正周期是2π,所以有例如sin2x的最小正周期为sin的最小正周期为3、正弦函数y=sin(ωx+φ)的周期性对正弦函数sin x的自变量作“一次替代”后,成形式y = sin (ωx+φ). 它的最小正周期与y = sinωx的最小正周期相同,都是.如的最小周期与y = sin(3x)相同,都是.于是,余弦函数的最小正周期与sin x的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数y = sin x进行周期变换x→ωx,sin x→sinωx后者周期变为而在以下的各种变换中,如(1)初相变换sinωx→si n(ωx+φ);(2)振幅变换sin(ωx+φ)→A sin(ωx+φ);(3)纵移变换A si n(ωx+φ)→A si n(ωx+φ)+m;后者周期都不变,亦即A si n(ωx+φ)+m与si n(ωx)的周期相同,都是.而对复合函数f(sin x)的周期性,由具体问题确定.1、复合函数f(sin x)的周期性【例题】研究以下函数的周期性:(1)2 sin x;(2)(2)的定义域为[2kπ,2kπ+π],值域为[0,1],作图可知,它是最小正周期为2π的周期函数.【解答】(1)2sin x的定义域为R,值域为,作图可知,它是最小正周期为2π的周期函数.【说明】从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x,sin x,,sin(sin x)都是最小正周期2π的周期函数.2、y= sin3x的周期性对于y = sin3x =(sin x)3,L=2π肯定是它的周期,但它是否还有更小的周期呢我们可以通过作图判断,分别列表作图如下.图上看到,y = sin3x没有比2π更小的周期,故最小正周期为2π.3、y= sin2x的周期性对于y = sin2x = (sin x)2,L=2π肯定是它的周期,但它的最小正周期是否为2π可以通过作图判定,分别列表作图如下.图上看到,y = sin2x的最小正周期为π,不是2π.4、sin2n x和sin2n-1x的周期性y = sin2x的最小正周期为π,还可通过另外一种复合方式得到. 因为cos2x的周期是π,故sin2x的周期也是π.sin2x的周期,由cos x的2π变为sin2x的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x的幂符合函数sin m x,当m=2n时,sin m x的最小正周期为π;m = 2n–1时,sin m x的最小正周期是2π.5、幂复合函数举例【例1】求y =|sin x|的最小正周期.【解答】最小正周期为π.【例2】求的最小正周期.【解答】最小正周期为2π.【例3】求的最小正周期.【解答】最小正周期为π.【说明】正弦函数sin x的幂复合函数.当q为奇数时,周期为2π;q为偶数时,周期为π.三、周期函数的和函数两个周期函数,如sin x和cos x,它们最小正周期相同,都是2π. 那么它们的和函数,即si nx + cos x的最小正周期如何和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况. 对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何1、函数sin x + sin2 x的周期性sin x的最小正周期为2π,sin2x的最小正周期是π,它们之间谁依谁,或依赖一个第三者列表如下.表上看到函数sin x+sin2x的最小正周期是2π.2、函数sin x + sin2x的周期性依据上表,作sin x+sin2x的图像如右.从图上看到,函数的最小正周期为2π. 由si nx,sin2x的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x+sin2x仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x+sin x的周期性sin x的最小正周期为2π,sin x的最小正周期是3π.们之间的和sin x + sin x的最小正周期也由“较大的”决定吗即“和函数”的周期为3π吗不妨按周期定义进行检验. 设则x0+3π=因此3π不是sin x + sin x的最小正周期.通过作图、直观看到,sin x+sin x的最小正周期为6π,即sin x和sin x最小正周期的最小倍数.。
三角函数的周期性及其应用

三角函数的周期性及其应用三角函数是数学中重要的概念之一,它具有周期性质,即在一定范围内,函数值会重复出现。
本文将探讨三角函数的周期性及其在实际问题中的应用。
一、正弦函数的周期性正弦函数是最基本的三角函数之一,记作sin(x)。
它的定义域为实数集合,值域为[-1,1]。
我们可以观察到,正弦函数在[0,2π]区间内呈现周期性,即在这个范围内,函数值会重复出现。
具体来说,在[0,2π]区间内,sin(x)的图像从0递增至最大值1,然后再递减至最小值-1,最后再回到0。
类似地,在[2π,4π]、[4π,6π]等区间内,sin(x)的图像也会重复出现相同的变化规律。
二、余弦函数的周期性余弦函数是另一个重要的三角函数,记作cos(x)。
与正弦函数类似,余弦函数也在一定范围内呈现周期性。
在[0,2π]区间内,cos(x)的图像从最大值1递减至最小值-1,然后再递增至最大值1,最后再回到1。
在其他区间内,余弦函数的图像也会以相同的方式重复出现。
三、三角函数的应用三角函数的周期性在实际问题中有广泛的应用。
以下是其中几个常见的应用领域:1. 物理学:三角函数的周期性在描述波动现象中起到重要的作用。
例如,正弦函数可以用来描述声音的频率和振幅,余弦函数可以用来描述光的波动。
2. 电工电子学:交流电流和交流电压的变化也可以利用三角函数来描述。
正弦函数可以描述电流和电压的周期性变化,而余弦函数则可以描述相位差。
3. 统计学:三角函数可以应用于周期性数据的分析和预测。
例如,通过对历史天气数据的正弦曲线拟合,可以预测未来几天的气温变化趋势。
4. 工程学:三角函数在工程计算、机械振动等方面也有广泛的应用。
例如,在建筑设计中,通过正弦函数可以描述建筑物受地震等力的变形情况。
总结:三角函数具有周期性质,如正弦函数和余弦函数,在一定范围内函数值会重复出现。
这种周期性在物理学、电工电子学、统计学和工程学等领域中都有广泛的应用。
了解三角函数的周期性及其应用,有助于帮助我们理解和解决实际问题。
三角函数的周期性、奇偶性与对称性-高考数学复习

π
π
, k ∈Z,所以函数 f ( x )的图象关于直线 x = 对称.
3
3
目录
高中总复习·数学
三角函数性质的综合应用
【例4】 (多选)已知函数 f ( x )= sin
π
(2 x + ),则(
3
2
4
2
π
π
π
3π
π
3π
+ , k ∈Z,故B错误; <2 x < , < x < ,所以 f ( x )
4
2
2
2
4
π
π
π
π
点,B对;对于C选项,当- ≤ x ≤ 时,- ≤2 x + ≤ ,所以
12
12
2
3
2
5π
π
函数 f ( x )在区间[- , ]上单调递增,C对;对于D选项,因
12
12
π
π
π
π
为对称轴满足2 x + = + k π, k ∈Z,解得 x = + , k ∈Z,当 k
3
2
12
2
π
=0时, x = ,D对.故选B、C、D.
6
2
6
π
5π
(2 x - ), f (- )= A sin
6
12
5π
π
(-2× - )=0.
12
6
目录
高中总复习·数学
解题技法
三角函数图象的对称轴和对称中心的求法
求三角函数图象的对称轴及对称中心,须先把所给三角函数式化
为 y = A sin (ω x +φ)+ b 或 y = A cos (ω x +φ)+ b 的形式,再把
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
即
cosT=1.
这与T∈(0,2π)时,cosT<1矛盾.这个矛盾证明了y=sinx,x∈R的最小正周期是2π.
师:请同学们在课堂练习本上证明y=cosx的最小正周期是2π.
师:通过上面的例题和练习我们得出这样的结论,正弦函数y=sinx(x∈R)和余弦函数y=cosx(x∈R)都是周期函数,2πk(k∈Z且k≠0)都是它的周期,最小正周期是2π.
例5求y=3cosx的周期.
师:以后求周期如果没有特殊要求,都求的是最小正周期
生:因为y=cosx的周期是2π,所以y=3cosx的周期也是2π.
师:好.好在他能利用我们总结出的结论,也就是新知识归结到旧知识上去.你能再具体的证明吗?
生:可以从数和形两个角度来证明.
解(一)因为对一切x∈R,3cos(x+2π)=3cosx,所以y=3cosx的周期是2π.
师:我们先看函数周期性的定义.(老师板书)
定义对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.
师:请同学们逐字逐句的阅读定义,找出定义中的要点.
生:首先T是非零常数,第二是自变量x取定义域内的每一个值时都有f(x+T)=f(x).
2.定义中的“每一个值”是关键词.
此函数对于任意确定的常数T≠0,尽管f(x+T)=f(x)对函数定义域(-∞,+∞)中几乎所有x都成立.但仅仅由于x的个别值x=0,x=-T时,等式不成立.因此函数f(x)不是周期函数.
(三)周期函数的周期与最小正周期的区别与联系.
1.周期函数的周期一定存在,但最小正周期不一定存在,最小正周期如果存在必定唯一.周期函数的周期有无数个.
例3已知f(x+T)=f(x)(T≠0),求证f(x+2T)=f(x).
师:此题用文字如何叙述?谁能给予证明?
生:若不等于零的常数T是f(x)的一个周期,证明2T仍是f(x)的周期.
因为T是f(x)的周期,所以f(x+T)=f(x),f[(x+T)+T]=f(x+T),即f(x+2T)=f(x).
因此2T是f(x)的周期.
师:这样就证明了我们的猜想,不但函数的周期仅与自变量的系数
(老师板书)
师:以后再求正弦函数或余弦函数的周期,可由上面的结论直接写出它的周期.
师:(总结)通过今天的课,同学们应明确以下几个问题.
(一)研究函数周期的意义是什么?
周期函数是反映现实世界中具有周期现象的数学模型.如果能找到函数的最小正周期T,那么只要在以T为氏度的区间内.就可以研究函数的图象与性质,然后推断出函数在整个定义域的图象和性质.这给我们研究函数带来了方便.
(老师在函数的周期性定义下板书)
如果在所有的周期中存在着一个最小正周期,就把它叫做最小正周期.
例4证明f(x)=sinx(x∈R)的最小正周期是2π.
师:例1证明了y=sinx是周期函数,并且找到了一个周期T=2π.例
是2π.要想证明这个命题,只要证明什么?
生:只要证明任何比2π小的正数都不是它的周期.
生乙:更具有实用性.如果找到最小正周期,就可以在其定义域的一个长度为最小正周期的范围内对函数进行研究.
师:这位同学思考问题有一定的深刻性.他不但弄清最小正周期的实质,还进一步想到我们研究函数周期性的目的,那就是要研究一个周期函数在整个定义域上的性质,只要研究它在一个周期内的性质,然后经过周期延拓即可.如果能够确定最小正周期,可使研究的范围缩小在最小正周期的范围内.这无疑给我们研究周期函数的性质带来方便.
(老师把图画在黑板左上方.)
师:通过观察,同学们有什么发现?
生:正弦函数的定义域是全体实数,值域是[-1,1].图象有规律地不断重复出现.
师:规律是什么?
生:当自变量每隔2π时,函数值都相等.
师:正弦函数的这种性质叫周期性.我们将会发现,不但正弦函数具有这种性质,其它的三角函数和不少的函数也都具有这样的性质,因此我们就把它作为今天研究的课题:函数的周期性.(老师在黑板左上方写出课题)
如:f(x)=c(常数),任意非零实数都是它的周期,但由于不存在不等于零的最小正实数,所以f(x)=c没有最小正周期.这个例子也同时说明不是只有三角函数才具有周期性.
2.周期函数的最小正周期一定是这个函数的周期,反之不然.
例如,2π是y=sinx的最小正周期,也是函数的周期;4π是函数的周期,但不是最小正周期.
解(二)因为y=3cosx图象是把y=cosx图象上的每点的横坐标不变,纵坐标扩大3倍得到的,当自变量x(x∈R)增加到x+2π且必须增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.
师:数和形是我们研究数学问题的两个方面,他都想到了,并且能完整的叙述清楚,若把此题推广,能得到什么结论?
教学目标
1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性.
2.使学生掌握简单三角函数的周期的求法.
3.培养学生根据定义进行推理的逻辑思维能力,提高学生的判断能力和论证能力.
重点、难
点和关键
教学重点:函数周期性的概念
教学难点:函数ห้องสมุดไป่ตู้期性的概念
授课方式、
方法及手段
讲授法及教学挂图
标准教案
首页编号
学
科
数学
第五章:任意角的三角函数
第6节:三角函数的周期性
教研组长
审批签字
授课时数
4
授课时间
5.19-20
授课班级
09网络
教材分析
三角函数周期性概念的教学是本节课的重点.概念教学是中学数学教学的一项重要内容,不能因其易而轻视.为学生创设探索的情境,指引探索的途径,引导学生不断地提出新问题,解决新问题.
师:这个命题推广可得到什么结论?
生:如果T是f(x)的周期,那么2T,3T,…,nT(n∈Z)也都是f(x)的周期.
师:这说明如果一个函数是周期函数,所有的周期就构成一个无穷集合.这无数个周期中,我们有必要研究在它们中间是否存在着最小正周期.这是为什么?
生甲:如果发现一个函数存在最小正周期,就可以确定这个函数的所有周期.
例7
y=2sin(u+2π)=2sinu,
师:通过这个例题,进一步验证了我们的猜想,函数的周期的变化仅与自变量x的系数有关.我们把例7写成一般式.
例8求y=Asin(ωx+ )的周期.(其中A,ω, 为常数,且A≠0,ω>0,x∈R)
解设u=ωx+ .因为y=sinu的周期是2π,所以
sin(u+2π)=sinu,
师:其实这个问题也可以从图象的变换来考虑.我们先看如何由y=sinx的图象得到y=sin2x的图象.使y=sinx的图象上的每点的纵坐标
当自变量每增加2π且必须增加2π时,函数值重复出现,现在就是当
sin2x的周期是π.
师:通过这个例题我们看到,谁对函数的周期有影响?是x的系数.有怎样的影响?带着这个问题同学们做下面的题目.
生丁:
解设2x=u,因为y=sinu的周期是2π,所以
y=sin(u+2π)=sinu,
即
sin(2x+2π)=sin2(x+π)=sin2x,
所以y=sin2x的周期是π.
师:我们一起来分析三个同学的解法.解法一是错误的,错误在对于周期函数定义中任意x都有f(x+T)=f(x)的本质没弄清楚,要证明y=sin2x是周期函数,应证明对于任意x∈R,都有y=sin2x=sin2(x+T),而不是y=sin2x=sin(2x+T).解法(二),(三)是正确的.区别在于解法(三)经过换元,把要研究的新问题y=sin2x的周期转化为已有的旧知识y=sinu的周期.这种转换的意识、换元的思想是很重要的.
课外作业
教材P161. 1-4.
教学回顾
运用启发式教学原则,充分调动学生的学习积极性,引导学生积极思考,发挥好学生的教学主体作用。坚持循序渐进的教学原则,深入浅出地讲授教学内容。
教学方法、过程及主要内容
教学意图
时间
三角函数的函数周期性
教学目标
1.使学生理解函数周期性的概念,并运用它来判断一些简单、常见的三角函数的周期性.
师:如何证?能否逐一证明比2π小的正数都不行呢?当然不行.因为比2π小的正数是无限的.那这样的命题应如何证?
生:反证法.假设存在T∈(0,2π)使得y=sinx对于任意的x∈R都成立.推出矛盾即可.
师:你能具体的给予证明吗?
生:假设T是y=sinx,x∈R的最小正周期,且0<T<2π,那么根据周期函数的定义,当x为任意值时都有
师:函数周期性的定义有什么用途?
生:它为我们提供判定函数是否具有周期性的理论依据.
师:下面我们看例题.
(老师板书)
例1证明y=sinx是周期函数.
生:因为由诱导公式有sin(x+2π)=sinx.所以2π是y=sinx是一个周期.故它就是周期函数.
例2
师:要想判断T是不是函数y=f(x)的周期有什么方法?我们现有的理论依据只有定义,如何使用定义?
生:y=Asinx,y=Acosx(A≠0,是常数)的周期都是2π,也就是说函数周期的变化与系数A无关.
例6求y=sin2x的周期.
(请不同解法的三位同学在黑板上板演)
生甲:
解因为y=sin(2x+2π)=sin2x,对于任意x∈R都成立.所以y=sin2x的周期是2π.
生乙:
解因为y=sin(2x+2π)=sin2(x+π)=sin2x,所以y=sin2x的周期是π.