同步整流变换器电流检测方法的研究

合集下载

一种变换器、电流检测电路及电流检测方法[发明专利]

一种变换器、电流检测电路及电流检测方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 202010795766.9(22)申请日 2020.08.10(71)申请人 广州金升阳科技有限公司地址 510663 广东省广州市广州开发区科学城科学大道科汇发展中心科汇一街5号(72)发明人 杜鹃 吴辉 李斌华 李永昌 (51)Int.Cl.G01R 19/00(2006.01)H02M 3/28(2006.01)H02M 3/335(2006.01)(54)发明名称一种变换器、电流检测电路及电流检测方法(57)摘要本发明公开了一种电流检测电路,该检测电路包括分流电阻Rcr、分流电容Ccr、开关二极管Dcr、电压源Vc、电阻Rv以及检测开关Q5;该电流检测电路可应用于由逆变电路、谐振电路、变压器和整流网络组成的类似于LLC谐振变换器中的浮地型器件的电流检测;本发明根据电路工作状态,在谐振电容Cr一端电压共地时,断开检测开关Q5,通过采样分流电阻Rcr的端电压Vcr即可反映谐振腔电流。

本发明提出的电流检测电路仅需几个贴片器件即可实现谐振腔电流采样,电路结构简单、成本低、采样精度高,能够实现电流的无损检测,保证电路的工作效率。

权利要求书2页 说明书6页 附图3页CN 112083213 A 2020.12.15C N 112083213A1.一种电流检测电路,其特征在于,包括:分流电阻Rcr、分流电容Ccr、开关二极管Dcr 以及检测开关Q5;所述开关二极管Dcr的阴极连接于分流电阻Rcr与分流电容Ccr的串联节点,所述开关二极管Dcr的阳极由电压源经电阻Rv供电或者由恒流源直接供电;所述检测开关Q5的一端连接所述开关二极管Dcr的阳极。

2.根据权利要求1所述的电流检测电路,其特征在于,所述电流检测电路用于检测谐振电路的电流时,所述分流电阻Rcr和所述分流电容Ccr组成分流支路并联在所述谐振电路的谐振电容Cr的两端。

双管正激同步整流变换器的研究

双管正激同步整流变换器的研究

关键词:开关电源
双管正激
电流型控制
同步整流ห้องสมุดไป่ตู้
I
Abstract
The operation of two- Transistor forward converter toponology and current control mode are discussed in this paper.The advantage and the drawback of the toponology are introduced. Using state-space averaging method this paper deduces the TTFC’ s small signal mode.Based on it the voltage control mode and current control mode are analyzed and compared. With the development of power electronical converters’ s application in telecom system ,converters with low output voltage and large output current become more and more important. R ectifying stage with diode or sckotty diode can’ t meet the needs of higher efficiency and lower size because forward drop of rectifier is great and rectifying dissipation is great in power converter.New generation of Power MOSFET has became the rectifying component due to the advantage of its low conduction resistance.The operation of synchronous rectification,the methods of driving the rectifying MOSFET and the application of synchronous rectification in kinds of toponologies are also

电流驱动同步整流反激变换器的研究

电流驱动同步整流反激变换器的研究

电流驱动同步整流反激变换器的研究陈丹江,张仲超(浙江大学,浙江杭州310027)摘要:分析了工作在恒频DCM方式下的反激同步整流变换器。

为了提高电路的效率,采用了一种能量反馈的电流型驱动电路来控制同步整流管。

分析了该驱动电路的工作原理,并给出了设计公式。

实验结果表明该方法提高了反激变换器效率的有效性。

关键词:反激;同步整流;能量反馈;电流驱动ResearchonaFlybackConverterUsing1引言随着数字处理电路(data processingcircuits)的工作电压的持续下降,保持电路的高效率受到了很大的技术挑战。

这是由于在低压电源中,二极管的正向压降引起的损耗占了电路总损耗的50%以上。

由于MOSFET同步整流管SR(synchronousrectifiers)的低导通电阻,在大量的电路中都用来代替效率低的肖特基二极管,特别是在低压电源中[1]。

反激是一种广泛应用于小功率的拓扑,由于只有一个磁性元件,而具有体积小,成本低的优点。

但是,目前同步整流在正激电路中的应用比较多,而在反激电路中的应用却很少。

这是由于正激电路比较适合大电流输出,能够更好地体现同步整流的优势;另外一个原因是可采用简单的自驱动,而反激电路原边开关和副边开关理论上会有共通。

但是,如果考虑到实际电路中变压器的漏感,则这种情况是不会产生的,所以当输出电流不是很大时,采用反激电路还是值得考虑的。

本文将对工作在DCM方式下的同步反激电路进行分析。

同步整流中最重要的一个问题是同步管的驱动设计。

同步管的驱动大体上可以分为自驱动(self driven)和他驱动(control driven),本文介绍了一种能量反馈的自驱动电路。

2同步整流在反激电路中的应用带有同步整流的反激电路如图1所示。

一般来说,电路可以工作在CCM或DCM方式,开关频率可以是恒频(CF),也可以是变频(VF)。

下面主要对工作在恒频DCM方式的工作过程进行分析。

双管正激同步整流变换器的研究

双管正激同步整流变换器的研究
1
1.3 几种典型开关电源特点的比较 [3][4]
单管正激式和反激式开关电源的高频变压器只工作在磁滞回线的第一象限,只 有单一方向的磁通,利用率不高;推挽式电路的按对称转换的原则工作,两个开关 管轮流导通,磁芯双向磁化,但是每一时刻原边只有一个绕组有电流流过,绕组的 利用率和效率较低,如果副边绕组也带中心抽头,则绕组利用率更低;半桥式变换 器的开关管在开关时开关电压值减小为直流输入的一半,但与推挽式变换器相比, 输出相同的功率,开关管导通时的电流增加了一倍;全桥式变换器的变压器与半桥 式变换器一样都工作于一、三象限,磁芯双向磁化,变压器的利用率较高,理论上 开关管电压应力为输入电压,输出相同功率,开关管流过的电流为半桥式变换器的 一半,因而可以应用在较大功率的场合。但是推挽式、半桥式、全桥式变换器均存 在变压器磁通不平衡即直流偏磁问题,这是由开关管的开关特性差异或驱动的不对 称引起的,需要采用电流型控制策略或在变压器初级串入一隔直电容加以抑制。
introduced.The experiment to demonstrate the bi-directional conductibility of power MOSFET is also presented in this paper. A power supply of TTCF with synchronous rectification is designed.The waveform,experiment data and analysis of it are presented in this paper,which shows that the design is avaible in practice.
Key words: switching mode power supply Current mode control

半桥倍流整流变换器同步整流控制驱动的研究共34页文档

半桥倍流整流变换器同步整流控制驱动的研究共34页文档
半桥倍流整流变换器同步整流控制驱 动的研究
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
谢谢!
5、教导儿童服从 德教育 最重要 的部分 。—— 陈鹤琴
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿

同步整流Boost变换器中过零检测电路的设计

同步整流Boost变换器中过零检测电路的设计
第 39 卷第 1 期 2019 年 2 月
南京邮电大学学报( 自然科学版)
Journal of Nanjing University of Posts and Telecommunications ( Natural Science Edition)
doi: 10. 14132 / j. cnki. 1673-5439. 2019. 01. 010
Design of zero-crossing detection circuit for synchronous rectification Boost Converter
HUANG Ying1,2 ,XIA Xiaojuan1,2
1. College of Electronic and Optical Engineering,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
ห้องสมุดไป่ตู้
2. National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technology,

Nanjing University of Posts and Telecommunications,Nanjing 210023,China

Abstract: To reduce the occurrence of current backflow in the light-load mode of synchronous rectification boost converter,a novel zero-crossing detection circuit is designed to judge whether the inductor current is zero or not based on the time taken to detect the freewheeling current of the inductor,thus turning off the synchronous rectifier in time and effectively limiting the backflow of the inductor current. The zero-crossing detection circuit is designed and verified based on 0. 35 μm CMOS process. The simulation result shows that the synchronous rectifier is turned off when the inductor current is 4. 56 mA,and the static power consumption is only 2 μA. It has been applied to a synchronous Boost converter chip in PFM control mode. The inductor current is stable,the reverse current is small and the performance is excellent. Keywords: zero-crossing detection; synchronous rectification; Boost converter; light-load mode

SEPIC变换器同步整流技术的研究

SEPIC变换器同步整流技术的研究

0 引 言
单端初 级 绕 组 电 感 变 换 器 (SEPIC)是 升降 压 型 变换器,具有输入电 流 连 续、输 出 电 压 范 围 宽、输 出 电 压 与 输 入 电 压 通 极 性 、驱 动 开 关 在 低 侧 ,容 易 驱 动 等 优 势 ,非 常 适 合 电 池 充 放 电 应 用 、汽 车 类 应 用 或 可 能 提 供 多个输入源的系统。在对超级电容充电等大电流应用 中,SEPIC 变换器的优势十分明显。但是 SEPIC 变 换 器中整流二极管流过 的 电 流 很 大,整 流 二 极 管 上 的 功 率耗散占整个变换器功率耗散的比例很高。这不仅降 低了整个变换器的效 率,在 实 际 应 用 中 还 常 常 由 于 整 流二极管散热功耗限 制,而 不 得 不 降 低 变 换 器 的 输 出 电流大小。
流 TINA 仿真模型,并 给 出 了 仿 真 结 果。 通 过 仿 真 分 析 ,验 证 了 理 论 的 正 确 性 。
1 二 极 管 功 耗 分 析
实际 SEPIC 变 换 器 一 般 使 用 一 对 耦 合 电 感 代 替 两个分立电感,以减 少 输 出 电 压 和 输 入 电 感 电 流 的 纹 波,图1为使用耦合电感的基本 SEPIC 电路。
Abstract:SEPICconverterhasmanyexcellentperformances,anditisverysuitableforsupercapacitorchargingand discharging,photovoltaicpowergenerationandotheroutputvoltagechangesinawiderangeofoccasions.Becauseofthe specialstructureoftheSEPICconverter,thepowerconsumptionofthediodeisverylarge,whichrestrictstheapplication

全桥倍流同步整流软开关变换器的研究

全桥倍流同步整流软开关变换器的研究
第4 4卷 第 2期
21 0 0年 2月
电 力 电 子 技 术
Po rElcr nis we e to c
V , 01 u
全桥倍流同步整流软开关变换器的研究
张 继 红 ,孙 维 ,孙 绍 华
10 0 ) 5 0 1 ( 尔滨 工业 大 学 , 龙 江 哈 尔滨 哈 黑
1 引 言 全桥 变换 器 的优 点 是单体 容量大 .开 关器 件 电 压、 电流 应力 小且容 易实现 软 开关 。 在低 电压输 出场 合 。同步 整流技 术 的应用 极大地 减小 了整流 电路 的
损 耗 : 大 电流 输 出场合 , 流整 流 电路可 明显 减小 在 倍
谐振 , 实现 V 。V Z S软 开关 ; 相 位 延 时 的 Q ̄ Q 的 V 在 时间 内 .通过 输 出滤波 电感和 同步 整流 管寄 生 电容
( ri 哦 eo c nl yU i rt, abn10 0 ,C ia Hab n, T h o g nv sy H i 5 0 1 hn ) fe o ei r
Ab ta t Atp e e t t ep a e s i e o to tae y i s y a o t d i u lb d e c n e t rw t u r n o b e n s r c : r s n ,h h s —hf d c n r l r tg mo t d p e n f l r g o v re i c re td u lra d t s s l i h s n h o o s e t ir t a o e l e h s n h o o s r ci c t n y c r n u r ci e . c n n t r a i t e y c r n u e t i ai MOS E e o ot g s th n . n w o t l f I z f o F T z r v l e wi i gA e c n r a c o sr tg , a e n l td d u l o t lme h d, s d t o t lt e fl b d e wi u e td u lr a d s n h o o s t e y b s d o i e o b e c n r t o i u e o c nr h u l r g t c r n o b e n y c r n u a mi o s o i h r c i e , h c a e l e t e s n h o o s r ci c t n MOS E VS w t e s n b e t e a ewe n te P M v e t r w ih c n r ai h y c r n u e t ia i i f z f o F T Z i r a o a l i d l y b t e h W h me wa e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Study of A Synchronous Rectifier Converter Current Detection MethodLiu ShulinSchool of Electric and Control Engineering Xi’an University of Science and TechnologyXi’an, Chinalsigma@Lu Xiaoyue,YangboSchool of Electric and Control Engineering Xi’an University of Science and TechnologyXi’an, Chinagogobenxiao@Abstract—For the traditional current detection method of a synchronous rectifier converter is easy to make the additional power loss and low detection accuracy such problems, it proposes a new current detection method, which detects the current using the conduction voltage drop of the synchronous rectifier, by introducing a negative feedback loop to force the voltage equal, which across the operational transconductance amplifier, adjusting the resistance value connected to both ends of the operational transconductance amplifier to increase the accuracy of current detection. This method is no additional power relative to the entire system, which overcomes the conventional problems in the current detection. Simulation result shows that the lossless current sensing method is feasible, and can be achieved.Keywords- synchronous rectifier; detection accuracy; power loss; conduction voltage drop; lossless current sensingI.I NTRODUCTIONAs the technology advances, DC-DC switching power supply towards high reliability, high stability, low noise, interference and modular direction to develop[1]. A variety of portable products keep high current, low power and low voltage. They are powerful, energy-saving, simple and efficient circuit which is easy to use, so such power management chip is getting more and more popular[2]. Current detection module is the most important module of realizing switching power function. It can open real-time detection of the load, short-circuit and over current condition, which is an important part of the current loop. Largely determine the chip's power consumption and efficiency[3]. Current detection in the current mode control must accurately detect different load plus slope compensation signal as a feedback control signal to control power management work. Therefore it is necessary to study synchronous rectifier converter current detection methods[4].The most commonly used current detection technique is to use a current proportional to the characteristics of parallel MOSFET. Width to length ratio of SENSEFET and MOSFET is 1/n. Current flew through SENSEFET reduced to 1/n proportion to the power tube. A resistor was connected to the end of the SENSEFET, then design a basic current detection circuit to detect the current flowing through SENSEFET which can detect the voltage across the resistor, multiplied by n is the current flowing through MOSFET. But this method has the sense resistor, more power loss, and it is difficult to control[6,9]. Another method of detecting switch conduction voltage drop is to make switch as a resistor, which is a non-destructive testing. But the resistance will change with temperature, and detection accuracy is not high enough[8,10]. Thus the study of new current detection method and technology has become an important switching power supply research direction present.It has been proved that the current detection needing current detecting elements and easy to generate additional power in this paper. Detecting conduction voltage drop of continued flow tube which is the circuit device itself will be no additional loss. Use a transistor and an operational transconductance amplifier to make a negative feedback circuit, then combine current mirror, leading to the detection current. And by adjusting the resistance connected to both ends of the operational transconductance amplifier, achieving the current non-destructive testing, to provide a solution on static power reduction of switching power supply.II.W IDELY U SED C URRENT D ETECTION M ENTHODSN OWADAYSRecently this conventional current is widely used to test current,the circuit is shown in Figure 1.Figure 1. Widely used current detection methodM1 is the power MOSFET, M3 is the SENSEFET, SENSEFET is in parallel with MOSFET. Transistor’s source is connected together, operation amp is used to ensure that two of the drain voltage is equal, avoiding the current mirror is not accurate caused by FET channel length modulation effect, the current Flowing SENSEFET and MOSFET will follow the two tubes of the distribution width to length ratio 1/n. To ensure the extra power loss of SENSEFET is small enough, we should tryto make the MOSFET's effective width to length ratio is 100 times more than SENSEFET.A resistor is connected to the end of SENSEFET, design a basic current detection circuit which can detect the voltage across the resistor, then it can detect the current flowing through SENSEFET, multiplied by n is the current flowing through the MOSFET. In this detection circuit detects a high precision, but a small resistance will bring additional power loss, affecting the size of switching power supply power. Between the power tubes and sampling tubes even a small coupling can also cause a big error, sampled signal will be added into a large peak signal, this technique can be used only when the power management is integrated into the chip or in particular match with the MOSFET.III. C IRCUIT A NALYSIS OF C URRENT D ETECTION Lossless current sensing circuit is a new circuit in the improvements on detecting the voltage drop of power MOSFET in this paper. Use original devices in the power circuit, that is detecting current through detect the voltage drop of continued flow tube to achieve lossless testing. Because VT will change with the temperature, RDS will also change. Adjust the resistance connected to both ends of the operational transconductance amplifier according to changes can reduce the error and improve the accuracy.A.Lossless current sensing circuit work principlesDetect current using voltage drop of the original device in the power loop circuit, it will have no additional power relative to the entire system [5]. The basic principle circuit figure is shown in Figure 2, by introducing a negative feedback loop forces the voltage across the operational transconductanceamplifier equivalent.Figure 2. Current detection basic schematicWhen the voltage of left resistor R1 rises, that is thenegative voltage of operational transconductance amplifier increases. The output of operational transconductance amplifier is low. Through a transistor, output is still low. Therefore, it is a negative feedback. According to the principle that the voltage drop of a circuit loop is zero, the sum voltage drop on R1, R2 and Rs is zero. It can be sampled out current IX and the relationship between IL. The relationship between IX and IL is decided by the ratio of R1 and R2. Current IX flowing through transistor can be reduced to Rs /R1 of IL. Then the current sampling can be obtained using a current mirror to make it output. IL will be detected by IOUT in this way. Detection accuracy use series resistors at both ends of the sense amplifier to optimize the adjustment. VT will be larger while thetemperature grows, RDS will become larger too. Make R1 and R2 larger appropriate can improve the detection accuracy. B.Circuit design of lossless current senseing amplifier According to the work principle of lossless current sensing circuit, it can be seen that the voltage drop of loop circuit made up of operational transconductance amplifier, R 1, R 2 and Rs from Figure 2, this results. 11122X L s I R I R I R I R ×+×−×=× (1)Because 1I =2I , and make 1R =2R , Then we can get1R R I I SL X ×=(2) Detected current is proportional to the size of the inductor current through equation (2), by adjusting the size of R 1 can improve the detection accuracy I L , according to the continued flow tube open and operate in the linear zone. Assuming the drain voltage and source voltage are small, continued flow tube can be used as a switch, which can be seen as a resistor R S , The principles is the same as the switch tube. The resistor R S is as follows()S OX GS T LR W C V V μ=− (3)Among, μ is the mobility of channel charge, Cox is the Unit Gate oxide capacitance, VT is the threshold voltage. W is the conductive channel effective width of the power tube, L is conductive channel effective length of the power tube. Gate voltage can be measured, so V GS can be known. The value can be calculated into the value of R S . But with the temperature increases, V T gradually increases, R S has gradually become larger. It can be appropriate to transfer a little large number of R 1 to achieve the target of reduced errors and improved accuracy. R 1 can be made into trimming resistor within the integrated circuit. It is easy adjustment according to the results of measurements. Then make changes and adjust the size of R1. This measurement of I L will be more accurate. We know that the inductor current is equal to the ratio of U DS and R S . It is as followsS DSL R U I =(4)R S can be obtained according to equation (3), because the source of continued flow tube is grounded, that the voltage of point B is zero. Now U DS can be obtained by measuring the voltage of point A, which is the drain of continued flow tube. Thus I L can be obtained according to equation (4).Figure 3 shows the internal circuit of Figure 2. The left part is operational transconductance amplifier, the outputs through RC and fed back to ISP2_R, then pass the transistor, forcing the input voltage of operational transconductance amplifier equal. The circuit is as follows.Figure 3. Circuit detection circuitIV. L OSSLESS C URRENT S ENSING C IRCUIT S IMULATION Use a current source instead of the synchronous rectifier in Figure 2 to simulate the output current when in simulation. The transient simulation waveforms are shown in Figure 4. The above figure is the simulated load current I out , while the below chart is the current which has been detected. It can be seen that the changes of current was successfully detected from Figure 3 in the case of 1MHz, which illustrate the detection methodfeasible.Figure 4. Figure 4. Simulation waveform of transient current detectionIt can be seen that in our design circuit I out and I sense have the consistent changes of transient current detection from the simulation waveforms, I out detected out the changes of I sense . Simulation results validate the accuracy and feasibility of the circuit design. However, if R S is too small, when R S equals 0.5Ω, circuit may not track the current change, as it is shown in figure 5. The above figure is the simulated load current, themiddle figure is the current detected out. You can see the current change has not come out of the test. To obtain detection accuracy without changing R S according to equation (3) to adjust the sense amplifier connected to both ends of the resistors R 1 and R 2, eventually get an accurate current sensing.Figure 5. Changes failure detection currentV. C ONCLUSIONThis paper presents a new lossless current sensing technology, which used the voltage drop of original device in power circuit to detect current, that is to get the test current through test voltage drop of the continued flow tube, and take out the current using current mirror. Resistances connected to both ends of the operational transconductance amplifier were adjustment to improve the detection accuracy, and to achieve lossless testing, which overcome the traditional current detection needing circuit detection elements and easy to make additional power. This method is feasible through simulation, and can eliminate the disadvantage that lack of precision caused by temperature changes. The circuit is clear, the structure is simple, which has highly practical and economic value.R EFERENCES[1] Liushu Lin, Liujian. Analysis and design of switching converter[M]Machinery Industry Press,2010[2] Zhang Huaien. The Development of switching power supply[M]. PowerElectronics, 1996,02, No.1. pp: 74-78[3] Liu Bumin, Caiwei ,Lu Tiejun, Low-power non-destructive analysis ofcurrent detection techniques and design[4] He Wei. A suitable switching regulator's novel current detection method [5] Hassan Pooya, Forghani zadeh, Current-sensing Techniques for DC-DCCollventers. IEEE 2002, 1(2): 577-580[6] Huang Zhigang,Zhang Bo,Tangzhi. Lossless switching power supplycurrent detection[J]. Electrical Application, 2006, 6[7] D. Grant and R. Pearce, “Dynamic Performance of Curren-SensingPower MOSFETs”[J], Electronic Letters, pp. 112-1131, Sept. 1988.[8] Sedra, G. Roberts and F. Gohh, “The Current Conveyer power lossduring startup).History, Progress and New Results”[J], IEEE Internationa Symposium on Circuits and Systems, pp. 78-87,1989.[9] D. Grant and R. Pearce, “Dynamic Performance of Curren-SensingPower MOSFETs”[J], Electronic Letters, pp. 112-1131, Sept. 1988.[10] CHANG C H,CHANG R C.A novel current sensing circuit for a currentmode control CMOS DC-DC buck converter[J]. IEEE Int Symp Circuit and Systems,2005,5:120-123。

相关文档
最新文档