九年级(下)数学相似试题精品(4)
精品 九年级数学下册 相似形-相似形判定 同步讲义同步练习题

相似形第01课相似三角形的判定定义:相等,成比例的两个三角形叫做相似三角形。
判定1.平行于的直线和其他两边相交,所构成的三角形与原三角形相似。
判定2.如果两个三角形的三组,那么这两个三角形相似。
判定3.如果两个三角形的两组,并且相应的,那么这两个三角形相似。
判定4.如果一个三角形的两个与另一个三角形的两个对应相等,那么这两个三角形相似。
判定5.直角三角形相似的判定定理:和一条对应成比例,两直角三角形相似。
识别三角形相似的常用思路:a.当条件中有平行线时,找两对对应角相等;b.当条件中有一对相等的角(对顶角或公共角)时,可考虑再找一对相等的角;c.两个等腰三角形,可以找顶角相等或找一对底角相等.例1.填空:(1)如图1,BE∥CD,则△∽△,AB AE BE==;()()()图1 图2 图3(2)如图2,AB∥DE,则△∽△,AB BC CA==;()()()(3)如图3,∠B=∠ADE,则△∽△,AB BC CA==.()()()例2.判断题:1)所有的等边三角形都相似 ( )2)所有的等腰直角三角形都相似 ( )3)所有的直角三角形都相似 ( )4)所有等腰三角形都相似 ( )5)有一个角是100°的两个等腰三角形相似 ( )6)有一个角是70°的两个等腰三角形相似 ( )例3.依据下列各组条件,判定△ABC 与△A ´B ´C ´是不是相似,并说明为什么:(1)∠A=120º,AB=7cm ,AC=14cm ;∠A ´=120º,A ´B ´=3cm ,A ´C ´=6cm ;(2)AB=4cm ,BC=6cm ,AC=8cm ;A ´B ´=12cm ,B ´C ´=18cm ,A ´C ´=24cm ;例4.如图判断4×4方格中的两个三角形是否相似,并说明理由.例5.如图,在正方形网格上有6个三角形:①ABC ∆,②B C D ∆,③B D E ∆,④BFG ∆,⑤F G H ∆,⑥EFK ∆,其中②-⑥中与①相似的是例6.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.例7.已知:如图,在Rt △ABC 中,DE ⊥AB 于E 点,AE=3,AD=4,AB=6,求AC.例8.如图,在△ABC 中,CD 是AB 上的高,CD 2=AD ·BD.求证:(1)△CBD ∽△ACD;(2)∠ACB=900.例9.如图所示,在矩形ABCD中,AB=4,BC=6,M是BC的三等分点,DE⊥AM,垂足为E,求DE的长.例10.如图,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE,△ABE与△ADC相似吗?请证明你的结论.例11.如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,求电视塔的高ED.※例12.如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,求路灯杆AB的高度.同步练习:1.已知b a 12=,则ba b a -+2的值( ) A.-5 B.5 C.-4 D.42.下列各组三角形一定相似的是( )A.两个直角三角形B.两个钝角三角形C.两个等腰三角形D.两个等边三角形3.一斜坡长70m,它的高为5m,将某物从斜坡起点推到坡上20m 处停止下,停下地点的高度为( ) A.m 711 B.m 710 C.m 79 D.m 23 4.已知如图:(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB 、CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A.都相似B.都不相似C.只有(1)相似D.只有(2)相似第4题图 第5题图5.如图,DE ∥BC,EF ∥AB,则图中相似三角形一共有( )A.1对B.2对C.3对D.4对6.如图,点M 在BC 上,点N 在AM 上,CM=CN,CMBM AN AM =,下列结论正确的是( ) A.∆ABM ∽∆ACB B.∆ANC ∽∆AMB C.∆ANC ∽∆ACM D.∆CMN ∽∆BCA第6题图 第7题图7.如图,△ABC 中,AD ⊥BC 于D,下列条件:⑴∠B+∠DAC=900;⑵∠B=∠DAC ;⑶ABAC AD CD =;⑷BC BD AB ∙=2.其中一定能够判定△ABC 是直角三角形的有( )A.1B.2C.3D.48.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )9.如图,直角三角板ABC 的斜边AB=12cm,∠A=300,将三角板ABC 绕C 顺时针旋转900至三角板A /B /C /的位置后,再沿CB 方向向左平移,使点B /落在原三角板ABC 的斜边AB 上,则三角板A /B /C /平移的距离为( )A.6cmB.4cmC.(6-23)cmD.(436-错误!未找到引用源。
人教版九年级下册数学《第27章相似》单元测试题(含答案解析)

春人教版九年级下册数学第27章相似单元测试题一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣32.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:33.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.85.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm27.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:2510.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m二.填空题(共8小题)11.若=,则=.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为.13.已知==,且a+b﹣2c=6,则a的值.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.15.如图,在△ABC中,DE∥BC,=,则=.16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=时,△ABC∽△DEF.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′,B′;点A到原点O的距离是.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.春人教版九年级下册数学第27章相似单元测试题参考答案与试题解析一.选择题(共10小题)1.已知x:y:z=1:2:3,且2x+y﹣3z=﹣15,则x的值为()A.﹣2B.2C.3D.﹣3【分析】先利用x:y:z=1:2:3,y=2x,z=3x,然后消去y与z得到关于x的一元一次方程,再解一次方程即可.【解答】解:∵x:y:z=1:2:3,∴y=2x,z=3x,∴2x+2x﹣9x=﹣15,∴x=3.故选:C.【点评】本题考查了解三元一次方程组:利用代入消元或加减消元把解三元一次方程组的问题转化为解二元一次方程组的问题.2.若a:b=3:2,且b是a、c的比例中项,则b:c等于()A.4:3B.3:4C.3:2D.2:3【分析】由b是a、c的比例中项,根据比例中项的定义,即可求得,又由a:b=3:2,即可求得答案.【解答】解:∵b是a、c的比例中项,∴b2=ac,即,∵a:b=3:2,∴b:c=3:2.故选:C.【点评】此题考查了比例线段以及比例中项的定义.解题的关键是熟记比例中项的定义及其变形.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,我们就说这四条线段是成比例线段,简称比例线段.3.下列命题中,其中正确的命题个数有()(1)在△ABC中,已知AB=6,AC=,∠B=45°,则∠C的度数为60°;(2)已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3)圆心角是180°的扇形是一个半圆;(4)已知点P是线段AB的黄金分割点,若AB=1,则AP=.A.1个B.2个C.3个D.4个【分析】(1)作出图形,过点A作AD⊥BC于点D,然后求出AD的长度,再在Rt△ACD中,利用锐角的正弦值求出∠C的度数即可;(2)作出图形,根据圆的半径为5,圆心到AB的距离为3作出到直线AB的距离为2的直线,与圆的交点的个数即为所求;(3)根据半圆的圆心角等于180°解答;(4)因为AP是较长的线段还是较短的线段不明确,所以分两种情况讨论求解.【解答】解:(1)如图,过点A作AD⊥BC于点D,∵AB=6,∠B=45°,∴AD=AB sin45°=6×=3,又∵AC=,∴sin∠C===,∴∠C=60°,故本小题正确;(2)如图所示,到直线AB的距离为2的点有3个,故本小题正确;(3)∵半圆的圆心角为180°,∴圆心角是180°的扇形是一个半圆加一条直径,故本小题错误;(4)①若AP是较长线段,则AP2=AB•BP,即AP2=1×(1﹣AP),AP2+AP﹣1=0,解得AP=,②若AP是较短的线段,则AP=1﹣=,故本小题错误.综上所述,正确的命题有(1)(2)共2个.故选:B.【点评】本题考查了黄金分割,垂径定理,圆心角、弧、弦的关系,解直角三角形,作出图形,利用数形结合的思想求解比较关键.4.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5B.6C.7D.8【分析】根据平行线分线段成比例定理解答即可.【解答】解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.【点评】本题考查了平行线分线段成比例定理的应用,能熟练地运用定理进行计算是解此题的关键,题目比较典型,难度适中,注意:对应成比例.5.下列说法中正确的是()A.两个直角三角形一定相似B.两个等腰三角形一定相似C.两个等腰直角三角形一定相似D.两个矩形一定相似【分析】根据三角形、矩形相似的判定方法逐个分析,确定正确答案即可.【解答】解:A、两个直角三角形只有一个直角可以确定相等,其他两个角度未知,故A不正确;B、等腰三角形的角度不一定相等,各边也不一定对应成比例,故B不正确;C、两个等腰直角三角形的对应相等,所以两个等腰直角三角形相似,故C正确;D、两个矩形对应角相等,但对应边的比不一定相等,故D不正确;故选:C.【点评】本题考查了相似图形的知识,解题的关键是了解对应角相等,对应边的比相等的图形相似,难度不大.6.两个相似的六边形,如果一组对应边的长分别为3cm,4cm,且它们面积的差为28cm2,则较大的六边形的面积为()A.44.8 cm2B.45 cm2C.64 cm2D.54 cm2【分析】设大六边形的面积为xcm2,根据相似多边形的性质列出比例式,计算即可.【解答】解:设大六边形的面积为xcm2,则小六边形的面积为(x﹣28)cm2,∵两个六边形相似,∴=()2,解得,x=64,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.7.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm【分析】根据相似三角形的对应边成比例求解可得.【解答】解:设另一个三角形的最长边长为xcm,根据题意,得:=,解得:x=4.5,即另一个三角形的最长边长为4.5cm,故选:C.【点评】本题主要考查相似三角形的性质,解题的关键是掌握相似三角形的对应角相等,对应边的比相等.8.如图,△ABC中,P为AB上的一点,在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC和△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【分析】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解答】解:当∠ACP=∠B,∠A公共,所以△APC∽△ACB;当∠APC=∠ACB,∠A公共,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∠A公共,所以△APC∽△ACB;当AB•CP=AP•CB,即=,而∠PAC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.9.如图,在平行四边形ABCD中,E是DC上的点,DE:EC=3:2,连接AE交BD于点F,则△DEF与△BAF的面积之比为()A.2:5B.3:5C.9:25D.4:25【分析】根据平行四边形的性质可得出CD∥AB,进而可得出△DEF∽△BAF,根据相似三角形的性质结合DE:EC=3:2,即可得出△DEF与△BAF的面积之比,此题得解.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,∴△DEF∽△BAF.∵DE:EC=3:2,∴==,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,牢记相似三角形的面积比等于相似比的平方是解题的关键.10.在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A.10m B.12m C.15m D.40m【分析】根据同时同地物高与影长成正比列式计算即可得解.【解答】解:设旗杆高度为x米,由题意得,=,解得:x=15.故选:C.【点评】本题考查了相似三角形的应用,主要利用了同时同地物高与影长成正比,需熟记.二.填空题(共8小题)11.若=,则=.【分析】根据分比性质,可得答案.【解答】解:由分比性质,得=﹣=﹣2=,∴=,故答案为:.【点评】本题考查了比例的性质,利用了分比性质,用x表示y,是解题关键.12.如图,直线l1∥l2∥l3,直线AC分别交l1、l2、l3于点A、B、C;过点B的直线DE分别交l1、l3于点D、E.若AB=2,BC=4,BD=1.5,则线段DE的长为 4.5.【分析】根据平行线分线段成比例定理得到=,然后把AB、BC、BD的值代入后,利用比例的性质可计算出DE的长.【解答】解:∵l1∥l2∥l3,∴=,即,∴BE=3,∴DE=3+1.5=4.5.故答案为:4.5.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.13.已知==,且a+b﹣2c=6,则a的值10.【分析】设===k,表示出a,b,c,代入a+b﹣3c=求出k的值,即可确定出a的值.【解答】解:设===k,则有a=5k,b=6k,c=4k,代入a+b﹣2c=得:5k+6k﹣8k=6,解得:k=2,则a=10,故答案为:10【点评】此题考查了比例的性质,熟练掌握比例的性质是解本题的关键.14.如图,△ABC与△ADB中,∠ABC=∠ADB=90°,∠C=∠ABD,AC=5cm,AB=4cm,AD 的长为.【分析】根据相似三角形的判定与性质即可求出答案.【解答】解:∵∠ABC=∠ADB=90°,∠C=∠ABD,∴△ACB∽△ABD,∴,∴AD==cm,故答案为:【点评】本题考查相似三角形的性质与判定,解题的关键是熟练运用相似三角形的性质与判定,本题属于基础题型.15.如图,在△ABC中,DE∥BC,=,则=.【分析】由DE∥BC可得出∠ADE=∠B、∠AED=∠C,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出的值.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质,利用相似三角形的判定定理证出△ADE∽△ABC是解题的关键16.已知△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B=34°,∠D=70°,则当∠F=76°时,△ABC∽△DEF.【分析】利用两对角相等的三角形相似即可作出判断.【解答】解:∵△ABC和△DEF中.点A、B、C分别与点D、E、F相对应.且∠A=70°时,∠B =34°,∠D=70°,∴∠B=∠E=34°,∴∠C=∠F=76°,故答案为:76°【点评】此题考查了相似三角形的判定,熟练掌握相似三角形的判定方法是解本题的关键.17.如图,已知线段AB的两个端点在直角坐标系中的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后A、B的对应点坐标分别是A′(m,m),B′(n,n);点A到原点O的距离是m.【分析】由于在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,则把点A和点B的坐标都乘以即可得到点A′和点B′的坐标,再利用两点间的距离公式计算点A到原点O的距离.【解答】解:∵A(m,m),B(2n,n),而位似中心为原点,相似比为,∴A′(m,m),B′(n,n);点A到原点O的距离==m.故答案为(m,m),(n,n);m.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.18.如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚AD和BC交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD,OB=3OC),然后张开两脚,使A、B两个尖端分别在线段l的两端上,若CD =2,则AB的长是6.【分析】根据题意可知△ABO∽△DCO,根据相似三角形的性质即可求出AB的长度,此题得解.【解答】解:根据题意,可知:△ABO∽△DCO,∴=,即=3,∴AB=6.故答案为:6.【点评】本题考查了相似三角形的应用,利用相似三角形的性质求出AB的长度是解题的关键.三.解答题(共8小题)19.已知,(1)求的值;(2)若x﹣2y+4z=24,求x+y+z的值.【分析】设=k,于是得到x=2k,y=3k,z=4k,代入代数式即可得到结论.【解答】解:∵,∴设=k,∴x=2k,y=3k,z=4k,∴(1)==;(2)∵x﹣2y+4z=24,∴2k﹣6k+16k=24,∴k=2,∴x+y+z=2k+3k+4k=9k=18.【点评】本题考查了比例的性质,熟练掌握比例的性质是解题的关键.20.如图,四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2.(1)求下列各线段的比:,,;(2)指出AB,BC,CF,CD,EF,FB这六条线段中的成比例线段(写一组即可)【分析】(1)根据矩形的性质和线段的和差关系得到CD,EF,BC,CF,再代入数据即可求得各线段的比;(2)根据成比例线段的定义写一组即可求解.【解答】解:(1)∵四边形ABCD与四边形ABFE都是矩形,AB=3,AD=6.5,BF=2,∴CD=EF=AB=3,BC=AD=6.5,CF=BC﹣BF=4.5,∴==,==,=;(2)成比例线段有=.【点评】本题考查了矩形的性质,比例线段,解决问题的关键是得到CD,EF,BC,CF的值.21.如图,在△ABC与△A'B'C'中,∠A=∠A',BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,点D、E、D'、E'分别在AC、AB、A'C'、A'B'上,且=.求证:=【分析】先证△BDC∽△B′D′C′得∠ACB=∠A′C′B′,结合∠A=∠A′可证△ABC∽△A'B'C',再利用相似三角形的性质可得答案.【解答】解:∵BD是AC边上的高、B'D'是A'C'的高,∴∠BDC=∠B′D′C′=90°,∴△BDC和△B′D′C′均为直角三角形,∵=,∴△BDC∽△B′D′C′,∴∠ACB=∠A′C′B′,∵∠A=∠A′,∴△ABC∽△A'B'C',∵BD、CE是△ABC的高,B'D'、C'E'是△A'B'C'的高,∴=.【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握相似三角形的判定定理及相似三角形的对应边的比、对应高的比、对应中线的比、对应角平分线的比和周长的比都等于相似比、面积比等于相似比的平方的性质.22.如图所示:在△ABC中,AB=AC=5,BC=8,D,E分别为BC.AB边上一点,∠ADE=∠C,(1)求证:AD2=AE•AB;(2)∠ADC与∠BED是否相等?请说明理由;(3)若CD=2,求AD的长.【分析】(1)证明△DAE∽△BAD,根据相似三角形的性质证明;(2)根据三角形的外角的性质、等腰三角形的性质证明;(3)证明△ADC∽△DEB,根据相似三角形的性质求出BE,代入(1)的结论计算即可.【解答】(1)证明:∵∠ADE=∠C,∠DAE=∠BAD,∴△DAE∽△BAD,∴=,即AD2=AE•AB;(2)∠ADC=∠DAE+∠B,∠BED=∠DAE+∠ADE,∵AB=AC,∴∠B=∠C,∴∠ADC=∠BED;(3)∵∠ADC=∠BED,∠B=∠C,∴△ADC∽△DEB,∴=,即=,解得,BE=2.4,由(1)得,AD2=AE•AB=13,则AD=.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.23.如图,∠ABC=∠BCD=90°,∠A=45°,∠D=30°,BC=1,AC,BD交于点O.求的值.【分析】由同旁内角互补两直线平行得到AB与CD平行,再利用两直线平行内错角相等,以及对顶角相等得到三角形相似,由相似得比例求出所求即可.【解答】解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴,在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1,在Rt△BCD中,∠BCD=90°,∠D=30°,BC=1,∴CD=,∴==.【点评】此题考查了相似三角形的性质与判定,以及平行线的性质,能利用相似三角形的性质将未知线段的比转化为已知线段的比是解本题的关键.24.如图,以O为位似中心,将△ABC放大为原来的2倍(不写作法,保留作图痕迹).【分析】延长OA到A′使OA′=2OA,同样作出点B′、C′,从而得到满足条件的△A′B′C′;反向延长OA到A″使OA″=2OA,同样作出点B″、C″,从而得到满足条件的△A″B″C″.【解答】解:如图所示:△A′B′C′和△A″B″C″.【点评】本题考查了作图﹣位似变换:画位似图形的一般步骤为:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.25.如图,在四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,点E为AB的中点.(1)求证:△ADC∽△ACB.(2)若AD=2,AB=3,求的值.【分析】(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明=,由相似三角形的性质列出比例式,计算即可.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵AC2=AB•AD,∴=,∴△ADC∽△ACB;(2)∵△ADC∽△ACB,∴∠ACB=∠ADC=90°,∵点E为AB的中点,∴CE=AE=AB=,∴∠EAC=∠ECA,∴∠DAC=∠EAC,∴∠DAC=∠ECA,∴CE∥AD;∴==,∴=.【点评】本题考查的是直角三角形的性质、平行线的判定、相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.26.如图,点E是正方形ABCD的边BC延长线上一点,联结DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:GD•AB=DF•BG;(2)联结CF,求证:∠CFB=45°.【分析】(1)由∠BCD=∠GFD=90°、∠BGC=∠FGD可证得△BGC∽△DGF,即可知,根据AB=BC即可得证;(2)连接BD,由△BGC∽△DGF知,即,根据∠BGD=∠CGF可证△BGD∽△CGF得∠BDG=∠CFG,再由即可得证.【解答】证明:(1)∵四边形ABCD是正方形∴∠BCD=∠ADC=90°,AB=BC,∵BF⊥DE,∴∠GFD=90°,∴∠BCD=∠GFD,∵∠BGC=∠FGD,∴△BGC∽△DGF,∴,∴DG•BC=DF•BG,∵AB=BC,∴DG•AB=DF•BG;(2)如图,连接BD、CF,∵△BGC∽△DGF,∴,∴,又∵∠BGD=∠CGF,∴△BGD∽△CGF,∴∠BDG=∠CFG,∵四边形ABCD是正方形,BD是对角线,∴,∴∠CFG=45°.【点评】本题主要考查相似三角形的判定和性质及正方形的性质,解题的关键是熟练掌握相似三角形的判定和性质.。
九年级数学 第四章 图形的相似 1成比例线段第2课时 等比性质作业

8.(2018·宁夏)已知ba=23,则aa-+22bb的值是_-__12__. 9.已知 x∶y∶z=4∶5∶7,则23xx+-32yy-+2zz=__1_. 10.已知35xx-+2yy=12,则xx+ -yy=_-__13_1_.
第九页,共十五页。
11.(教材 P80 例 2 变式)如图,AADB=AACE=BDCE=65,
第十四页,共十五页。
内容(nèiróng)总结
No 第四章 图形(túxíng)的相似。则a+2=3m,b=4m,c+5=6m,。∴a=3m-2,b=4m,c=6m-
5.。∴2(3m-2)-4m+3(6m-5)=21,。即20m=40,解得m=2,。等边
Image
12/7/2021
第十五页,共十五页。
解:令a+3 2=b4=c+6 5=m,
则a+2=3m,b=4m,c+5=6m, ∴a=3m-2,b=4m,c=6m-5. ∵2a-b+3c=21, ∴2(3m-2)-4m+3(6m-5)=21, 即20m=40,解得m=2, ∴a=3m-2=4,b=4m=8,c=6m-5=7. ∴a∶b∶c=4∶8∶7
第十三页,共十五页。
解:(1)设a+3 4=b+2 3=c+4 8=k, 得 a=3k-4,b=2k-3,c=4k-8. ∵a+b+c=12,∴3k-4+2k-3+4k-8=12, 解得 k=3,∴a=5,b=3,c=4 (2)∵32+42=52,即 b2+c2=a2, ∴△ABC 是直角三角形, ∴S△ABC=12×3×4=6
且△ABC 与△ADE 周长差为 4,求△ABC 与△ADE 的周长.
解:∵AADB=AACE=BDCE=65,BDCE=65. 又 C△ABC-C△ADE=4, ∴C△ABC=24,C△ADE=20
九年级数学下册 (相似三角形)练习试题 试题

轧东卡州北占业市传业学校龙门县龙城一中九年级数学下册 <相似三角形>练习试题〔〕一.选择题(每题5分,共25分)1.⊿ABC 的三边长分别为2,6,2,⊿A ′B ′C ′的两边长分别是1和3,如果⊿ABC 与⊿A ′B ′C ′相似,那么⊿A ′B ′C ′的第三边长应该是( ) A.2 B.22 C.26 D.33 2.如图,∠ACB=∠ADC=90°,BC=a,AC=b,AB=c,要使⊿ABC ∽⊿CAD,只要CD 等于( ) A.c b 2B.a b 2C.c abD.ca 2 3、如图,□ABCD 中,EF ∥AB ,DE ∶EA = 2∶3,EF = 4,那么CD 的长〔 〕A .163B .8C .10D .164、如图,一束平行的光线从教室窗户射入教室的平面示意图,测得光线与地面所成的角∠=︒AMC 30,窗户的高在教室地面上的影长MN=23米,窗户的下檐到教室地面的距离BC=1米〔点M 、N 、C 在同一直线上〕,那么窗户的高AB 为 ( )A .3米B .3米C .2米D .1.5米5、某校方案在一块三角形的空地上修建一个面积最大的正方形水池,使得水池的一边在△ABC 的边BC 上,△ABC 中边BC=60m ,高AD=30m ,那么水池的边长应为( )A 10mB 20mC 30mD 40m二.填空题(每题5分,共25分)6、43=y x ,那么._____=-yy x 7、.把一矩形纸片对折,如果对折后的矩形与原矩形相似,那么原矩形纸片的长与宽之比为 .8、如图,小伟在打网球时,击球点距离球网的水平距离是8米,网高是0.8米,要使球恰好能打过网,且落在离网4米的位置,那么球拍击球的高度h 为 米.9、大矩形的周长是与它位似的小矩形的2倍,小矩形的面积是5cm 2,大矩形的长为5cm,那么大矩形的宽为cm.10、△ABC 周长为1,连结△ABC 三边中点构成第二个三角形,再连结第二个三角形三边中点构成第三个三角形,以此类推,第2021个三角形的周长为三.解答题(50分)11〔10分〕如图,测量小玻璃管口径的量具ABC ,AB 的长为10cm ,AC被分为60等份.如果小玻璃管口DE 正好对着量具上20等份处,且DE ∥AB ,那么小玻璃管口径DE 是多大?12〔10分〕如图:旗杆附近有一斜坡.小明准备测量旗杆AB 的高度,他发现当斜坡正对着太阳时,旗杆AB的影子恰好落在水平地面和斜坡的坡面上,此时小明测得水平地面上的影长BC =20米,斜坡坡面上的影长CD =8米,太阳光线AD 与水平地面成30°角,斜坡CD 与水平地面BC 成30°的角,求旗杆AB 的高度〔精确到1米〕.13、〔20分〕如图,梯形ABCD 中.AB ∥CD .且AB=2CD ,E,F 分别是AB ,BC的中点。
【初三数学】天津市九年级数学下(人教版)第二十七章《相似》测试卷(含答案)

人教版数学九年级下册第二十七章 相似 章末复习卷一、选择题:1、制作一块3m ×2m 长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A .360元B .720元C .1080元D .2160元 2.如果x ∶y =2∶3,则下列各式不成立的是( D ) A.x +y y =53 B.y -x y =13C.x 2y =13D.x +1y +1=343.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC ,若BD =2AD ,则( B )A.AD AB =12 B .AE EC =12 C.AD EC =12 D .DE BC =12 4. 下列各组图形中有可能不相似的是( A ) A .各有一个角是45°的两个等腰三角形 B .各有一个角是60°的两个等腰三角形 C .各有一个角是105°的两个等腰三角形 D .两个等腰直角三角形5.如图,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,且∠ ,将 绕点A 顺时针旋转 ,使点E 落在点处,则下列判断不正确的是 DA. ′是等腰直角三角形B. AF 垂直平分C. ′∽D. ′是等腰三角形6. 下列图形中不是位似图形的是( C )7.已知△ABC中,AB=AC,∠A=36°,以点A为位似中心把△ABC的各边放大2倍后得到△AB′C′,则∠B的对应角∠B′的度数为( C )A.36° B.54° C.72° D.144°8、若四条线段a,b,c,d成比例,且a=3 cm,b=2 cm,c=9 cm,则线段d的长为( C )A.4 cmB.5 cmC.6 cmD.8 cm9.如图,在△ABC中,DE∥BC,,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE 的长为( C )A.6 B.8 C.10 D.1210. 如图所示3个图形中是位似图形的有( B )A.1个 B.2个 C.3个 D.0个二、填空题:11、在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,则海口与三亚的实际距离约为 222 千米.12. 若k=a-2bc=b-2ca=c-2ab,且a+b+c≠0,则k= -1 .13.若△ABC∽△A1B1C1,AB=2,A1B1=3;则△A1B1C1与△ABC的相似比为 3∶2 .14.如图,有三个三角形,其中相似的是①与② .15. 如图,四边形ABCD与四边形EFGH位似,位似中心点是O,OEOA=35,则FGBC=35.三、解答题16.若a+23=b4=c+56,且2a-b+3c=21.试求a∶b∶c.解:a∶b∶c=4∶8∶7.17.已知四边形ABCD和A1B1C1D1中,ABA1B1人教版九年级数学下册复习_第27章_相似_单元测试卷(有答案)一、选择题(本题共计10 小题,每题3 分,共计30分,)1. 已知,则下面结论成立的是()A. B. C. D.2. 下列各组中的四条线段成比例的是()A.,,,B.,,,C.,,,D.,,,3. 如图,若,则的度数是()A. B. C. D.4. 下列各组线段中,能成比例的是()A.,,,B.,,,C.,,,D.,,,5. 若点是线段的黄金分割点,设,则的长为()A. B. C. D.或6. 如图,,,、分别交于点、,则图中相似的三角形有()A.个B.个C.个D.个7. 正常人的体温一般在,室温太高、太低都会感觉不舒服.有人研究认为人的满意温度与正常体温的比是黄金分割比,根据你的生活体验和数学知识,该温度约为()A. B. C. D.8. 如图,中,若,,,则的长为()A. B. C. D.9. 若的各边都分别扩大到原来的倍,得到,下列结论正确的是()A.与的对应角不相等B.与不一定相似C.与的相似比为D.与的相似比为10. 如果线段、、、满足,那么下列等式不一定成立的是()A. B. C. D.二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 如图,在矩形中,、分别是、的中点.若矩形与矩形是相似的矩形,则________.12. 如图,,,已知,,则图中线段的长________,________,________.13. 若两个三角形的相似比为,且较大的三角形的周长为,则较小的三角形的周长为________ .14. 如图,在中,、分别是、边上的点;,,.当________时,.15. 如果两个位似图形的对应线段长分别为和,且两个图形的面积之差为,则较大的图形的面积为________.16. 如图,添加一个条件:________=tag_underline,使,17. 如图,在中,点、分别在、上,.若,,则的值为________.18. 已知,则的值为________.19. 小亮带着他弟弟在阳光下散步,小亮的身高为米,他的影子长米.若此时他的弟弟的影子长为米,则弟弟的身高为________米.20. 如图,中,,,,为的中点,若动点以的速度从点出发,沿着的方向运动,设点的运动时间为秒,连接,当是直角三角形时,的值为________.三、解答题(本题共计8 小题,共计60分,)21.(4分) 如图,是由经过位似变换得到的(1)求出与的相似比,并指出它们的位似中心;(2)是的位似图形吗?如果是,求相似比;如果不是说明理由;(3)如果相似比为,那么的位似图形是什么?22.(8分) 【问题情境】如图,中,,,我们可以利用与相似证明,这个结论我们称之为射影定理,试证明这个定理;【结论运用】如图,正方形的边长为,点是对角线、的交点,点在上,过点作,垂足为,连接,(1)试利用射影定理证明;(2)若,求的长.23. (8分)如图,在中,,于,求证:,.24.(8分) 如图,在中,,是边上的高,是边上的一点,,,垂足分别为,.(1)求证:;(2)与是否垂直?若垂直,请给出证明;若不垂直,请说明理由.25.(8分) 如图,在平面直角坐标系中,的三个顶点分别为,,.(1)以原点为位似中心,将缩小为原来的,得到.请在第一象限内,画出.(2)在(1)的条件下,点的对应点的坐标为________,点的对应点的坐标为________.26. (8分)已知矩形与矩形是位似图形,为位似中心.已知矩形的周长为,,,求与的长.27. (8分)要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为、、,另一个三角形框架的一边长为,它的另外两边长分别可以为多少?28.(8分) 如图,在中,,,,动点(与点,不重合)在边上,交于点.(1)当的面积与四边形的面积相等时,求的长;(2)当的周长与四边形的周长相等时,求的长;(3)试问在上是否存在点,使得为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出的长.参考答案与试题解析人教版九年级数学下册复习第27章相似单元测试卷一、选择题(本题共计10 小题,每题3 分,共计30分)1.【答案】A【考点】比例的性质【解析】根据等式的性质,可得答案.【解答】、两边都除以,得,故符合题意;、两边除以不同的整式,故不符合题意;、两边都除以,得,故不符合题意;、两边除以不同的整式,故不符合题意;2.【答案】A【考点】比例线段比例的性质【解析】理解成比例线段的概念,注意在线段两两相乘时,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等.【解答】解:根据两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.所给选项中,只有中,,四条线段成比例,故选:.3.【答案】C【考点】相似三角形的性质【解析】根据三角形的内角和等于求出,再根据相似三角形对应角相等可得.【解答】解:在中,,∵,∴.故选.4.【答案】D【考点】比例线段【解析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】解:、,故选项错误;、,故选项错误;、,故选项错误;、,故选项正确.故选.5.【答案】D【考点】黄金分割【解析】根据黄金分割的概念得到较长线段根据黄金分割的概念得到较长线段,再根据,即可得出答案.【解答】解:∵是的黄金分割点,∴较长线段,∵,∴,∴较短的线段;故选.6.【答案】B【考点】相似三角形的判定【解析】根据,可以判定图中所有的三角形相似,即可得出与相似的三角形.【解答】解:,∴,,∵,∴,∴与相似三角形有对.故选.7.【答案】C【考点】黄金分割【解析】根据人的满意温度与正常体温的比是黄金分割比,可知该温度约为.【解答】解:∵人的满意温度与正常体温的比是黄金分割比,而正常人的体温一般在,∴人的满意温度约为.故选.8.【答案】D【考点】平行线分线段成比例【解析】由,根据比例的性质,可得,又由,根据平行线分线段成比例定理,即可求得的长.【解答】解:∵,∴,又∵,∴,∴.故选.9.【答案】C【考点】相似图形相似三角形的判定【解析】相似三角形的对应边之比等于相似比,据此即可解答.【解答】解:因为的各边都分别扩大到原来的倍,得到,那么的各边为的倍,即与的相似比为.故选 . 10.【答案】 C【考点】比例的性质 【解析】根据比例的性质,对所给选项进行整理,找到不一定正确的选项即可. 【解答】解: 、∵,∴,即,正确,不符合题意;、∵,∴,即,正确,不符合题意;、∵,∴ , ,∴,错误,符合题意,、∵ 、 、正确,∴ 相除可得,正确,不符合题意; 故选 .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】【考点】相似多边形的性质 【解析】首先设 ,则 ,进而利用矩形 与矩形 是相似的矩形,则,进而求出即可. 【解答】解:设 ,则 ,∵ 矩形 与矩形 是相似的矩形, ∴,人教版九年级下册数学《相似》单元测试(Word 版有答案)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为34,则△ABC 与△DEF 对应中线的比为( )A.34B.43C.916D.169 2.已知b a =513,则a -b a +b的值是( )A.23B.32C.94D.493.如图,在四边形ABCD 中,AD ∥BC ,对角线AC ,BD 相交于点O.若AD =1,BC =3,则AO CO 的值为( )A.12B.13C.14D.194.如图,在△ABC 中,DE ∥BC ,DE 分别与AB ,AC 相交于点D ,E.若AD =12,DB =4,则DE ∶BC 的值为( )A.23B.12C.34D.355.如图,不能判定△AOB 和△DOC 相似的条件是( )A .AO ·CO =BO ·DO B.AO DO =ABCDC .∠A =∠D D .∠B =∠C6.如图,矩形ABCD ∽矩形ADFE ,AE =1,AB =4,则AD =( )A .2B .2.4C .2.5D .37.已知如图①,②中各有两个三角形,其边长和角的度数如图上标注,则对图①,②中的两个三角形,下列说法正确的是( )A .只有①相似B .只有②相似C .都不相似D .都相似8.如图,在8×4的矩形网格中,每个小正方形的边长都是1.若△ABC 的三个顶点在图中相应的格点上,图中点D ,E ,F 也都在格点上,则下列与△ABC 相似的三角形是( )A .△ACDB .△ADFC .△BDFD .△CDE9.如图,点M 在BC 上,点N 在AM 上,CM =CN ,AM AN =BMCM,下列结论正确的是( )A .△ABM ∽△ACB B .△ANC ∽△AMB C .△ANC ∽△ACMD .△CMN ∽△BCA10.如图,在△ABC 中,DE ∥BC ,DF ∥AC ,EG ∥AB ,且AE ∶EC =3∶2.若BC =10,则FG 的长为( )A.1 B.2 C.3 D.411.阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为( )A.4米 B.3.8米 C.3.6米 D.3.4米12.在Rt△ABC和Rt△DEF中,已知∠C=∠F=90°,在下列条件中:①∠A=30°,∠E =60°;②AC=5,BC=4,DF=15,EF=12;③AB=5,AC=3,DE=10,DF=6;④AC∶AB =1∶3,DF=a,DE=3a.能够判断Rt△ABC∽Rt△DEF的有( )A.1个 B.2个 C.3个 D.4个13.如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合.若AB=2,BC=3,则△FCB′与△DGB′的面积之比为( )A.9∶4 B.16∶9 C.4∶3 D.3∶214.如图,将△ABC的高AD四等分,过每一个分点作底边的平行线,把三角形的面积分成四部分S1,S2,S3,S4,则S1∶S2∶S3∶S4等于( )A.1∶2∶3∶4 B.2∶3∶4∶5 C.1∶3∶5∶7 D.3∶5∶7∶9 15.如图,在△ABC中,AC=BC,CD是边AB上的高线,且有2CD=3AB=6,CE=EF=DF,则下列判断中不正确的是( )A.∠AFB=90° B.BE= 5C.△EFB∽△BFC D.∠ACB+∠AEB=45°16.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1 cm的速度从点A出发,沿折线AC —CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图像如图2所示.当点P运动5秒时,PD的长是( )A.1.5 cm B.1.2 cm C.1.8 cm D.2 cm二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.如图,已知AD∥BE∥CF,且AB=4,BC=5 ,EF=4,则DE=.18.如图,已知△OAB与△OA′B′是位似比为1∶2的位似图形,点O为位似中心.若△OAB 内一点P(x,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是.19.如图,在△ABC 中,AB =AC =10,BC =16,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E.则当BD =4时,CE = ;当∠AED =90°时,BD = . 三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)如图,矩形ABCD 中,AB =3,BC =6,点E 在对角线BD 上,且BE =1.8,连接AE 并延长交DC 于点F ,求CFCD的值.21.(本小题满分9分)如图,△ABC 的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O 为位似中心画△DEF ,使它与△ABC 位似,且位似比为2;(2)在(1)的条件下,若M(a ,b)为△ABC 边上的任意一点,则△DEF 的边上与点M 对应的点M ′的坐标为 .22.(本小题满分9分)已知:如图,在△ABC 中,BC =10,BC 边上的高h =5,点E 在边AB 上,过点E 作EF ∥BC ,交AC 边于点F ,点D 为BC 上一点,连接DE ,DF ,△DEF 的面积为4,求点E 到BC 的距离.23.(本小题满分9分)如图,CD是Rt△ABC斜边AB上的中线,过点D垂直于AB的直线交BC于点E,交AC延长线于点F.求证:(1)△ADF∽△EDB;(2)CD2=DE·DF.24.(本小题满分10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE =0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB.(结果精确到0.1 m)25.(本小题满分10分)如图,在△ABC中,BC=8 cm,AC=6 cm,点P从B出发,沿人教版数学九年级下册第二十七章相似章末专题训练人教版数学九年级下册第二十七章相似章末专题训练一、选择题1.下列各组图形相似的是( B )A.B.C.D.2.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( C )A.360元B.720元C.1080元D.2160元3.如图,直线l1∥l2∥l3,直线AC分别交,l1,l2,l3于点A,B,C,直线DF分别交,l1,l2,l3于点D,E,F.若DE=3,EF=6,AB=4,则AC的长是( D )A. 6B. 8C. 9D. 124.如图,已知DE∥BC,EF∥AB,则下列比例式错误的是( C )A. B.C. D.5.在△ABC和△DEF中,AB=AC,DE=DF,根据下列条件,能判断△ABC和△DEF相似的是( B )A.=B.=C.∠A=∠ED.∠B=∠D6.如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,则图中相似三角形共有( C )A.1对B.2对C.3对D.4对7.如图,将一张直角三角形纸片BEC的斜边放在矩形ABCD的BC边上,恰好完全重合,BE、CE分别交AD于点F、G,BC=6,AF∶FG∶GD=3∶2∶1,则AB的长为( C )A. 1B.C.D. 28. 下列说法正确的是( A )A. 位似图形一定是相似图形B. 相似图形一定是位似图形C. 两个位似图形一定在位似中心的同侧D. 位似图形中每对对应点所在的直线必互相平行9.已知△ABC∽△DEF,△ABC的面积为1,△DEF的面积为4,则△ABC与△DEF的周长之比为( A )A. 1∶2B. 1∶4C. 2∶1D. 4∶110. 如图,△ABC∽△DEF,相似比为1∶2.若BC=1,则EF的长是( D )A.1 B.2 C.3 D.4二、填空题11.如图所示,C为线段AB上一点,且满足AC∶BC=2∶3,D为AB的中点,且CD=2 cm,则AB=________ cm.【答案】20则海口与三12.在比例尺为1:6 000 000 的海南地图上,量得海口与三亚的距离约为3.7 厘米,亚的实际距离约为千米.【答案】22213.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为__________.【答案】114.如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,在BA 的延长线上取一点E ,连接OE 交AD 于点F.若CD =5,BC =8,AE =2,则AF = .【答案】16915.在△ABC 中,AB =6 cm ,AC =5 cm ,点D 、E 分别在AB 、AC 上.若△ADE 与△ABC 相似,且S △ADE ∶S 四边形BCED =1∶8,则AD =__________ cm. 【答案】2或 三、解答题16. 已知四条线段a ,b ,c ,d 的长度,试判断它们是否成比例: (1)a =16 cm,b =8 cm,c =5 cm,d =10 cm; (2)a =8 cm,b =5 cm,c =6 cm,d =10 cm.(1) 【答案】∵8×10=80,16×5=80,∴bd =ac.∴能够成比例. (2) 【答案】∵8×6=48,10×5=50,∴不能够成比例.17.问题背景:在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对校园中一些物体进行了测量.下面是他们通过测量得到的一些信息如图1:甲组:测得一根直立于平地,长为80 cm 的竹竿的影长为60 cm ; 如图2:乙组:测得学校旗杆的影长为900 cm ;如图3:丙组:测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为350 cm ,影长为300 cm. 解决问题:(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度?(2)如图3,设太阳光线MH 与⊙O 相切于点M ,请根据甲、丙两组得到的信息,求景灯灯罩的半径?【答案】解(1)∵同一时刻物高与影长成正比,∴=,即=,解得DE=1 200 cm;(2)连接OM,设OM=r,∵同一时刻物高与影长成正比,∴=,即=,解得NG=400 cm,在Rt△NGH中,NH===500 cm,设⊙O的半径为r,∵MH与⊙O相切于点M,∴OM⊥NH,∴∠NMO=∠NGH=90°,又∵∠ONM=∠GNH,∴△NMO∽△NGH,∴=,即=,又∵NO=NK+KO=(NG-KG)+KO=400-350+r=50+r,∴500r=300(50+r),解得r=75 cm.故景灯灯罩的半径是75 cm.18.如图已知,在△ABC中,CD⊥AB,BE⊥AC,BE交CD于点O.求证:△ABE∽△OCE.证明:因为CD⊥AB,BE⊥AC,所以∠AEB=∠ADC=90°.又∠A=∠A,所以∠ABE=∠OCE.又因为∠AEB=∠OEC,所以△ABE∽△OCE.18.如图所示,△ABC是等边三角形,点D、E分别在BC、AC上,且CE=BD,BE、AD相交于点F.求证:(1)△ABD≌△BCE;(2)△AEF∽△ABE.【答案】证明 (1)∵△ABC 是等边三角形, ∴AB =BC ,∠ABD =∠C =∠BAC =60°, 在△ABD 和△BCE 中,∴△ABD ≌△BCE (SAS); (2)∵△ABD ≌△BCE , ∴∠BAD =∠CBE , ∴∠EAF =∠ABE , ∵∠AEF =∠BEA , ∴△AEF ∽△ABE .19. 如图,在平面直角坐标系中,△ABC 的顶点坐标为A (-2,3),B (-3,2),C (-1,1).(1)若将△ABC 向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A 1B 1C 1; (2)画出△A 1B 1C 1绕原点旋转180°后得到的△A 2B 2C 2;(3)△A'B'C'与△ABC 是位似图形,请写出位似中心的坐标: ; (4)顺次连接C ,C 1,C',C 2,所得到的图形是轴对称图形吗? (1) 【答案】如答图.(2) 【答案】如答图.(3) 【答案】(0,0)(4) 【答案】如答图,所得图形是轴对称图形.20.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?【答案】(1)证明如图1,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠B=∠C=∠DPE=45°,∴∠BPG+∠CPF=135°,在△BPG中,∵∠B=45°,∴∠BPG+∠BGP=135°,∴∠BGP=∠CPF,∵∠B=∠C,∴△PBG∽△FCP;(2)解△PBG与△FCP相似.理由如下:如图2,∵△ABC、△DEP是两个全等的等腰直角三角形,∴∠人教版九年级下册数学《第27章相似》单元测试卷(解析版)一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:42.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=13.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:55.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:817.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:278.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm二.填空题(共5小题)11.若,则=.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是km.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm (结果保留根号).14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的倍.三.解答题(共4小题)16.已知a:b:c=2:3:4,且2a+3b﹣2c=10,求a,b,c的值.17.某考察队从营地P处出发,沿北偏东60°前进了5千米到达A地,再沿东南方向前进到达C地,C地恰好在P地的正东方向.回答下列问题:(1)用1cm代表1千米,画出考察队行进路线图;(2)量出∠PAC和∠ACP的度数(精确到1°);(3)测算出考察队从A到C走了多少千米?此时他们离开营地多远?(精确到0.1千米).18.如图,△ABC中,AB=AC,∠A=36°,CE平分∠ACB交AB于点E,(1)试说明点E为线段AB的黄金分割点;(2)若AB=4,求BC的长.19.如图,l1∥l2∥l3,AB=3,AD=2,DE=4,EF=7.5.求BC、BE的长.2019年人教版九年级下册数学《第27章相似》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若a:b=3:2,且b2=ac,则b:c=()A.4:3B.3:2C.2:3D.3:4【分析】根据比例的基本性质,a:b=3:2,b2=ac,则b:c可求.【解答】解:∵b2=ac,∴b:a=c:b,∵a:b=3:2,∴b:c=a:b=3:2.故选:B.【点评】利用比例的基本性质,对比例式和等积式进行互相转换即可得出结果.2.下列各组中的四条线段成比例的是()A.a=,b=3,c=2,d=B.a=4,b=6,c=5,d=10C.a=2,b=,c=2,d=D.a=2,b=3,c=4,d=1【分析】根据比例线段的概念,让最小的和最大的相乘,另外两条相乘,看它们的积是否相等即可得出答案.【解答】解:A.×3≠2×,故本选项错误;B.4×10≠5×6,故本选项错误;C.2×=×2,故本选项正确;D.4×1≠3×2,故本选项错误;故选:C.【点评】此题考查了比例线段,理解成比例线段的概念和变形是解题的关键,注意在线段两两相乘的时候,要让最小的和最大的相乘,另外两条相乘,看它们的积是否相等进行判断.3.已知点C在线段AB上,且点C是线段AB的黄金分割点(AC>BC),则下列结论正确的是()A.AB2=AC•BC B.BC2=AC•BC C.AC=BC D.BC=AC 【分析】根据黄金分割的定义得出=,从而判断各选项.【解答】解:∵点C是线段AB的黄金分割点且AC>BC,∴=,即AC2=BC•AB,故A、B错误;∴AC=AB,故C错误;BC=AC,故D正确;故选:D.【点评】本题主要考查黄金分割,掌握黄金分割的定义和性质是解题的关键.4.如图,在△ABC中,D、E分别是AB、AC上的点,且DE∥BC,若AD:DB=3:2,则AE:AC等于()A.3:2B.3:1C.2:3D.3:5【分析】由DE∥CB,根据平行线分线段成比例定理,可求得AE、AC的比例关系.【解答】解:∵DE∥BC,AD:DB=3:2,∴AE:EC=3:2,∴AE:AC=3:5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,根据已知得出AE与EC的关系是解题关键.5.将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形【分析】因为直角三角形三边扩大同样的倍数,而角的度数不会变,所以得到的新的三角形是直角三角形.【解答】解:因为角的度数和它的两边的长短无关,所以得到的新三角形应该是直角三角形,故选B.【点评】主要考查“角的度数和它的两边的长短无关”的知识点.6.如果两个相似多边形的面积比为4:9,那么它们的周长比为()A.4:9B.2:3C.:D.16:81【分析】直接根据相似多边形周长的比等于相似比,面积的比等于相似比的平方进行解答即可.【解答】解:∵两个相似多边形面积的比为4:9,∴两个相似多边形周长的比等于2:3,∴这两个相似多边形周长的比是2:3.故选:B.【点评】本题考查的是相似多边形的性质,即相似多边形周长的比等于相似比,面积的比等于相似比的平方.7.两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【分析】根据相似三角形的面积比等于相似比的平方计算即可.【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.【点评】本题考查的是相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.如图所示,每个小正方形的边长均为1,则下列A、B、C、D四个图中的三角形(阴影部分)与△EFG相似的是()A.B.C.D.【分析】根据相似三角形的判定,易得出△ABC的三边的边长,故只需分别求出各选项中三角形的边长,分析两三角形对应边是否成比例即可.【解答】解:∵小正方形的边长为1,∴在△ABC中,EG=,FG=2,EF=,A中,一边=3,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故A错误;B中,一边=1,一边=,一边=,有,即三边与△ABC中的三边对应成比例,故两三角形相似.故B正确;C中,一边=1,一边=,一边=2,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故C错误;D中,一边=2,一边=,一边=,三边与△ABC中的三边不能对应成比例,故两三角形不相似.故D错误.故选:B.【点评】本题考查了相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边、对应角,可利用数形结合思想根据图形提供的数据计算对应角的度数、对应边的比.本题中把若干线段的长度用同一线段来表示是求线段是否成比例时常用的方法.9.如图,在△ABC中,已知∠ADE=∠B,则下列等式成立的是()A.B.C.D.【分析】首先证明△AED∽△ACB,再根据相似三角形的性质:对应边成比例可得答案.【解答】解:∵∠A=∠A,∠ADE=∠B,∴△AED∽△ACB,∴=.故选:A.【点评】此题主要考查了相似三角形的性质与判定,关键是掌握判断三角形相似的方法和相似三角形的性质.10.如图,是小孔成像原理的示意图,根据图所标注的尺寸,这支蜡烛在暗盒中所成的像CD的长是()A.B.C.D.1 cm【分析】据小孔成像原理可知△AOB∽△COD,利用它们的对应边成比例就可以求出CD 之长.【解答】解:如图过O作直线OE⊥AB,交CD于F,依题意AB∥CD∴OF⊥CD∴OE=12,OF=2而AB∥CD可以得△AOB∽△COD∵OE,OF分别是它们的高∴,∵AB=6,∴CD=1,故选:D.【点评】本题考查了相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,还有会用相似三角形对应边成比例.二.填空题(共5小题)11.若,则=.【分析】根据合比定理[如果a:b=c:d,那么(a+b):b=(c+d):d(b、d≠0)]解答即可.【解答】解:∵,∴,即=.故答案为:.【点评】本题主要考查了合比定理:在一个比例里,第一个比的前后项的差与它的后项的比,等于第二个比的前后项的差与它们的后项的比,这叫做比例中的分比定理.12.如果在比例尺为1:1000000的地图上,A、B两地的图上距离是5.8cm,那么A、B两地的实际距离是58km.【分析】实际距离=图上距离:比例尺,根据题意代入数据可直接得出实际距离.【解答】解:根据题意,5.8÷=5800000厘米=58千米.即实际距离是58千米.故答案为:58.【点评】本题考查了比例线段的知识,注意掌握比例线段的定义及比例尺,并能够灵活运用,同时要注意单位的转换.13.若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.14.已知:AM:MD=4:1,BD:DC=2:3,则AE:EC=8:5.【分析】过点D作DF∥BE,再根据平行线分线段成比例,而为公共线段,作为中间联系,整理即可得出结论.【解答】解:过点D作DF∥BE交AC于F,∵DF∥BE,∴△AME∽△ADF,∴AM:MD=AE:EF=4:1=8:2∵DF∥BE,∴△CDF∽△CBE,∴BD:DC=EF:FC=2:3∴AE:EC=AE:(EF+FC)=8:(2+3)∴AE:EC=8:5.【点评】本题主要考查平行线分线段成比例定理的应用,作出辅助线,利用中间量EF 即可得出结论.15.若一个三角形的各边长扩大为原来的5倍,则此三角形的周长扩大为原来的5倍.【分析】由题意一个三角形的各边长扩大为原来的5倍,根据相似三角形的性质及对应边长成比例来求解.【解答】解:∵一个三角形的各边长扩大为原来的5倍,∴扩大后的三角形与原三角形相似,∵相似三角形的周长的比等于相似比,∴这个三角形的周长扩大为原来的5倍,故答案为:5.【点评】本题考查了相似三角形的性质:相似三角形的周长的比等于相似比.。
2022年人教版九年级数学下册第二十七章-相似专题测评试题(含答案解析)

人教版九年级数学下册第二十七章-相似专题测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在▱ABCD中,对角线AC,BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F,若AB=4,BC=6,CE=1,则CF的长为()A B.1.5 C D.12、如图,已知矩形ABCD中,AB=3,BE=2,EF⊥B C.若四边形EFDC与四边形BEFA相似而不全等,则CE的值为()A.92B.6 C.152D.93、在ABC中,D,E分别是边AB,AC上的两个点,并且DE∥BC,AD:BD=3:2,则ADE与四边形BCED的面积之比为()A .3:5B .4:25C .9:16D .9:254、如图,点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,1S 表示AE 为边长的正方形面积,2S 表示以BC 为长,BE 为宽的矩形面积,3S 表示正方形ABCD 除去1S 和2S 剩余的面积,3S :2S 的值为( )A .12 B .23C D 3525、若578a b ck ===且323a b c -+=,则243a b c +-的值是( ) A .14 B .42 C .7 D .1436、下列图形中,不是位似图形的是( )A .B .C .D .7、已知32a b =,那么下列等式中正确的是( )A .53a b b += B .13a b b -= C .23a b = D .23ab =8、如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则BEEC的值为( )A .13B .14C .15D .1259、如果两个相似多边形的周长比是2:3,那么它们的面积比为( )A .2:3B .4:9C D .16:8110、如图,DE ∥BC ,则下列式子正确的是( )A .=AB BDEC AEB .AD DEAB BC= C .=AE ABEC ADD .AD DEAB BC=第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AB=6,BC275=,点N在边AD上,ND=2,点M在边BC上,BM=1,点E在DC的延长线上,连接AE,过点E作EF⊥AE交直线MN于点F,当AE=EF时,DE的长为 _____.2、如果5a=4b,那么ba=____.3、如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且54OEEA=,则FGBC=________.4、如图,在矩形ABCD中,AB=30,BC=40,对角线AC与BD相交于点O,点P为边AD上一动点,连接OP,将△OPA沿OP折叠,点A的对应点为点E,线段PE交线段OD于点F.若△PDF为直角三角形,则PD的长为______.5、如图,在ABCD □中,E 为CD 上一点,连结BE 并延长交AD 延长线于点F .如果:2:3DE EC =,那么:DEF ABF S S =△△____________.三、解答题(5小题,每小题10分,共计50分)1、如图,O 为坐标原点,B ,C 两点坐标分别为()3,1-,()2,1.(1)以O 为位似中心在y 轴左侧将OBC 放大两倍,并画出图形; (2)分别写出B ,C 两点的对应点B ',C '的坐标;(3)已知(),M x y 为OBC 内部一点,写出M 的对应点M '的坐标. 2、如图,在平面直角坐标系中,点A 、点B 的坐标分别为()1,3,()3,2.(1)画出OAB绕点B顺时针旋转90︒后的O A B''△;'''';(2)以点B为位似中心,相似比为2:1,在x轴的上方画出O A B''△放大后的O A B3、在等边三角形ABC中,点D是边AB的中点,过点D作DE∥BC交AC于点E,点F在BC边上,连接DF,EF.(1)如图1,当DF是∠BDE的平分线时,若AE=2,求EF的长;(2)如图2,当DF⊥DE时,设AE=a,则EF的长为(用含a的式子表示).4、如图,在Rt△ABC中,∠C=90°,BC=A=60°,四边形DEFG是△ABC的内接矩形,顶点D、G分别在边AC、BC上,点E、F在边AB上,设AE=x,DG=y.(1)求y与x之间的函数关系式;(2)当矩形DEFG 的面积S 取得最大值时,求△CDG 与△BFG 的相似比.5、如图,在带有网格的平面直角坐标系中,网格边长为一个单位长度,给出了三角形ABC . (1)作出ABC 关于x 轴对称的A B C ''';(2)以坐标原点为位似中心在图中的网格中作出A B C '''的位似图形A B C ''''''△,使A B C '''与A B C ''''''△的位似比为1:2;(3)若ABC 的面积为3.5平方单位,求出A B C ''''''△的面积.---------参考答案----------- 一、单选题 1、D 【解析】 【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CEOM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.2、A【解析】【分析】设CE=x,由四边形EFDC与四边形BEFA相似,根据相似多边形对应边的比相等列出比例式,求解即可.【详解】解:设CE =x ,∵四边形EFDC 与四边形BEFA 相似, ∴AB CEBE EF=, ∵AB =3,BE =2,EF =AB , ∴323x =, 解得:x =4.5, 故选:A . 【点睛】本题考查了相似多边形的性质,本题的关键是根据四边形EFDC 与四边形BEFA 相似得到比例式. 3、C 【解析】 【分析】根据题意先判断△ADE ∽△ABC ,再根据相似三角形的面积之比等于相似比的平方进行分析计算即可得到结论. 【详解】 解:∵DE ∥BC , ∴△ADE ∽△ABC , ∵AD :BD =3:2, ∴:3:5AD AB =, ∴22:3:59:25ADE ABCSS==,∴ADE 与四边形BCED 的面积之比为9:16.故选:C. 【点睛】本题考查相似三角形的判定和性质,注意掌握相似三角形的面积之比等于相似比的平方. 4、C 【解析】 【分析】设正方形ABCD 的边长为a ,关键黄金分割点的性质得到512AEAB 和BE AE =,用a 表示出1S 、2S 和3S 的面积,再求比例. 【详解】解:设正方形ABCD 的边长为a , ∵点E 是AB 上的黄金分割点,∴512AE AB,BE AE =∴AE AB ==,∴2BE a ==⎝⎭,∵2221S AE ⎫===⎪⎪⎝⎭,22S BE BC =⋅=,∴)222232S a a ==,∴)2232:2S S a ==. 故选C .【点睛】本题考查黄金分割点,解题的关键是掌握黄金分割点的性质.5、D【解析】【分析】将,,a b c 用k 表示出来,得到5,7,8a k b k c k ===,再将求出,,a b c 的结果与323a b c -+=联立求出,,a b c 的值 ,最后把所求的,,a b c 代入所求的代数式即可求解.【详解】 解:578a b c k ===, 5,7,8a k b k c k ∴===,323a b c -+=,352783k k k ∴⨯-⨯+=, 解,得13k =,578,333a b c ∴==,= 578142432433333a b c ∴+-=⨯+⨯-⨯=, 故选:D .【点睛】本题考查了比例的性质,解一元一次方程,求代数式的值,由比例系数表示,,a b c 是解题的关键.6、D【解析】【分析】对应顶点的连线相交于一点的两个相似多边形叫位似图形.【详解】解:根据位似图形的概念,A 、B 、C 三个图形中的两个图形都是位似图形;D 中的两个图形不符合位似图形的概念,两个三角形不相似,故不是位似图形.故选D .【点睛】此题主要考查了位似图形,注意位似与相似既有联系又有区别,相似仅要求两个图形形状完全相同;而位似是在相似的基础上要求对应点的连线相交于一点.7、C【解析】【分析】由题意设()30,a k k =≠ 则2,b k = 再逐一代入各选项进行计算与检验即可得到答案.【详解】 解: 32a b =, 设()30,a k k =≠ 则2,b k =∴55,22a b k b k +==故A 不符合题意; 321,22a b k k b k --==故B 不符合题意; 263,a k b ==故C 符合题意;32,,2233a k b k ==则,23a b ≠故D 不符合题意; 故选C【点睛】本题考查的是比例的基本性质,掌握“设参数的方法解决比例问题”是解本题的关键.8、B【解析】【分析】根据∥DE AC 可得BED BCA ∽△△,DOE COA ∽,再根据相似三角形的性质可得BE DE BC AC=和DOE △与COA 的相似比为1:5,进而可得15BE BC =,最后用BC 表示EC 即可求出BE EC . 【详解】解:∵∥DE AC ,∴BED BCA ∠=∠,ODE OCA ∠=∠.∵DBE ABC ∠=∠,DOE COA ∠=∠,∴BED BCA ∽△△,DOE COA ∽. ∴BE DE BC AC=. ∵:1:25DOE COA S S =△△,∴DOE △与COA 的相似比为1:5. ∴15DE CA =. ∴15BE BC =. ∴15BE BC =. ∴45EC BC BE BC =-=. ∴14BE EC =.故选:B .【点睛】本题考查相似三角形的判定定理和性质,综合应用这些知识点是解题关键.9、B【解析】【分析】根据相似多边形的周长比求出相似比,再根据相似多边形的面积比等于相似比的平方计算,得到答案.【详解】解:∵两个相似多边形的周长比是2:3,∴这两个相似多边形的相似比是2:3,∴它们的面积比是4:9,故选B .【点睛】本题考查相似多边形的性质,掌握相似多边形的周长比等于相似比,面积比等于相似比的平方是解题的关键.10、B【解析】【分析】由题意直接根据平行线所截线段成比例进行分析判断即可.【详解】解:∵DE ∥BC ,∴,ADE ABC AED ACB ==∠∠∠∠,∴ADE ABC , ∴AD DE AE AB BC AC==. 故选:B.【点睛】本题考查平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.二、填空题1、10415【解析】【分析】过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L ,先证明四边形NLGD 是矩形,得到LG =ND =2,∠DNL =90°,NL =DG ,再证明四边形NHCD 是矩形,得到HH =CD =6,CH =ND =2,则125MH BC BM CH =--=;然后证明△EFG ≌△AEF 得到FG =DE ,275GE AD BC ===,则275NL DG DE EG DE ==+=+,设=DE FG x =,则2FL FG LG x =-=-,275NL x =+,证明△NMH ∽△NFL ,的MH NH FL NL=,即12652725x x =-+,由此求解即可. 【详解】解:如图所示,过点F 作FG ⊥DG 交DC 延长线于G ,过点N 作NL ⊥FG 交BC 于H ,交FG 于L , ∴∠NLG =∠G =90°,∵四边形ABCD 是矩形,∴CD =AB =6,∠D =∠BCD =90°,AD BC =,∴四边形NLGD 是矩形,∴LG =ND =2,∠DNL =90°,NL =DG ,∴四边形NHCD是矩形,∴HH=CD=6,CH=ND=2,∴125 MH BC BM CH=--=;∵EF⊥AE,∴∠AEF=90°,∴∠AED+∠FEG=90°,又∵∠FEG+∠EFG=90°,∴∠EFG=∠AED,又∵AE=EF,∠D=∠G=90°,∴△EFG≌△AEF(AAS),∴FG=DE,275 GE AD BC===,∴275 NL DG DE EG DE==+=+,设=DE FG x=,则2FL FG LG x=-=-,275 NL x=+,∵∠NHM=∠NLF=90°,∠MNH=∠FNL,∴△NMH∽△NFL,∴MH NHFL NL=,即12652725x x=-+,解得10415x=,∴10415 DE=,故答案为:104 15.【点睛】本题主要考查了矩形的性质与判定,全等三角形的性质与判定,相似三角形的性质与判定,解题的关键在于能够正确作出辅助线求解.2、5 4【解析】【分析】由5a=4b,结合比例的基本性质即可求出ba的值.【详解】解:∵5a=4b,∴54ba.故答案为:54.【点睛】本题考查的是比例的基本性质,掌握比例的基本性质是解题的关键.3、59【解析】【分析】 利用位似的性质得到FG OF OE BC OB OA ==,然后根据比例的性质求解. 【详解】解:∵四边形ABCD 与四边形EFGH 位似,其位似中心为点O , ∴FG OF OE BC OB OA ==, ∵54OE EA =, ∴55549FG BC ==+, 故答案为:59.【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线.4、5或252 【解析】【分析】分情况进行讨论,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,先证△DHO ∽△DAB ,得到1=2OH HD OD AB AD BD ==,求出1152OH AB ==,1202HD AD ==,证明∠HOP =∠HPO =45°,得到OH =PH =15,则PD =HD -PH =5;当∠PFD =90°时,先求出50BD =,得到11=2522OA OB OC OD AC BD =====,从而得到∠DAO =∠ODA ;证明△OFE ∽△BAD ,推出1152OF AB ==,则10DF OD OF =-=,最后证明△PDF ∽△BDA ,则12542PD BD ==. 【详解】解:如图1所示,当∠DPF =90°时,过点O 作OH ⊥AD 于H ,∴∠HPF =90°,∵四边形ABCD 是矩形,∴BD =2OD ,∠BAD =∠OHD =90°,AD =BC =40,∴OH ∥AB ,∴△DHO ∽△DAB , ∴1=2OH HD OD AB AD BD ==, ∴1152OH AB ==,1202HD AD ==, 由折叠的性质可得:1==452HPO FPO HPF ∠=∠︒∠,∴∠HOP =45°,∴∠HOP =∠HPO =45°,∴OH =PH =15,∴PD =HD -PH =5;如图2所示,当∠PFD =90°时,∴∠OFE=90°,∵四边形ABCD是矩形,∴∠BCD=90°,CD=AB=30,∴50BD=,∴11=2522OA OB OC OD AC BD=====,∴∠DAO=∠ODA,由折叠的性质可知:AO=EO=25,∠PEO=∠DAO=∠ODA,又∵∠OFE=∠BAD=90°,∴△OFE∽△BAD,∴12 OF OEAB BD==,∴1152OF AB==,∴10DF OD OF=-=,∵∠PFD=∠BAD,∠PDF=∠BDA,∴△PDF∽△BDA,∴14 PD DFBD DA==,∴12542 PD BD==,∴综上所述,当△PDF为直角三角形,则PD的长为5或252,故答案为:5或252.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.5、4:25##425 【解析】【分析】根据已知可得到相似三角形,从而可得到其相似比,再根据相似三角形的面积比等于相似比的平方就可得到答案.【详解】解:如图,∵四边形ABCD 是平行四边形,∴DC ∥AB ,CD =AB .∴△DFE ∽△AFB , ∴2()DEF ABF S DE S AB=. ∵DE :EC =2:3,∴DE :DC =DE :AB =2:5,∴:425DEF ABF S S =:△△ 故答案为:4:25或425 . 【点睛】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.三、解答题1、(1)画图见解析;(2)点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)点M'的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点B',C',然后顺次连接O,B',C'即可;(2)根据(1)中所作图形即可得到B',C'两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可.【详解】解:(1)如图所示,△OO′O′即为所求;(2)如图所示,点B'的坐标为(-6,2),点C'的坐标为(-4,-2);(3)∵△OO′O′是△OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为△OBC内部一点,∴点M的对应点M'的坐标为(-2x,-2y).【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识.2、(1)见解析;(2)见解析【解析】【分析】(1)找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)延长OO′至O″,OO′至O″,使得OO″=2OO′,OO″=2OO′,连接O″O″,则''''即为所求O A B【详解】(1)如图,找到O,O绕点B顺时针旋转90︒后的对应点O′,O′,顺次连接O′,O′,O,则O A B''△即为所求;(2)如图,延长OO ′至O ″,OO ′至O ″,使得OO ″=2OO ′,OO ″=2OO ′,连接O ″O ″,则O A B ''''【点睛】本题考查了画旋转图形,在平面直角坐标系中画位似图形,掌握旋转的性质和位似图形的性质是解题的关键.3、(1)EF =2(2)72【解析】【分析】(1)根据DE ∥BC 证明ADE 是等边三角形,再根据D 是AB 中点,可证明BFD 是等边三角形,在证明DEF 是等边三角形,从而求得EF =2,(2)过点A 作AM 垂直BC 于点M ,可证DBF ∽ABM ,由相似可求出DF ,在利用勾股定理即可求出EF .【详解】解:(1)∵ABC 是等边三角形,∴∠A=∠B=∠C=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∴∠A=∠ADE=60°,∴ADE是等边三角形,∴AD=DE=2,∵D是AB中点,∴BD=AD=2,∵DF平分∠BDE,∴∠BDF=∠EDF=12∠BDE=12(180°-60°)=60°,又∵∠B=60°,∴BFD是等边三角形,∴DF=BD=2,∵DF=DE=2,∠EDF=60°,∴DEF是等边三角形,∴EF=DE=DF=2;(2)过点A作AM垂直BC于点M,∵DE∥BC,DF⊥DE,∴∠BFD=∠FDE=90°,∵∠DFB=∠AMB=90°,又∵∠B=∠B,∴DBF∽ABM,∵D为AB中点,∴1=2 DB DFAB AM,∴DF=12AM,∵AM是等边三角形BC边上的高,∴M是BC的中点,∴BM=12BC=a,∴AM,∴DF=12AM,∴在Rt DEF △中,EF 32a a (). 【点睛】本题主要考查等边三角形的性质和判定,三角形的相似和勾股定理,熟练掌握三角形的相似是解决本题的关键.4、(1)y =8﹣4x ;(2)2√33 【解析】【分析】(1)依据Rt △ABC 中,∠O =90°,OO =4√3,∠O =60°,即可得到AC =4,AD =2AE =2x ,OO =12OO =12O ,再根据CD =AC -AD ,可得12O =4−2O ,进而得出y 与x 之间的函数关系式; (2)依据S =DE ×DG =√3O ×(8−4O )=−4√3(O −1)2+4√3,可得当x =1时,S 最大=4√3,再根据△DCG ∽△GFB ,即可得到OO OO =2√3=2√33,进而得出△CDG 与△BFG 的相似比. 【详解】解:(1)∵Rt △ABC 中,∠C =90°,BC =A =60°,∴AC =4,AD =2AE =2x ,OO =12OO =12O ,∵CD =AC ﹣AD ,∴12O =4−2O ,即y 与x 之间的函数关系式为y =8﹣4x ;(2)∵DE ,∴S =DE ×DG ×(8﹣4x )=﹣x ﹣1)2∴当x =1时,S 最大=此时,GF =DE∴BG =2GF =DG =8﹣4=4,∵∠C =∠BFG =90°,∠DGC =∠B ,∴△DCG ∽△GFB ,∴OO OO =2√3=2√33, ∴△CDG 与△BFG 的相似比为2√33. 【点睛】 本题考查的是相似三角形的判定与性质以及矩形的性质,熟知相似三角形的对应边成比例是解答此题的关键.5、(1)见解析;(2)见解析;(3)14平方单位.【解析】【分析】(1)根据轴对称性质即可画出△ABC 关于x 轴对称的A B C '''; (2)根据位似图形的性质即可画出A B C '''以点O 为位似中心的位似图形A B C ''''''△,A B C '''与A B C ''''''△的位似比为1:2;(3)利用相似三角形的性质计算即可.【详解】解:(1)如图,A B C ''',即为所求作; (2)如图,A B C ''''''△,即为所求作;(3)∵A B C '''与A B C ''''''△的位似比为1:2, ∴A B C '''∽A B C ''''''△,O ′O ′O ″O ″=12, ∴O △O ′O ′O ′O △O ″O ″O ″=(O ′O ′O ″O ″)2=14,∵ABC 的面积为3.5平方单位,即A B C '''的面积为3.5平方单位,∴A B C ''''''△的面积为:2O △O ′O ′O ′=4×3.5=14平方单位.【点睛】本题考查了作图-轴对称变换,位似变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
精品 九年级数学下册 相似形-位似 同步讲义同步练习题

相似形第03课位似定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.注意:(1)位似图形是一种特殊的相似图形,而相似图形未必都能构成位似关系。
(2)在平面直角坐标系中,如果位似变换以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.位似图形性质:位似图形上任意一对对应点到位似中心的距离之比等于位似比.例1.如图,以O为位似中心,将△ABC放大为原来的两倍.例2.已知:△ABC在坐标平面内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2).(正方形网格中,每个小正方形的边长是1个单位长度)(1)画出△ABC向下平移4个单位得到的△A1B1C1,并直接写出C1点的坐标;(2)以点B为位似中心,在网格中画出△A2BC2,使△A2BC2与△ABC位似,且位似比为2:1,并直接写出C2点的坐标及△A2BC2的面积.例3.如图所示,E是正方形ABCD的边AB上的动点,EF⊥DE交BC于点F.(1)求证:△ADE∽△BEF;(2)设正方形的边长为4,AE=x,BF=y.当x取什么值时,y有最大值?并求出这个最大值.例4.如图,在△ABC 中,BC>AC,点D 在BC 上,且DC=AC,∠ACB 的平分线CF 交AD 于F,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC;(2)若四边形BDFE 的面积为6,求△ABD 的面积.例5.如图,在□ABCD 中,过点A 作AE ⊥BC,垂足为E,连接DE,F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF ∽△DEC ;(2)若AB=8,3436==AF AD ,,求AE 的长.同步练习:1.用作位似图形的方法,可以将一个图形放大或缩小,位似中心位置可选在( )A.原图形的外部B.原图形的内部C.原图形的边上D.任意位置2.下列多边形一定相似的为( )A.两个矩形B.两个菱形C.两个正方形D.两个平行四边形3.下列说法正确的是( )A.两个图形如果是位似图形,那么这两个图形一定全等;B.两个图形如果是位似图形,那么这两个图形不一定相似;C.两个图形如果是相似图形,那么这两个图形一定位似;D.两个图形如果是位似图形,那么这两个图形一定相似。
精品 九年级数学下册 相似形练习

29.如图,在 △ ABC 中, BAC 90 , AD 是 BC 边上的高, E 是 BC 边上的一个动点(不与 B,C
重合) , EF AB , EG AC ,垂足分别为 F,G .
EG CG ; AD CD (2) FD 与 DG 是否垂直?若垂直,请给出证明;若不垂直,请说明理由; (3)当 AB AC 时, △FDG 为等腰直角三角形吗?并说明理由.
27.已知:如图,梯形 ABCD 中,AB∥DC,E 是 AB 的中点,直线 ED 分别与对角线 AC 和 BC 的延长线交于 M、N 点.求证:MD·NE=ND·ME
28.已知△ABC 的边 AB= 2 3 ,AC=2,BC 边上的高 AD= 3 . (1)求 BC 的长; (2)如果有一个正方形的边在 AB 上,另外两个顶点分别在 AC,BC 上,求这个正方形的面积.
15.如图,在梯形 ABCD 中,AD∥BC,EF∥BC,若 AD=12cm,BC=18cm,AE:EB=2:3,则 EF=____
2
三、综合题:
16.如图,在平行四边形 ABCD 中,过点 A 作 AE⊥BC,垂足为 E,连接 DE,F 为线段 DE 上一点,且∠AFE =∠B.求证:△ADF∽△DEC; (2)若 AB=4,AD=3 3 ,AE=3,求 AF 的长.
6
34.如图,矩形 ABCD 中, AD 3 厘米, AB a 厘米( a 3 ) .动点 M,N 同时从 B 点出发,分别 沿 B A , B C 运动,速度是 1 厘米/秒.过 M 作直线垂直于 AB ,分别交 AN , CD 于 P,Q . 当点 N 到达终点 C 时,点 M 也随之停止运动.设运动时间为 t 秒. (1)若 a 4 厘米, t 1 秒,则 PM ______厘米; (2)若 a 5 厘米,求时间 t ,使 △PNB ∽△PAD ,并求出它们的相似比; (3)若在运动过程中,存在某时刻使梯形 PMBN 与梯形 PQDA 的面积相等,求 a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形 PMBN ,梯形 PQDA ,梯形 PQCN 的 面积都相等?若存在,求 a 的值;若不存在,请说明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(上)学习质量测评相似单元试题(4)温馨提示:亲爱的同学们:经过两个月的学习,检验你的时候到啦!保持良好的心理状态,养成良好的做题习惯,将是你终身的财富。
从现在开始,你一定要认真读题,仔细计算,严密思考,细心检查。
相信自己是最棒的,祝你取得好成绩!一、 选择题(每小题3分,共30分)1.如图,正五边形错误!未找到引用源。
是由正五边形错误!未找到引用源。
经过位似变换得到的,若错误!未找到引用源。
,则下列结论正确的是( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
2. (2015·南京中考)如图,在△ABC 中,DE ∥BC ,12AD DB =,则下列结论中正确的是( )A.12AE AC = B.12DE BC =C.错误!未找到引用源。
D .错误!未找到引用源。
3.已知四条线段错误!未找到引用源。
是成比例线段,即dcb a =,下列说法错误的是( ) A .错误!未找到引用源。
B.ba dbc a =++ C.d b c b d a -=- D .2222d c b a = 4. 若把△ABC 的各边扩大到原来的3倍后,得△A′B′C′,则下列结论错误的是( )A .△ABC ∽△A′B′C′B .△ABC 与△A′B′C′的相似比为错误!未找到引用源。
C .△ABC 与△A′B′C′的对应角相等D .△ABC 与△A′B′C′的相似比为错误!未找到引用源。
5.若875cb a ==,且错误!未找到引用源。
,则错误!未找到引用源。
的值是( ) A.14 B.42 C.7 D.3146.如图,已知错误!未找到引用源。
//错误!未找到引用源。
,错误!未找到引用源。
//错误!未找到引用源。
,错误!未找到引用源。
分别交错误!未找到引用源。
于点错误!未找到引用源。
,则图中共有相似三角 形()A.4对B.5对C. 6对D.7对第1题图第7题图7. (2015·浙江舟山中考)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点G ,且AG =2,GB =1,BC =5,则错误!未找到引用源。
的值为( )A.错误!未找到引用源。
B.2C.错误!未找到引用源。
D.错误!未找到引用源。
8.如图,小明作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积.然后分别取△A 1B 1C 1三边的中点A 2、B 2、C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积.用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C3的面积……由此可得,第10个正△A 10B 10C 10的面积是( )91()4101()4 91()2101()29.已知两个相似多边形的面积比是9︰16,其中较小多边形的周长为36 cm ,则较大多边形的周长为( )A.48 cmB.54 cmC.56 cmD.64 cm10.(陕西中考)手工制作课上,小红利用一些花布的边角料,剪裁后装裱手工画.下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形和矩形花边,其中每个图案花边的宽度都相同,那么每个图案中花边的内外边缘所围成的几何图形不相似的是( )二、填空题(每小题3分,共24分) 11.如图,在△ABC 中,DE ∥BC ,23DE BC =,△ADE 的面积为8,则△ABC 的面积为 .第11题图12.如果一个三角形的三边长为5、12、13,与其相似的三角形的最长的边为39,那么较大的三角形的周长为_______,面积为________.13.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .14. (2015·兰州中考)如果错误!未找到引用源。
=k (b +d +f ≠0),且a +c +e =3(b +d +f ),那么k = .15.如图是小明设计用手电来测量某古城墙高度的示意图,点错误!未找到引用源。
处放一水平的平面镜,光线从点错误!未找到引用源。
出发经平面镜反射后刚好射到古城墙错误!未找到引用源。
的顶端错误!未找到引用源。
处,已知错误!未找到引用源。
,错误!未找到引用源。
,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,错误!未找到引用源。
那么该古城墙的高度是_____.第8B′=130°,∠C=105°,∠D′=85°,则∠E= .错误!未找到引用源。
17.(2015·浙江湖州中考)已知正方形错误!未找到引用源。
的边长为1,延长错误!未找到引用源。
到错误!未找到引用源。
,以错误!未找到引用源。
为边向右作正方形错误!未找到引用源。
,延长错误!未找到引用源。
到错误!未找到引用源。
,以错误!未找到引用源。
为边向右作正方形错误!未找到引用源。
(如下图所示),以此类推…若错误!未找到引用源。
=2,且点A,错误!未找到引用源。
,错误!未找到引用源。
,…,错误!未找到引用源。
都在同一直线上,则正方形错误!未找到引用源。
的边长是.18.如图,△错误!未找到引用源。
三个顶点的坐标分别为错误!未找到引用源。
,以原点为位似中心,将△错误!未找到引用源。
缩小,位似比为错误!未找到引用源。
,则线段错误!未找到引用源。
的中点错误!未找到引用源。
变换后对应点的坐标为_________.三、解答题(共46分)19.(6分)如图,在边长为1个长度单位的小正方形组成的网格中,给出了格点ABC∆(顶点是网格线的交点).(1)将ABC∆向上平移3个单位得到111A B C∆,请画出111A B C∆;(2)请画出一个格点222A B C∆,使222A B C∆∽ABC∆,且相似比不为1.20.(6分)(2015·宁波中考节选)如图①,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA·错误!未找到引用源。
,我们就把∠APB 叫做∠MON的智慧角.如图②,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.图②第20题图21.(6分)如图,在正方形错误!未找到引用源。
中,错误!未找到引用源。
分别是边错误!未找到引用源。
上的点,错误!未找到引用源。
连接错误!未找到引用源。
并延长交错误!未找到引用源。
的延长线于点错误!未找到引用源。
(1)求证:ABE DEF△∽△;A E DFG第21题图22.(6分)如图,在6×8网格图中,每个小正方形边长均为1,点O 和△ABC 的顶点均在小正方形的顶点. (1)以O 为位似中心,在网格图中作△A ′B ′C ′和△ABC 位似,且位似比为12; (2)连接(1)中的AA ′,求四边形AA ′C ′C 的周长(结果保留根号).23.(6分)已知:如图所示,正方形ABCD 中,E 是AC 上一点,EF ⊥AB 于点F ,EG ⊥AD 于点G ,AB =6,AE ∶EC =2∶1,求S 四边形AFEG . 24.(8分)(2015·浙江丽水中考)如图,在矩形ABCD 中,E 为CD 的中点,F 为BE 上的一点,连接CF 并延长交AB 于点M ,MN ⊥CM 交射线AD 于点N . (1)当F 为BE 的中点时,求证:AM =CE ;(2)若2==BF EFBC AB ,求NDAN 的值;(3)若n EF AB ==,当n 为何值时,MN ∥BE ?25.(8分)(2014·呼和浩特中考)如图,已知反比例函数k y x=(0x >,k 是常数)的图象经过点A (1,4),点B (m ,n ),其中m >1,AM ⊥x 轴,垂足为M ,BN ⊥y 轴,垂足为N ,AM 与BN 的交点为C. (1)写出反比例函数解析式; (2)求证:△ACB ∽△NOM ;(3)若△ACB 与△NOM 的相似比为2,求出B 点的坐标及AB 所在直线的解析式.。