勾股定理逆定理典型题练习1
勾股定理逆定理家庭作业1

勾股定理逆定理家庭作业1姓名:一、填选1、已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=,则三角形的 形状是( )A 、底与边不相等的等腰三角形 B 、直角三角形C 、钝角三角形D 、等边三角形2、△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结 论不正确的是( )A 、△ABC 是直角三角形,且AC 为斜边 B 、△ABC 是直角三角 形,且∠ABC =90 C 、△ABC 的面积是60 D 、△ABC 是直角三角形,且∠A =60度3、下列各组数中以a ,b ,c 为边的三角形不是Rt △的是( )A 、a=2,b=3, c=4B 、a=7, b=24, c=25C 、a=6, b=8, c=10D 、a=3, b=4, c=54、如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( )(A ) 25 (B ) 12.5 (C ) 9 (D ) 8.55、一直角三角形的三边分别为2、3、x ,那么以x 为边长的正方形的面积为 ( )A 、13B 、5C 、13或5D 、无法确定6、三角形的三边长分别为 a 2+b 2、2ab 、a 2-b 2(a 、b 都是正整数),则这个三角形是( )A.直角三角形B.钝角三角形C.锐角三角形D.不能确定 (写过程)7、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2十338=10a +24b +26c ,则△ABC 的面积是( )A.338 B.24 C.26 D.30 (写过程)CA8、下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 29、观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;………列举:13、b 、c ,猜想:132=b +c ;请你分析上述数据的规律,结合相关知识求得b =___,c =___.二、解答1、如图,在△ABC 中,∠B=45°,∠C=30°,AB=2,(1)求BC 的长。
《勾股定理》勾股定理的逆定理(含答案)

第3章《勾股定理》: 3.2 勾股定理的逆定理填空题1.你听说过亡羊补牢的故事吗如图,为了防止羊的再次丢次,小明爸爸要在高0.9m,宽 1.2m的栅栏门的相对角顶点间加一个加固木板,这条木板需 m 长.(第1题)(第2题)(第3题)2.如图,将一根长24cm的筷子,底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露在杯子外面的长度为h cm,则h的最小值是 cm.3.如图所示的一只玻璃杯,最高为8cm,将一根筷子插入其中,杯外最长4厘米,最短2厘米,那么这只玻璃杯的内径是厘米.4.如图,一架10米长的梯子斜靠在墙上,刚好梯顶抵达8米高的路灯.当电工师傅沿梯上去修路灯时,梯子下滑到了B′处,下滑后,两次梯脚间的距离为2米,则梯顶离路灯米.(第4题)(第5题)(第6题)5.如图所示的圆柱体中底面圆的半径是错误!,高为2,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)6.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC 的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是 m.(结果不取近似值)7.如图,这是一个供滑板爱好者使用的U型池,该U型池可以看作是一个长方体去掉一个“半圆柱”而成,中间可供滑行部分的截面是半径为4m的半圆,其边缘AB=CD=20m,点E在CD上,CE=2m,一滑板爱好者从A点滑到E点,则他滑行的最短距离约为 m.(边缘部分的厚度忽略不计,结果保留整数)(第7题)(第8题)(第9题)8.如图,有一圆柱,其高为12cm,底面半径为3cm,在圆柱下底面A点处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离为 cm.(π取3)9.一只蚂蚁从长、宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是.10.如图是一个三级台阶,它的每一级长、宽、高分别是2米、0.3米、0.2米,A,B是这个台阶上两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿台阶面爬行到B点最短路程是米.(第10题)(第11题)(第12题)11.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且>AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是米.(精确到0.01米)12.如图是一个三级台阶,它的每一级的长、宽、高分别为7寸、5寸和3寸,A 和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是寸.13.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b= ,c= .解答题14.如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.15.如图,点O是等边△ABC内一点.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.已知∠AOB=110°.(1)求证:△COD是等边三角形;(2)当α=150°时,试判断△AOD的形状,并说明理由;(3)探究:当α为多少度时,△AOD是等腰三角形.16.先请阅读下列题目和解答过程:“已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4①∴c2(a2-b2)=(a2+b2)(a2-b2)②∴c2=a2+b2③∴△ABC是直角三角形.”④请解答下列问题:(1)上列解答过程,从第几步到第几步出现错误?(2)简要分析出现错误的原因;(3)写出正确的解答过程.17.如图,四边形ABCD中,AD=3,AB=4,BC=12,CD=13,∠BAD=90°,(1)试说明:BD⊥BC;(2)计算四边形ABCD的面积.18.如图,△ACB和△ECD都是等腰直角三角形,A,C,D三点在同一直线上,连接BD,AE,并延长AE交BD于F.(1)求证:△ACE≌△BCD;(2)直线AE与BD互相垂直吗?请证明你的结论.19.请阅读下列解题过程:已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,A∴c2(a2-b2)=(a2+b2)(a2-b2),B∴c2=a2+b2,C∴△ABC为直角三角形.D问:(1)在上述解题过程中,从哪一步开始出现错误:;(2)错误的原因是;(3)本题正确的结论是:.20.如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.21.张老师在一次“探究性学习”课中,设计了如下数表:n 2 3 4 5 …a 22-1 32-1 42-1 52-1 …b 4 6 8 10 …c 22+1 32+1 42+1 52+1 …(1)请你分别观察a,b,c与n之间的关系,并用含自然数n(n>1)的代数式表示:a= ,b= ,c= ;(2)猜想:以a,b,c为边的三角形是否为直角三角形并证明你的猜想.22.如图,在△ABC中,CD⊥AB于D,AC=4,BC=3,DB=95.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.23.有一块直角三角形的绿地,量得两直角边长分别为6m,8m.现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形绿地的周长.(图2,图3备用)24.如图,小明用一块有一个锐角为30°的直角三角板测量树高,已知小明离树的距离为3米,DE为1.68米,那么这棵树大约有多高?(精确到0.1米, 3 ≈1.732).25.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?26.如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点;当它靠在另一侧墙上时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°,点D到地面的垂直距离DE=错误!m.求点B到地面的垂直距离BC.27.如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE位置上,如图所示,测得BD=0.5米,求梯子顶端A下落了多少米?28.如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB 于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处?29.如图,A城气象台测得台风中心在A城正西方向320km的B处,以每小时40km 的速度向北偏东60°的BF方向移动,距离台风中心200km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?30.如下图,在四边形ABCD中,∠B=90°,AB=8,BC=6,CD=24,AD=26,求四边形ABCD的面积.答案:填空题1.故答案为:1.5m.考点:勾股定理的应用.专题:应用题.分析:用勾股定理,两直角边的平方和等于斜边的平方进行解答.解答:解:由图可知这条木板的长为错误!=错误!=1.5m.点评:本题较简单,只要熟知勾股定理即可.2.故答案为:11cm.考点:勾股定理的应用.专题:应用题.分析:筷子如图中所放的方式时,露在杯子外面的长度最小,在杯中的筷子与圆柱形水杯的底面直径和高构成了直角三角形,由勾股定理可求出筷子在水杯中的长度,筷子总长度减去杯子里面的长度即露在外面的长度.解答:解:设杯子底面直径为a,高为b,筷子在杯中的长度为c,根据勾股定理,得:c2=a2+b2,故:c=错误!=错误!=13cm,h=24-13=11cm.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.3.故答案为:6厘米.考点:勾股定理的应用.分析:根据最长4cm,可得筷子长为12cm.那么可得AC长,那么利用勾股定理可得内径.解答:解:根据条件可得筷子长为12厘米.如图AC=10厘米,BC=错误!=错误!=6厘米.点评:主要考查学生对解直角三角形的应用的掌握情况.4.故答案为:2cm.考点:勾股定理的应用.专题:应用题.分析:根据题意,将梯子下滑的问题转化为直角三角形的问题解答.解答:解:在直角三角形AOB中,根据勾股定理,得:OB=6m,根据题意,得:OB′=6+2=8m.又∵梯子的长度不变,在Rt△A′OB′中,根据勾股定理,得:OA′=6m.则AA′=8-6=2m.点评:熟练运用勾股定理,注意梯子的长度不变.5.故答案为:2 2 .考点:平面展开-最短路径问题.专题:压轴题.分析:先将图形展开,再根据两点之间线段最短可知.解答:解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•错误!=2,CB=2.∴AC=AB2+BC2 =8 =2 2 ,故答案为:2 2 .点评:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.6.故答案为:3 5 m.考点:平面展开-最短路径问题.专题:压轴题;转化思想.分析:求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P在展开图中的距离,就是这只小猫经过的最短距离.解答:解:圆锥的底面周长是6π,则6π=nπ×6 180,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=32+62 =45 =3 5 m.故小猫经过的最短距离是3 5 m.故答案是:3 5 m.点评:正确判断小猫经过的路线,把曲面的问题转化为平面的问题是解题的关键.7.故答案为:22m.考点:平面展开-最短路径问题.专题:压轴题.分析:要求滑行的最短距离,需将该U型池的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:其侧面展开图如图:AD=πR=4π,AB=CD=20m.DE=CD-CE=20-2=18m,在Rt△ADE中,AE=AD2+DE2 =错误!≈21.9≈22m.故他滑行的最短距离约为22m.点评:U型池的侧面展开图是一个矩形,此矩形的宽等于半径为4m的半圆的周长,矩形的长等于AB=CD=20m.本题就是把U型池的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.8.故答案为:15cm.考点:平面展开-最短路径问题.专题:压轴题.分析:本题应先把圆柱展开即得其平面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B 的线段长,由勾股定理求得AB的长.解答:解:圆柱展开图为长方形,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πrcm,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理得AB=122+(3π)2 =错误!=错误!=15cm.故蚂蚁经过的最短距离为15cm.(π取3)点评:解答本题的关键是计算出圆柱展开后所得长方形长和宽的值,然后用勾股定理计算即可.9.故答案为:10.考点:平面展开-最短路径问题.分析:根据”两点之间线段最短”,将点A和点B所在的两个面进行展开,展开为矩形,则AB为矩形的对角线,即蚂蚁所行的最短路线为AB.解答:解:将点A和点B所在的两个面展开,则矩形的长和宽分别为6和8,故矩形对角线长AB=62+82 =10,即蚂蚁所行的最短路线长是10.点评:本题的关键是将点A和点B所在的面展开,运用勾股定理求出矩形的对角线.10.故答案为:2.5.考点:平面展开-最短路径问题;勾股定理.分析:先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.解答:解:三级台阶平面展开图为长方形,长为2,宽为(0.2+0.3)×3,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.可设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=22+[(0.2+0.3)×3]2=2.52,解得x=2.5.点评:本题用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.11.故答案为:2.60.考点:平面展开-最短路径问题.分析:解答此题要将木块展开,然后根据两点之间线段最短解答.解答:解:由题意可知,将木块展开,相当于是AB+2个正方形的宽,∴长为2+0.2×2=2.4米;宽为1米.于是最短路径为: 2.42+12 =2.60米.故答案为:2.60.点评:本题主要考查两点之间线段最短,有一定的难度,是中档题.12.故答案为:25寸.考点:平面展开-最短路径问题.分析:根据两点之间线段最短,运用勾股定理解答.解答:解:将台阶展开矩形,线段AB 恰好是直角三角形的斜边,两直角边长分别为24寸,7寸,由勾股定理得AB=72+242 =25寸. 点评:本题结合实际,运用两点之间线段最短等知识来解答问题.13.故答案为:b=84,c=85;考点:勾股数. 专题:规律型.分析:认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n 组数为(2n+1),((2n +1)2−12), ((2n +1)2+12 ),由此规律解决问题.32-12解答:在32=4+5中,4=32-12 ,5=32+12; 在52=12+13中,12=52-12 ,13=52+12; …则在13、b 、c 中,b=132-12 =84,c=132+12=85; 点评:认真观察各式的特点,总结规律是解题的关键. 解答题14.考点:等边三角形的性质;全等三角形的判定与性质;勾股定理的逆定理. 专题:探究型.分析:根据等边三角形的性质利用SAS 判定△ABP≌△CBQ,从而得到AP=CQ ;设PA=3a ,PB=4a ,PC=5a ,由已知可判定△PBQ 为正三角形从而可得到PQ=4a ,再根据勾股定理判定△PQC 是直角三角形.解答:解:(1)猜想:AP=CQ ,证明:∵∠ABP+∠PBC=60°,∠QBC+∠PBC=60°,∴∠ABP=∠QBC.又AB=BC ,BP=BQ ,∴△ABP≌△CBQ,∴AP=CQ;(2)由PA:PB:PC=3:4:5,可设PA=3a,PB=4a,PC=5a,连接PQ,在△PBQ中由于PB=BQ=4a,且∠PBQ=60°,∴△PBQ为正三角形.∴PQ=4a.于是在△PQC中∵PQ2+QC2=16a2+9a2=25a2=PC2∴△PQC是直角三角形.点评:此题考查学生对等边三角形的性质,直角三角形的判定及全等三角形的判定方法的综合运用.15.考点:等边三角形的判定;全等三角形的判定与性质;等腰三角形的判定;勾股定理的逆定理.专题:证明题;压轴题;探究型分析:此题有一定的开放性,要找到变化中的不变量才能有效解决问题.解答:(1)证明:∵CO=CD,∠OCD=60°,∴△COD是等边三角形;(3分)(2)解:当α=150°,即∠BOC=150°时,△AOD是直角三角形.(5分)∵△BOC≌△ADC,∴∠ADC=∠BOC=150°,又∵△COD是等边三角形,∴∠ODC=60°,∴∠ADO=90°,即△AOD是直角三角形;(7分)(3)解:①要使AO=AD,需∠AOD=∠ADO.∵∠AOD=360°-∠AOB-∠COD-α=360°-110°-60°-α=190°-α,∠ADO=α-60°,∴190°-α=α-60°∴α=125°;②要使OA=OD,需∠OAD=∠ADO.∵∠AOD=190°-α,∠ADO=α-60°,∵∠OAD=180°-(∠AOD+∠ADO)=50°,∴α-60°=50°∴α=110°;③要使OD=AD,需∠OAD=∠AOD.∵190°-α=50°∴α=140°.综上所述:当α的度数为125°,或110°,或140°时,△AOD是等腰三角形.(12分)说明:第(3)小题考生答对1种得(2分),答对2种得(4分).点评:本题以“空间与图形”中的核心知识(如等边三角形的性质、全等三角形的性质与证明、直角三角形的判定、多边形内角和等)为载体,内容由浅入深,层层递进.试题中几何演绎推理的难度适宜,蕴含着丰富的思想方法(如运动变化、数形结合、分类讨论、方程思想等),能较好地考查学生的推理、探究及解决问题的能力.16.考点:勾股定理;等腰三角形的判定;勾股定理的逆定理.专题:阅读型.分析:从公式入手,式子的左边提取公因式,式子的右边符合平方差公式,并分解,两边同一个不为零的数,从而得到勾股定理.解答:解:(1)从第②步到第③步出错(写成第“2”或“二”等数字都不扣分;另外直接写“第③步”或“到第③步”都算正确),(2分)(2)等号两边不能同除a2-b2,因为它有可能为零.(4分)(3)(从头或直接从第③步写解答过程都行),∵a2c2-b2c2=a4-b4,∴c2(a2-b2)=(a2+b2)(a2-b2),移项得:c2(a2-b2)-(a2+b2)(a2-b2)=0,得(a2-b2)(c2-a2-b2)=0,(5分)∴a2=b2或c2=a2+b2(6分)∴△ABC是直角三角形或等腰三角形.(7分)点评:正确理解勾股定理来验证直角三角形,从公式的角度入手,得出结论从而验证.17.考点:勾股定理;勾股定理的逆定理.分析:(1)先根据勾股定理求出BD的长度,然后根据勾股定理的逆定理,即可证明BD⊥BC;(2)根据两个直角三角形的面积即可求解.解答:解:(1)∵AD=3,AB=4,∠BAD=90°,∴BD=5.又BC=12,CD=13,∴BD2+BC2=CD2.∴BD⊥BC.(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=6+30=36.点评:综合运用了勾股定理及其逆定理,是基础知识比较简单.18.考点:勾股定理的逆定理;直角三角形全等的判定.专题:证明题.分析:(1)根据SAS 判定△ACE≌△BCD,从而得到∠EAC=∠DBC,根据角之间的关系可证得AF⊥BD.(2)互相垂直,只要证明∠AFD=90°,从而转化为证明∠EAC+∠CDB=90即可解答:(1)证明:∵△ACB 和△ECD 都是等腰直角三角形,∴AC=BC,CE=CD ,∠ACE=∠BCD=90°,在△ACE 和△BCD,⎩⎪⎨⎪⎧∠AC =BC∠ACE =∠BCD CE =CD ∴△ACE≌△BCD(SAS );(2)解:直线AE 与BD 互相垂直,理由为:证明:∵△ACE≌△BCD,∴∠EAC=∠DBC,又∵∠DBC+∠CDB=90°,∴∠EAC+∠CDB=90°,∴∠AFD=90°,∴AF⊥BD,即直线AE 与BD 互相垂直.点评:此题主要考查学生对全等三角形的判定及直角三角形的判定的掌握情况.19.故答案为:(1)第C 步 (2)等式两边同时除以a 2-b 2 (3)直角三角形或等腰三角形考点:勾股定理的逆定理.专题:阅读型.分析:通过给出的条件化简变形,找出三角形三边的关系,然后再判断三角形的形状. 解答:解:(1)C ;(2)方程两边同除以(a 2-b 2),因为(a 2-b 2)的值有可能是0;(3)∵c 2(a 2-b 2)=(a 2+b 2)(a 2-b 2)∴c 2=a 2+b 2或a 2-b 2=0∵a 2-b 2=0∴a+b=0或a-b=0∵a+b≠0∴c 2=a 2+b 2或a-b=0∴c 2=a 2+b 2或a=b∴该三角形是直角三角形或等腰三角形.点评:本题考查了因式分解和公式变形等内容,变形的目的就是找出三角形三边的关系再判定三角形的形状.20.考点:勾股定理;勾股定理的逆定理.分析:如图,连接BD.由勾股定理求得BD的长度;然后根据勾股定理的逆定理判定△BDC是直角三角形,则四边形ABCD的面积=直角△ABD的面积+直角△BDC 的面积.解答:解:∵在△ABD中,AB⊥AD,AB=3,AD=4,∴BD=AB2+AD2 =32+42 =5.在△BDC中,CD=12,BC=13,BD=5.∵122+52=132,即CD2+BD2=BC2,∴△BDC是直角三角形,且∠BDC=90°,∴S四边形A B C D=S△A B D+S△B D C=12AB•AD+12BD•CD12×3×4+12×5×12=36,即四边形ABCD的面积是36.点评:本题考查了勾股定理、勾股定理的逆定理.注意:勾股定理应用的前提条件是在直角三角形中.21.故答案填:n2-1,2n,n2+1;考点:勾股定理的逆定理;列代数式.专题:应用题;压轴题.分析:(1)结合表中的数据,观察a,b,c与n之间的关系,可直接写出答案;(2)分别求出a2+b2,c2,比较即可.解答:解:(1)由题意有:n2-1,2n,n2+1;(2)猜想为:以a,b,c为边的三角形是直角三角形.证明:∵a=n2-1,b=2n;c=n2+1∴a2+b2=(n2-1)2+(2n)2=n4-2n2+1+4n2=n4+2n2+1=(n2+1)2而c2=(n2+1)2∴根据勾股定理的逆定理可知以a,b,c为边的三角形是直角三角形.点评:本题需仔细观察表中的数据,找出规律,利用勾股定理的逆定理即可解决问题.22.考点:勾股定理的逆定理.分析:利用勾股定理求出CD和AD则可,再运用勾股定理的逆定理判定△ABC是直角三角形.解答:解:(1)∵CD⊥AB且CB=3,BD=95,故△CDB为直角三角形,∴在Rt△CDB中,CD=CB2−BD2 =32−(95)2 =125,在Rt△CAD中,AD=AC2−CD2 =42−(125)2 =165.(2)△ABC为直角三角形.理由:∵AD=165,BD=95,∴AB=AD+BD=165+95=5,∴AC2+BC2=42+32=25=52=AB2,∴根据勾股定理的逆定理,△ABC为直角三角形.点评:本题考查了勾股定理和它的逆定理,题目比较典型,是一个好题目.23.故答案为:32m或(20+4 5 )m或803m.考点:勾股定理的应用;等腰三角形的性质.专题:分类讨论.分析:根据题意画出图形,构造出等腰三角形,根据等腰三角形及直角三角形的性质利用勾股定理解答.解答:解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6由勾股定理有:AB=10,应分以下三种情况:①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10-6=4m,∴AD=4 5 m,∴△ABD的周长=10+10+4 5 =(20+4 5 )m.③如图3,当AB为底时,设AD=BD=x,则CD=x-6,由勾股定理得:AD=82+(x−6)2 =x解得,x=253,∴△ABD的周长为:AD+BD+AB=803m.点评:本题考查的是勾股定理在实际生活中的运用,在解答此题时要注意分三种情况讨论,不要漏解.24.考点:勾股定理的应用.分析:因为∠CAD=30°,则AC=2CD,再利用勾股定理求得CD的长,再加上DE 的长就求出了树的高度.解答:解:在Rt△ACD中,∠CAD=30°,AD=3,设CD=x,则AC=2x,由AD2+CD2=AC2,得,32+x2=4x2,x= 3 =1.732,所以大树高1.732+1.68≈3.4(米).点评:此题主要考查了学生利用勾股定理解实际问题的能力.25.考点:勾股定理的应用.分析:根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解答:解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB-EB=10-4=6m,在Rt△AEC中,AC=AE2+EC2 =错误!=10m,故小鸟至少飞行10m.点评:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.26.考点:勾股定理的应用.分析:在Rt△ADE中,运用勾股定理可求出梯子的总长度,在Rt△ABC中,根据已知条件再次运用勾股定理可求出BC的长.解答:解:在Rt△DAE中,∵∠DAE=45°,∴∠ADE=∠DAE=45°,AE=DE=8 ,∴AD 2=AE 2+DE 2=36m(8 )2+(8 )2=16,∴AD=4,即梯子的总长为4米.∴AB=AD=4.在Rt△ABC 中,∵∠BAC=60°,∴∠ABC=30°,∴AC=12AB=2, ∴BC 2=AB 2-AC 2=42-22=12, ∴BC=12 =2 3 m ;∴点B 到地面的垂直距离BC=2 3 m .点评:本题考查了勾股定理的应用,如何从实际问题中整理出直角三角形并正确运用勾股定理是解决此类题目的关键.27.考点:勾股定理的应用.分析:要求下滑的距离,显然需要分别放到两个直角三角形中,运用勾股定理求得AC 和CE 的长即可.解答:解:在Rt△ACB 中,AC 2=AB 2-BC 2=2.52-1.52=4,∴AC=2,∵BD=0.5,∴CD=2.在Rt△ECD 中,EC 2=ED 2-CD 2=2.52-22=2.25,∴EC=1.5,∴AE=AC -EC=2-1.5=0.5. 答:梯子顶端下滑了0.5米.点评:注意此题中梯子的长度是不变的.熟练运用勾股定理.28.考点:勾股定理的应用.分析:根据使得C ,D 两村到E 站的距离相等,需要证明DE=CE ,再根据△DAE≌△EBC,得出AE=BC=10km ; 解答:解:∵使得C ,D 两村到E 站的距离相等.∴DE=CE,∵DA⊥AB 于A ,CB⊥AB 于B ,∴∠A=∠B=90°,∴AE 2+AD 2=DE 2,BE 2+BC 2=EC 2,∴AE 2+AD 2=BE 2+BC 2,设AE=x ,则BE=AB-AE=(25-x ),∵DA=15km,CB=10km ,∴x 2+152=(25-x )2+102,解得:x=10,∴AE=10km,∴收购站E应建在离A点10km处.点评:本题主要是运用勾股定理将两个直角三角形的斜边表示出来,两边相等求解即可.29.考点:勾股定理的应用.专题:应用题.分析:(1)点到直线的线段中垂线段最短,故应由A点向BF作垂线,垂足为C,若AC>200则A城不受影响,否则受影响;(2)点A到直线BF的长为200千米的点有两点,分别设为D、G,则△ADG是等腰三角形,由于AC⊥BF,则C是DG的中点,在Rt△ADC中,解出CD的长,则可求DG长,在DG长的范围内都是受台风影响,再根据速度与距离的关系则可求时间.解答:解:(1)由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320km,则AC=160km,因为160<200,所以A城要受台风影响;(2)设BF上点D,DA=200千米,则还有一点G,有AG=200千米.因为DA=AG,所以△ADG是等腰三角形,因为AC⊥BF,所以AC是BF的垂直平分线,CD=GC,在Rt△ADC中,DA=200千米,AC=160千米,由勾股定理得,CD=DA2−AC2 =2002−1602 =120千米,则DG=2DC=240千米,遭受台风影响的时间是:t=240÷40=6(小时).点评:此题主要考查辅助线在题目中的应用,勾股定理,点到直线的距离及速度与时间的关系等,较为复杂.30.考点:勾股定理的应用.分析:连接AC,根据已知条件运用勾股定理逆定理可证△ABC和△ACD为直角三角形,然后代入三角形面积公式将两直角三角形的面积求出来,两者面积相加即为四边形ABCD的面积.解答:解:连接AC,∵∠B=90°,∴△ABC为直角三角形,∵AC2=AB2+BC2=82+62=102,∵AC>0,∴AC=10,在△ACD中,∵AC2+CD2=100+576=676,AD2=262=676,∴AC2+CD2=AD2,∴△ACD为直角三角形,且∠ACD=90°,∴S四边形A B C D=S△A B C+S△A C D=12×6×8+12×10×24=144.点评:通过作辅助线可将一般的四边形转化为两个直角三角形,使面积的求解过程变得简单.。
勾股定理的逆定理练习题(有答案)

勾股定理的逆定理练习题1.小强在操场上向东走80m 后,又走了60m ,再走100m 回到原地。
小强在操场上向东走了80m 后,又走60m 的方向是 。
2.在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形? 为什么?3.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
4.一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC=15米,AD=13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直? 为什么? 5、若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。
6、若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状 。
7、已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。
求:四边形ABCD 的面积。
第7题 8、根据下列条件,分别判断a,b,c 为边的三角形是不是直角三角形 (1)a=7,b=24,c=25; (2) a=32,b=1,c=32( 填序号 )D9、已知ABC Δ的三边分别a,b,ca=22n m -,b=2mn,c=22n m +(m>n,m,n 是正整数),ABC Δ是直角三角形吗?说明理由。
10、如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?第10题11、如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=14BC ,求证:AF ⊥EF .E NABC12、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
勾股定理的逆定理习题训练含答案

勾股定理的逆定理一、根底·稳固1.满足以下条件的三角形中,不是直角三角形的是〔〕A.三内角之比为1∶2∶3B.三边长的平方之比为1∶2∶3C.三边长之比为3∶4∶5D.三内角之比为3∶4∶52.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,那么该零件另一腰AB的长是________ cm 〔结果不取近似值〕.图18-2-4 图18-2-5 图18-2-63.如图18-2-5,以Rt△ABC的三边为边向外作正方形,其面积分别为S1、S2、S3,且S1=4,S2=8,那么AB的长为_________.4.如图18-2-6,正方形ABCD的边长为4,E为AB中点,F为AD上的1AD,试判断△EFC的形状.一点,且AF=45.一个零件的形状如图18-2-7,按规定这个零件中∠A与∠BDC都应为直角,工人师傅量得零件各边尺寸:AD=4,AB=3,BD=5,DC=12 , BC=13,这个零件符合要求吗?图18-2-76.△ABC的三边分别为k2-1,2k,k2+1〔k>1〕,求证:△ABC是直角三角形.二、综合·应用7.a、b、c是Rt△ABC的三边长,△A1B1C1的三边长分别是2a、2b、2c,那么△A1B1C1是直角三角形吗?为什么?8.:如图18-2-8,在△ABC中,CD是AB边上的高,且CD2=AD·BD.求证:△ABC是直角三角形.图18-2-89.如图18-2-9所示,在平面直角坐标系中,点A、B的坐标分别为A〔3,1〕,B〔2,4〕,△OAB是直角三角形吗?借助于网格,证明你的结论.图18-2-910.阅读以下解题过程:a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,试判断△ABC的形状.解:∵a2c2-b2c2=a4-b4,(A)∴c2(a2-b2)=(a2+b2)(a2-b2),(B)∴c2=a2+b2,〔C)∴△ABC是直角三角形.问:①上述解题过程是从哪一步开场出现错误的?请写出该步的代号_______;②错误的原因是______________;③此题的正确结论是__________.11.:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,满足a2+b2+c2+338=10a+24b+26c.试判断△ABC的形状.12.:如图18-2-10,四边形ABCD,AD∥BC,AB=4,BC=6,CD=5,AD=3.求:四边形ABCD的面积.图18-2-10参考答案一、根底·稳固1.思路分析:判断一个三角形是否是直角三角形有以下方法:①有一个角是直角或两锐角互余;②两边的平方与等于第三边的平方;③一边的中线等于这条边的一半.由A 得有一个角是直角;B 、C 满足勾股定理的逆定理,所以应选D. 答案:D2.解:过D 点作DE∥AB 交BC 于E, 那么△DEC 是直角三角形.四边形ABED 是矩形,∴AB=DE.∵∠D=120°,∴∠CDE=30°.又∵在直角三角形中,30°所对的直角边等于斜边的一半,∴CE=5 cm. 根据勾股定理的逆定理得,DE=3551022=- cm. ∴AB=3551022=- cm.3.思路分析:因为△ABC 是Rt△,所以BC 2+AC 2=AB 2,即S 1+S 2=S 3,所以S 3=12,因为S 3=AB 2,所以AB=32123==S . 答案:324.思路分析:分别计算EF 、CE 、CF 的长度,再利用勾股定理的逆定理判断即可.解:∵E 为AB 中点,∴BE=2.同理可求得,EF2=AE2+AF2=22+12=5,CF2=DF2+CD2=32+42=25.∵CE2+EF2=CF2,∴△EFC是以∠CEF为直角的直角三角形.5.分析:要检验这个零件是否符合要求,只要判断△ADB与△DBC是否为直角三角形即可,这样勾股定理的逆定理就可派上用场了.解:在△ABD中,AB2+AD2=32+42=9+16=25=BD2,所以△ABD为直角三角形,∠A =90°.在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.所以△BDC是直角三角形,∠CDB =90°.因此这个零件符合要求.6.思路分析:根据题意,只要判断三边之间的关系符合勾股定理的逆定理即可.证明:∵k2+1>k2-1,k2+1-2k=(k-1)2>0,即k2+1>2k,∴k2+1是最长边.∵(k2-1)2+(2k)2=k4-2k2+1+4k2=k4+2k2+1=(k2+1)2,∴△ABC是直角三角形.二、综合·应用7.思路分析:如果将直角三角形的三条边长同时扩大一个一样的倍数,得到的三角形还是直角三角形〔例2已证〕.8.思路分析:根据题意,只要判断三边符合勾股定理的逆定理即可.证明:∵AC2=AD2+CD2,BC2=CD2+BD2,=AD2+2AD·BD+BD2=〔AD+BD〕2=AB2.∴△ABC是直角三角形.9.思路分析:借助于网格,利用勾股定理分别计算OA、AB、OB的长度,再利用勾股定理的逆定理判断△OAB是否是直角三角形即可.解:∵ OA2=OA12+A1A2=32+12=10,OB2=OB12+B1B2=22+42=20,AB2=AC2+BC2=12+32=10,∴OA2+AB2=OB2.∴△OAB是以OB为斜边的等腰直角三角形.10.思路分析:做这种类型的题目,首先要认真审题,特别是题目中隐含的条件,此题错在无视了a有可能等于b这一条件,从而得出的结论不全面.答案:①(B) ②没有考虑a=b这种可能,当a=b时△ABC是等腰三角形;③△ABC是等腰三角形或直角三角形.11.思路分析:〔1〕移项,配成三个完全平方;(2)三个非负数的与为0,那么都为0;(3)a、b、c,利用勾股定理的逆定理判断三角形的形状为直角三角形.解:由可得a2-10a+25+b2-24b+144+c2-26c+169=0,配方并化简得,(a-5)2+(b-12)2+(c-13)2=0.∵(a-5)2≥0,(b-12)2≥0,(c-13)2≥0.∴a-5=0,b-12=0,c-13=0.解得a=5,b=12,c=13.又∵a 2+b 2=169=c 2,∴△ABC 是直角三角形.12.思路分析:〔1〕作DE∥AB ,连结BD ,那么可以证明△ABD≌△EDB 〔ASA 〕;(2)DE=AB=4,BE=AD=3,EC=EB =3;(3)在△DEC 中,3、4、5为勾股数,△DEC 为直角三角形,DE⊥BC;(4)利用梯形面积公式,或利用三角形的面积可解.解:作DE∥AB,连结BD ,那么可以证明△ABD≌△EDB〔ASA 〕, ∴DE=AB=4,BE=AD=3.∵BC=6,∴EC=EB=3.∵DE 2+CE 2=32+42=25=CD 2,∴△DEC 为直角三角形.又∵EC=EB=3,∴△DBC 为等腰三角形,DB=DC=5.在△BDA 中AD 2+AB 2=32+42=25=BD 2,∴△BDA 是直角三角形.它们的面积分别为S △BDA =21×3×4=6;S △DBC =21×6×4=12.∴S 四边形ABCD =S △BDA +S △DBC =6+12=18.。
《勾股定理》练习题及答案

《勾股定理》练习题测试1 勾股定理(一)课堂学习检测一、填空题1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.2.甲、乙两人同时从同一地点出发,已知甲往东走了4km ,乙往南走了3km ,此时甲、乙两人相距______km .3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m 路,却踩伤了花草.4.如图,有两棵树,一棵高8m ,另一棵高2m ,两树相距8m ,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______m .二、选择题5.如图,一棵大树被台风刮断,若树在离地面3m 处折断,树顶端落在离树底部4m 处,则树折断之前高( ).(A)5m (B)7m (C)8m (D)10m6.如图,从台阶的下端点B 到上端点A 的直线距离为( ). (A)212 (B)310 (C)56 (D)58三、解答题7.在一棵树的10米高B 处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A 处;另一只爬到树顶D 后直接跃到A 处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高多少米?8.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?综合、运用、诊断一、填空题9.如图,一电线杆AB 的高为10米,当太阳光线与地面的夹角为60°时,其影长AC 为______米.10.如图,有一个圆柱体,它的高为20,底面半径为5.如果一只蚂蚁要从圆柱体下底面的A 点,沿圆柱表面爬到与A相对的上底面B点,则蚂蚁爬的最短路线长约为______(取3)二、解答题:11.长为4 m的梯子搭在墙上与地面成45°角,作业时调整为60°角(如图所示),则梯子的顶端沿墙面升高了______m.12.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?9 10 11 12拓展、探究、思考13.如图,两个村庄A、B在河CD的同侧,A、B两村到河的距离分别为AC=1千米,BD =3千米,CD=3千米.现要在河边CD上建造一水厂,向A、B两村送自来水.铺设水管的工程费用为每千米20000元,请你在CD上选择水厂位置O,使铺设水管的费用最省,并求出铺设水管的总费用W.测试2 勾股定理(三)学习要求熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.课堂学习检测一、填空题1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若AC=BC,∠ACB=90°,AB=10,则AC=______,AB边上的高CD=______.4.在△ABC中,若AB=BC=CA=a,则△ABC的面积为______.5.在△ABC中,若∠ACB=120°,AC=BC,AB边上的高CD=3,则AC=______,AB=______,BC边上的高AE=______.二、选择题6.已知直角三角形的周长为62+,斜边为2,则该三角形的面积是( ). (A)41 (B)43 (C)21 (D)17.若等腰三角形两边长分别为4和6,则底边上的高等于( ).(A)7(B)7或41 (C)24 (D)24或7三、解答题8.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为BC 和AC 的中点,AD =5,BE =102求AB 的长.9.在数轴上画出表示10-及13的点.综合、运用、诊断10.如图,△ABC 中,∠A =90°,AC =20,AB =10,延长AB 到D ,使CD +DB =AC +AB ,求BD 的长.11.如图,将矩形ABCD 沿EF 折叠,使点D 与点B 重合,已知AB =3,AD =9,求BE 的长.12.如图,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,求EC 的长.13.已知:如图,△ABC 中,∠C =90°,D 为AB 的中点,E 、F 分别在AC 、BC上,且DE ⊥DF .求证:AE 2+BF 2=EF 2.拓展、探究、思考14.如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2,l2,l3之间的距离为3,求AC的长是多少?15.如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,……已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…,S n(n为正整数),那么第8个正方形的面积S8=______,第n个正方形的面积S n=______.测试3 勾股定理的逆定理学习要求掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.课堂学习检测一、填空题1.如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是______三角形,我们把这个定理叫做勾股定理的______.2.在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做____________;如果把其中一个命题叫做原命题,那么另一个命题叫做它的____________.3.分别以下列四组数为一个三角形的边长:(1)6、8、10,(2)5、12、13,(3)8、15、17,(4)4、5、6,其中能构成直角三角形的有____________.(填序号)4.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,①若a2+b2>c2,则∠c为____________;②若a2+b2=c2,则∠c为____________;③若a2+b2<c2,则∠c为____________.5.若△ABC 中,(b -a )(b +a )=c 2,则∠B =____________;6.如图,正方形网格中,每个小正方形的边长为1,则网格上的△ABC 是______三角形.7.若一个三角形的三边长分别为1、a 、8(其中a 为正整数),则以a -2、a 、a +2为边的三角形的面积为______.8.△ABC 的两边a ,b 分别为5,12,另一边c 为奇数,且a +b +c 是3的倍数,则c 应为______,此三角形为______.二、选择题9.下列线段不能组成直角三角形的是( ).(A)a =6,b =8,c =10 (B)3,2,1===c b a (C)43,1,45===c b a (D)6,3,2===c b a 10.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是( ). (A)1∶1∶2 (B)1∶3∶4 (C)9∶25∶26(D)25∶144∶169 11.已知三角形的三边长为n 、n +1、m (其中m 2=2n +1),则此三角形( ).(A)一定是等边三角形 (B)一定是等腰三角形 (C)一定是直角三角形(D)形状无法确定 综合、运用、诊断一、解答题12.如图,在△ABC 中,D 为BC 边上的一点,已知AB =13,AD =12,AC =15,BD =5,求CD 的长.13.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .15.在B 港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?拓展、探究、思考16.已知△ABC中,a2+b2+c2=10a+24b+26c-338,试判定△ABC的形状,并说明你的理由.17.已知a、b、c是△ABC的三边,且a2c2-b2c2=a4-b4,试判断三角形的形状.18.观察下列各式:32+42=52,82+62=102,152+82=172,242+102=262,…,你有没有发现其中的规律?请用含n的代数式表示此规律并证明,再根据规律写出接下来的式子.参考答案3测试1 勾股定理(二)1.13或.119 2.5. 3.2. 4.10.5.C . 6.A . 7.15米. 8.23米. 9.⋅3310 10.25. 11..2232- 12.7米,420元. 13.10万元.提示:作A 点关于CD 的对称点A ′,连结A ′B ,与CD 交点为O .测试2 勾股定理(三)1.;343415,34 2.16,19.2. 3.52,5. 4..432a 5.6,36,33. 6.C . 7.D8..132 提示:设BD =DC =m ,CE =EA =k ,则k 2+4m 2=40,4k 2+m 2=25.AB =.1324422=+k m9.,3213,31102222+=+=图略.10.BD =5.提示:设BD =x ,则CD =30-x .在Rt △ACD 中根据勾股定理列出(30-x )2=(x +10)2+202,解得x =5.11.BE =5.提示:设BE =x ,则DE =BE =x ,AE =AD -DE =9-x .在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+(9-x )2=x 2.解得x =5.12.EC =3cm .提示:设EC =x ,则DE =EF =8-x ,AF =AD =10,BF =622=-AB AF ,CF =4.在Rt △CEF 中(8-x )2=x 2+42,解得x =3. 13.提示:延长FD 到M 使DM =DF ,连结AM ,EM .14.提示:过A ,C 分别作l 3的垂线,垂足分别为M ,N ,则易得△AMB ≌△BNC ,则.172,34=∴=AC AB 15.128,2n -1.测试3 勾股定理的逆定理1.直角,逆定理. 2.互逆命题,逆命题. 3.(1)(2)(3).4.①锐角;②直角;③钝角. 5.90°. 6.直角.7.24.提示:7<a <9,∴a =8. 8.13,直角三角形.提示:7<c <17.9.D . 10.C . 11.C .12.CD =9. 13..51+14.提示:连结AE,设正方形的边长为4a,计算得出AF,EF,AE的长,由AF2+EF2=AE2得结论.15.南偏东30°.16.直角三角形.提示:原式变为(a-5)2+(b-12)2+(c-13)2=0.17.等腰三角形或直角三角形.提示:原式可变形为(a2-b2)(a2+b2-c2)=0.18.352+122=372,[(n+1)2-1]2+[2(n+1)]2=[(n+1)2+1]2.(n≥1且n为整数)。
勾股定理的逆定理练习题(超经典含答案)

3.【答案】A
【解析】A、1.52+22≠32,不符合勾股定理的逆定理,故本选项符合题意;
B、52+122=132,符合勾股定理的逆定理,故本选项不符合题意;
C、72+242=252,符合勾股定理的逆定理,故本选项不符合题意;
A.5B.6C.7D.8
11.下列命题中,命题为真命题的是
A.对顶角相等B.若a=b,则|a|=|b|
C.同位角相等,两直线平行D.若ac2<bc2,则a<b
12.如图所示的一块地,∠ADC=90°, , , , ,求这块地的面积 为
A.54m2B.108m2C.216m2D.270m2
13.如图,在钝角△ABC中,已知∠A为钝角,边AB、AC的垂直平分线分别交BC于点D、E,若BD2+CE2=DE2,则∠A的度数为__________.
B、∵22+32≠42,∴三条线段不能组成直角三角形,故B选项错误;
C、∵42+62≠72,∴三条线段不能组成直角三角形,故C选项错误;
D、∵52+112≠122,∴三条线段不能组成直角三角形,故D选项错误.故选A.
20.【答案】A
【解析】∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为: ×5×500×12×500=7500000(平方米)=7.5(平方千米).故选A.
∴四边形ABCD的面积是6.
18.【解析】(1)∵AD⊥BC,
∴∠ADC=∠ADB=90°.
在Rt△ADC中,由勾股定理得AD=
在Rt△ADB中,由勾股定理得BD= .
勾股定理经典例题(含标准答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解读:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2 =52-32 =16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解读:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解读:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC 交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理逆定理同步测试题(含答案)

勾股定理和逆定理专题训练一、选择题1.下列几组数中,能作为直角三角形三边长度的是( ).A .2,3,4B .5,7,9C .8,15,17D .200,300,400 2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )3.三角形的三边长a 、b 、c ,满足22()2a b c ab +=+,则这个三角形是( ) . A . 锐角三角形 B . 直角三角形 C . 钝角三角形 D . 等边三角形 4.下列结论错误的是( )A .三个角度之比为1∶2∶3的三角形是直角三角形;B .三条边长之比为3∶4∶5的三角形是直角三角形;C .三个角度之比为1∶1∶2的三角形是直角三角形;D .三条边长之比为8∶16∶17的三角形是直角三角形.5.在同一平面上把三边BC =3、AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ).A .125 B .135 C .56 D .2456.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱在去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个( )角.A .锐角B .直角C .钝角D .不能确定7.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a >0);⑤22m n -、2mn 、22m n +(m 、n 为正整数,且m >n )其中可以构成直角三角形的有( )A .5组B .4组C .3组D .2组8.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定ABCD二、填空题1.在△ABC 中,若222AB BC AC +=,则∠A +∠C =______度.2.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 . 3.已知两条线段的长为5cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.4.如图1,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26.则四边形ABCD 的面积为____________.5. 如图2所示,一架5米长的消防梯子斜靠在一竖直的墙AC 上,梯足(点B )离墙底端(C 点)的距离为3米,如果梯足内移1.6米至点B 1处,则梯子顶端沿墙垂直上移_______米.6.直角三角形的三边长为连续偶数,则这三个数分别为__________.7.如图3所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,则这块地的面积是__________2m .8. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数:, , .三、解答题1. 一个零件的形状如图3所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如图4所示,这个零件符合要求吗?2.已知:如图,△ABC 中,AB =5cm ,BC =3 cm ,AC =4cm ,CD ⊥AB 于D , 求CD 的长及△ABC 的面积;图2 图3图4图5图1 图3图 2 2.已知△ABC 的三边为22m n +,22m n -,2mn(1)当m =2,n =1时,△ABC 是否为直角三角形?并说明理由. (2)当m =3,n =2时,△ABC 是否为直角三角形?并说明理由. (3)对于m 、n 为任何正整数时(m >n ),你能说明△ABC 为直角三角形吗? 3.如图5,已知正方形ABCD 中,F 是DC 的中点,E 为BC 的上一点,且EC =14BC .求证:EF ⊥AF .一、选择题(每小题3分,共15分)1.如图1,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对2.已知,如图2,在长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ). A .6cm 2B .8cm 2C .10cm 2D .12cm 2二、填空题(每题3分,共15分)1.如图4,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于2. 观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =三、解答题1.如图5,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?图1 图4图52.如图6,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?图63.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求折痕AD的长.4.(20分)如图,南北向MN为我国领域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?A 卷:一、1.C 2.C 3.B 4.D 5.D二、1. 90° 2.120 3.13 4.144 5.0.8.三、1.答:这个零件符合要求.∵在△ABD 中,22223425AB AD +=+=,22525BD ==.∴222AB AD BD +=,∴∠A =90°.同理可得∠DBC =90°.2.答:(1)△ABC 是直角三角形.∵当m =2,n =1时,222()25m n +=;222()9m n -=;2(2)16mn =.∴2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(2)当m =3,n =2时,还有2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(3)∵22224422222()(2)2()m n mn m n m n m n -+=++=+,∴对于m 、n 为任何正整数时(m >n ),△ABC 都是直角三角形.3.解:证明:连接AE ,设正方形边长为4a ,则EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,222222(4)(3)25AE AB BE a a a =+=+=.同理:222222(4)(2)20AF AD DF a a a =+=+=,222222(2)5EF EC CF a a a =+=+=,∴222EF AF AE +=.由勾股定理的逆定理知△AFE 为直角三角形,且∠AFE =90°,即EF ⊥AF . B 卷:一、1.B 2.B 3. C 4.A 5.A二、1.6、8、10 2.24 3.5、12、13 4.10 5.84,85三、1.解:∵2222512169AB BC +=+=,2213169AC ==,∴222AB BC AC +=.由勾股定理的逆定理知△AC 为直角三角形,且∠ABC =90°.由题意,可知BD ⊥AC ,∴AC ·BD =AB ·BC ,BD =6013.6013×26000=120000(元).即修这条公路的最低造价是12万元.2.解:∵AC =16×3=48,AB =12×3=36,∴222222604836BC AC AB +=-== ∴△ABC 为直角三角形且∠CAB =90°,∴乙船出发后的航向是南偏东40° C 卷:解:设MN 交AC 于E ,则∠BEC =90°.又AB 2+BC 2=52+122=169=32=AC 2,∴△ABC 是直角三角形,∠ABC =90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288,∴CE =13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分. 答:走私艇最早在10时41分进入我国领海.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理逆定理典型题
一、选择题:
1.在下列长度的各组线段中,能组成直角三角形的是( ).
A .12,15,17
B .9,16,25
C .5a ,12a ,13a (a>0)
D .2,3,4
2.等腰三角形底边上的高为8,周长为32,则三角形的面积为______________
A 56
B 48
C 40
D 321
3. 在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,AB =8,BC =15,CA =17,则下列结论不正确的是( ).
A .△ABC 是直角三角形,且AC 为斜边
B .△AB
C 是直角三角形,且∠ABC =90°
C .△ABC 的面积是60
D .△ABC 是直角三角形,且∠A =60°
4.在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c.则满足下列条件但不是直角三角形的是( ).
A .∠A =∠
B -∠
C B .∠A :∠B :∠C =1:1:2
C .a :b :c =4:5:6
D .a 2-c 2=b 2
二、填空题:
5.写出一组全是偶数的勾股数是 .
6.若一三角形铁皮余料的三边长为12cm ,16cm ,20cm ,则这块三角形铁皮余料的面积为 cm 2.
7.如图1,一根电线杆高8m.为了安全起见,在电线杆顶部到与电线杆底部水平距离6m 处加一拉线.拉线工人发现所用线长为10.2m (不计捆缚部分),则电线杆与地面 (填“垂直”或“不垂直”).
8.一透明的玻璃杯,从内部测得底部半径为6cm ,杯深16cm.今有一根长为22cm 的吸管如图2放入杯中,露在杯口外的长度为2cm ,则这玻璃杯的形状是 体.
9
12、13的边上的高是 .
10ab c 22+, A. ; C. .
11、△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2,则( )
A.a 边的对角是直角
B.b 边的对角是直角
C.c 边的对角是直角
D.是斜三角形
12、已知0)10(862
=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 13、欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,梯子至少需要 米.
三、解答题
1.判断由下列各组线段a 、b 、c 的长,能组成的三角形是不是直角三角形,并说明理由.
(1)a =6.5,b =7.5,c =4; (2)a =11,b =60,c =61;
(3)a =38,b =2,c =310; (4)a =4
33,b =2,c =414; 图1
图2
A B C D 2. 在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c. a =n 2-16,b =8n ,c =n 2
+16(n>4).求证: ∠C=90°.
3.如图3,AD=7,AB =25,BC =10,DC =26,DB =24,求四边形ABCD 的面积.
4.如图4,已知在△ABC 中,CD ⊥AB 于D ,AC =20,BC =15,DB =9.
(1)求DC 的长.
(2)求AB 的长.
(3)求证: △ABC 是直角三角形. 5. 已知:如图,∠ABD=∠C=90°,AD=12,AC=BC ,∠DAB=30°,求BC 的长.
6. 已知:如图,AB=4,BC=12,CD=13,DA=3,AB ⊥AD ,求证:BC ⊥BD .
图3 C A B D
图4。