(完整版)《勾股定理》典型练习题.doc
(完整版)勾股定理练习题(含答案)

希望教育 勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )S d (A(B(C ) (D)2dd 2d +d+8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是( 2(6)100a -+=)A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__. 16. 在Rt△ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BBC 为直径作半圆,则这个半圆的面积是 .18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?AE答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.A 观测点。
勾股定理练习题(答案)

勾股定理练习题(答案)勾股定理练题1.基础达标:下列说法正确的是:A。
若a、b、c是△ABC的三边,则a²+b²=c²;B。
若a、b、c是Rt△ABC的三边,则a²+b²=c²;C。
若a、b、c是Rt△ABC的三边,∠A=90°,则a²+b²=c²;D。
若a、b、c是Rt△ABC的三边,∠C=90°,则a²+b²=c².2.Rt△ABC的三条边长分别是a、b、c,则下列各式成立的是:A。
a+b=cB。
a+b>cC。
a+b<cD。
a²+b²=c²3.如果Rt△的两直角边长分别为k²-1,2k(k>1),那么它的斜边长是:A。
2kB。
k+1C。
k²-1D。
k²+14.已知a,b,c为△ABC三边,且满足(a²-b²)(a²+b²-c²)=0,则它的形状为:A。
直角三角形B。
等腰三角形C。
等腰直角三角形D。
等腰三角形或直角三角形5.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为:A。
121B。
120C。
90D。
不能确定6.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为:A。
42B。
32C。
42或32D。
37或337.※直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为:A。
d²+S+2dB。
d²-S-dC。
2d²+S+2dD。
2d²+S+d8.在平面直角坐标系中,已知点P的坐标是(3,4),则OP 的长为:A。
3B。
4C。
5D。
79.若△ABC中,AB=25cm,AC=26cm,高AD=24,则BC的长为:A。
17B。
3C。
17或3D。
以上都不对10.已知a、b、c是三角形的三边长,如果满足(a-6)²+b-8+c-10=0,则三角形的形状是:A。
勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。
根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。
2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。
3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。
则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。
同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。
因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。
4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。
5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。
勾股定理的练习题(打印版)

勾股定理的练习题(打印版)# 勾股定理练习题## 一、选择题1. 勾股定理适用于哪种形状的三角形?- A. 直角三角形- B. 等边三角形- C. 等腰三角形- D. 任意三角形2. 直角三角形的两条直角边分别为3和4,斜边的长度是多少?- A. 5- B. 6- C. 7- D. 8## 二、填空题1. 如果直角三角形的两条直角边分别为a和b,斜边为c,那么根据勾股定理,c的平方等于______。
2. 已知直角三角形的斜边长为13,一条直角边长为5,另一条直角边的长度是______。
## 三、计算题1. 一个直角三角形的两条直角边分别为6厘米和8厘米,求斜边的长度。
2. 已知一个直角三角形的斜边长为10厘米,一条直角边长为6厘米,求另一条直角边的长度。
## 四、应用题1. 一个梯形的上底为3米,下底为5米,高为4米。
如果将这个梯形分成两个直角三角形,求这两个直角三角形的斜边长度。
2. 一个建筑物的高为50米,从地面到建筑物顶部的直线距离为60米。
求建筑物底部到直线投影点的水平距离。
## 五、证明题1. 证明在一个直角三角形中,斜边是最长的边。
2. 证明勾股定理在等腰直角三角形中同样适用。
注意:请在答题纸上作答,并确保书写清晰、整洁。
答案:一、选择题1. A2. A二、填空题1. a² + b²2. 12三、计算题1. 斜边长度= √(6² + 8²) = √(36 + 64) = √100 = 10厘米2. 另一条直角边长度= √(10² - 6²) = √(100 - 36) = √64 =8厘米四、应用题1. 两个直角三角形的斜边长度分别为:√(3² + 4²) = √(9 + 16) = √25 = 5米2. 水平距离= √(60² - 50²) = √(3600 - 2500) = √1100 ≈ 33.1665米五、证明题1. 略2. 略请同学们认真审题,仔细作答,确保答案的准确性。
(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
勾股定理练习题(含答案)

勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
(完整版)八年级勾股定理典型练习题含答案

八年级勾股定理典型练习题含答案一、选择题1、下列各组数中,能构成直角三角形的是A:4,5,B:1,1:6,8,11 D:5,12,22、在Rt△ABC中,∠C=90°,a=12,b=16,则c的长为 A:26B:1 C:20D:213、在平面直角坐标系中,已知点P的坐标是,则OP 的长为 A:3B:4C:5D:74、在Rt△ABC中,∠C=90°,∠B=45°,c=10,则a的长为 A: B:C:5D:、等边三角形的边长为2,则该三角形的面积为A、、、36、若等腰三角形的腰长为10,底边长为12,则底边上的高为A、 B、C、8D、9、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为A、3cmC、6cm22B、4cm D、12cm228、若△ABC中,AB?13cm,AC?15cm,高AD=12,则BC 的长为 A、1 B、 C、14或4D、以上都不对二、填空题1、若一个三角形的三边满足c?a?b,则这个三角形是2、木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面。
3、直角三角形两直角边长分别为3和4,则它斜边上的高为__________。
2224、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为。
5、如右图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=___________。
E6、一只蚂蚁从长为4cm、宽为cm,高是cm的FC长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是____________cm。
7、将一根长为15㎝的筷子置于底面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围是________________。
(完整版)勾股定理练习题及答案(共6套)

勾股定理课时练(1)8. 一个部件的形状以下图,已知AC=3cm, AB=4cm,BD=12cm。
求 CD的长 .1. 在直角三角形 ABC 中,斜边 AB=1 ,则 AB 2 BC 2 AC 2的值是()2.如图 18-2- 4 所示 ,有一个形状为直角梯形的部件ABCD ,AD ∥ BC,斜腰 DC 的长为10 cm,∠ D=120°,则该部件另一腰 AB 的长是 ______ cm(结果不取近似值) . 第 8 题图3. 直角三角形两直角边长分别为 5 和 12,则它斜边上的高为 _______.9. 如图,在四边形 ABCD中,∠ A=60°,∠ B=∠ D=90°, BC=2,CD=3,求 AB 的长 .4.一根旗杆于离地面12 m处断裂,如同装有铰链那样倒向地面,旗杆顶落于离旗杆地步16 m,旗杆在断裂以前高多少m ?第 9 题图10. 如图,一个牧童在小河的南4km 的 A 处牧马,而他正位于他的小屋 B 的西 8km 北 7km 处,5. 如图,以以下图,今年的冰雪灾祸中,一棵大树在离地面 3 米处折断,树的顶端落在离树杆底部4 他想把他的马牵到小河畔去饮水,而后回家. 他要达成这件事情所走的最短行程是多少?米处,那么这棵树折断以前的高度是米 .“路”3m4m第 5 题图第 2 题图11 如图,某会展中心在会展时期准备将高5m, 长 13m,宽 2m 的楼道上铺地毯 , 已知地毯平方米 18 6. 飞机在空中水平飞翔, 某一时辰恰巧飞到一个男孩子头顶正上方4000 米处 , 过了 20 秒, 飞机距离元,请你帮助计算一下,铺完这个楼道起码需要多少元钱?这个男孩头顶 5000 米, 求飞机每小时飞翔多少千米 ?13m 5m第 11 题12. 甲、乙两位探险者到荒漠进行探险,没有了水,需要找寻水源.为了不致于走散,他们用两部7. 以下图,无盖玻璃容器,高18 cm,底面周长为 60 cm,在外侧距下底 1 cm的点 C 处有一对话机联系,已知对话机的有效距离为15 千米.清晨 8:00 甲先出发,他以 6 千米 / 时的速度向蜘蛛,与蜘蛛相对的容器的上口外侧距张口 1 cm的 F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,东行走, 1 小时后乙出发,他以 5 千米 / 时的速度向北前进,上午10: 00,甲、乙二人相距多远?所走的最短路线的长度 . 还可以保持联系吗?第 7 题图第一课时答案:1.A ,提示:依据勾股定理得BC 2 AC 2 1,所以AB 2BC 2 AC 2 =1+1=2 ;2.4 ,提示:由勾股定理可得斜边的长为 5 m,而 3+4-5=2 m ,所以他们少走了 4 步.3. 60 ,提示:设斜边的高为x ,依据勾股定理求斜边为122 52 169 13 ,再利13用面积法得,15 12 1 13 x, x 60 ;2 2 134.解:依题意, AB=16 m, AC=12 m,在直角三角形 ABC 中 ,由勾股定理 ,BC 2AB 2AC 216 212 220 2,所以 BC=20 m ,20+12=32( m ),故旗杆在断裂以前有32 m高.6. 解: 如图 , 由题意得 ,AC=4000 米 , ∠C=90° ,AB=5000 米 , 由勾股定理得BC=50002400023000(米),3所以飞机飞翔的速度为540 (千米/小时)2036007.解:将曲线沿 AB睁开,以下图,过点 C 作 CE⊥ AB于 E.在R t CEF , CEF90 ,EF=18-1-1=16( cm ),1CE=30(cm) ,2. 60CE 2 EF 2 30 2 16 2 34( ) 由勾股定理,得CF=8.解:在直角三角形ABC中,依据勾股定理,得在直角三角形 CBD中,依据勾股定理,得2 2 2 2CD=BC+BD=25+12 =169,所以 CD=13.9.解:延伸 BC、AD交于点 E. (以下图)∵∠ B=90°,∠ A=60°,∴∠ E=30°又∵ CD=3,∴ CE=6,∴ BE=8,设 AB=x,则 AE=2x,由勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为 a、 b,斜边为 c ,那么 a 2 + b 2= c 2。
公式的变形: a2 = c 2- b 2, b 2= c 2-a 2。
2、勾股定理的逆定理如果三角形 ABC的三边长分别是a, b, c,且满足 a2 + b2= c2,那么三角形 ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方 +中间边的平方 .③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足 a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6, 8, 10 ) ( 7,24, 25 ) ( 8,15,17 )(9 ,12,15 )4、最短距离问题:主要5、运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;( 2)阴影部分是长方形;( 3)阴影部分是半圆.2.如图,以 Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S1、S2、 S3,则它们之间的关系是()A. S - S = SB. S + S = SC. S +S < SD. S - S =S S 31 2 3 1 2 3 2 3 1 2 3 1 S1S 24、四边形 ABCD中,∠ B=90°, AB=3,BC=4,CD=12, AD=13,求四边形 ABCD的面积。
5、( 难)在直线上依次摆放着七个正方形(如图 4 所示)。
已知斜放置的三个正方形的面积分别是 1 、 2 、 3 ,正放置的四个正方形的面积依次是、=_____________。
考点二:在直角三角形中,已知两边求第三边1.在直角三角形中 , 若两直角边的长分别为1cm,2cm ,则斜边长为.2.已知直角三角形的两边长为3、 2,则另一条边长的平方是3、已知直角三角形两直角边长分别为 5和12, 求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2 倍,则斜边扩大到原来的()A . 2 倍B . 4 倍C . 6 倍D . 8 倍5、在 Rt △ ABC 中,∠ C=90°①若 a=5, b=12,则 c=___________; ②若 a=15,c=25,则 b=___________; ③若 c=61,b=60,则 a=__________;④若 a ∶b=3∶ 4, c=10 则 Rt △ ABC 的面积是 =________。
6、如果直角三角形的两直角边长分别为 n 2 1, ( ),那么它的斜边长是()2n n>1A 、2nB 、n+1C 、n 2 -1D 、 n 2 17、在 Rt △ABC 中, a,b,c 为三边长,则下列关系中正确的是()A. a 2 b 2 c 2B.a 2 c 2b 2C.c 2 b 2 a 2D. 以上都有可能8、已知 Rt △ABC 中, ∠C=90°,若 a+b=14cm , c=10cm ,则 Rt △ABC 的面积是()A 、24 cm 2、 cm 2 、 48 cm 2、 cm 2B 36CD 609、已知 x 、 y 为正数,且 │ x 2 -4 │+(y 2-3 )2 =0,如果以 x 、 y 的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A 、5B 、25C 、7D 、1510、已知在△ ABC 中, AB=13cm ,AC=15cm ,高 AD=12cm ,求△ ABC 的周长。
(提示:两种情况)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图 1 所示,等腰中, , 是底边上的高,若 ,求 ①AD 的长;②Δ ABC 的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A. 4 , 5, 6B. 2,3,4C. 11,12,13D. 8,15,172、若线段 a,b, c 组成直角三角形,则它们的比为()A 、 2∶ 3∶ 4B、3∶4∶6 C、5∶12∶13D、4∶6∶73、下面的三角形中:①△ ABC中,∠ C=∠A-∠ B;②△ ABC中,∠ A:∠ B:∠ C=1: 2: 3;③△ ABC中, a: b:c=3: 4: 5;④△ ABC中,三边长分别为8, 15,17.其中是直角三角形的个数有().A.1 个B.2个C.3个D.4个2 : 1:1,则这个三角形一定是()4、若三角形的三边之比为2 2A. 等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形5、已知 a, b,c 为△ ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A. 直角三角形B. 等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6、将直角三角形的三条边长同时扩大同一倍数,得到的三角形是( )A.钝角三角形 B.锐角三角形 C.直角三角形 D.等腰三角形7、若△ ABC的三边长 a,b,c满足a2b2c2200 12a 16b20c,试判断△ABC的形状。
8、△ ABC的两边分别为 5,12 ,另一边为奇数,且a+b+c是 3 的倍数,则 c 应为,此三角形为。
例 3:求(1)若三角形三条边的长分别是 7,24,25 ,则这个三角形的最大内角是度。
(2)已知三角形三边的比为 1: 3 : 2,则其最小角为。
考点五 : 应用勾股定理解决楼梯上铺地毯问题某楼梯的侧面视图如图 3 所示,其中米, ,,因某种活动要求铺设红色地毯,则在 AB 段楼梯所铺地毯的长度应为.考点六、利用列方程求线段的长(方程思想)1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1 米,当他把绳子的下端拉开 5 米后,发现下端刚好接触地面,你能帮他算出来吗?ACB、一架长 2.5 m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底 0.7 m (如图),如果梯 2 0.4 m ,那么梯子底端将向左滑动子的顶端沿墙下滑 米3、如图,一个长为10 米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8 米,如果梯子的顶端下滑 1 米,那么,梯子底端的滑动距离1米,(填“大于”,“等于”,或“小于”)864、在一棵树 10 m 高的 B 处,有两只猴子,一只爬下树走到离树20m处的池塘 A 处; ? 另外一只爬到树顶 D 处后直接跃到 A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?DBAC5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心 A和 B 的距离为.60AB21 C6140第 5 题图 76、如图:有两棵树,一棵高 8 米,另一棵高 2 米,两树相距 8 米,一只小鸟从一棵树的 树梢飞到另一棵树的树梢,至少飞了米.8 米2 米8 米 第 6 题图xzx7、如图 18-15 所示,某人到一个荒岛上去探宝,在 A 处登陆后,往东走 8km ,又往北走 2km ,遇到障碍后又往西走 3km ,再折向北方走到 5km 处往东一拐,仅 1km? 就找到了宝藏,问:登陆点( A 处)到宝藏埋藏点( B 处)的直线距离是多少?A1B5328图 18-15考点七:折叠问题 (较难的一类)1、如图,有一张直角三角形纸片, 两直角边 AC=6,BC=8,将△ ABC 折叠,使点 B 与点 A 重合,折痕为 DE ,则 CE 等于( )A.25B.22 C.7 D.5 43432、如图所示,已知△ ABC 中,∠ C=90°,AB 的垂直平分线交 B C? 于 M ,交 AB 于 N ,若 AC=4,MB=2MC ,求 AB 的长.3、折叠矩形 ABCD 的一边 AD,点 D 落在 BC 边上的点 F 处, 已知 AB=8CM,BC=10CM 求 CF 和 EC 。
A DEB F C4、如图,在长方形 ABCD中, DC=5,在 DC边上存在一点 E,沿直线 AE把△ ABC折叠,使点D 恰好在 BC边上,设此点为 F,若△ ABF的面积为 30,求折叠的△ AED的面积A DEBF C5、如图,矩形纸片 ABCD的长 AD=9㎝,宽 AB=3㎝,将其折叠,使点 D 与点 B 重合,那么折叠后 DE的长是多少?6、如图,在长方形 ABCD中,将 ABC沿 AC对折至 AEC位置, CE与 AD交于点 F。
(1)试说明: AF=FC;(2)如果 AB=3,BC=4,求 AF的长7、如图 2 所示,将长方形 ABCD沿直线 AE折叠,顶点 D 正好落在 BC边上 F 点处,已知8、如图 2-3 ,把矩形 ABCD沿直线 BD向上折叠,使点 C 落在 C′的位置上,已知 AB=?3 , BC=7,重合部分△ EBD的面积为 ________.9、(难)如图 5,将正方形 ABCD折叠,使顶点 A 与 CD边上的点 M重合,折痕交 AD于 E,交BC 于 F,边 AB折叠后与 BC边交于点 G。
如果 M为 CD边的中点,求证: DE:DM:EM=3:4:5。
10、如图 2-5 ,长方形 ABCD中,AB=3,BC=4,若将该矩形折叠,使C 点与 A 点重合, ? 则折叠后痕迹 EF 的长为()A.3.74 B.3.75C.3.76D.3.772-511、(稍难)如图 1-3-11 ,有一块塑料矩形模板 ABCD,长为 10cm,宽为 4cm,将你手中足够大的直角三角板 PHF 的直角顶点 P 落在 AD边上(不与 A、D 重合),在 AD上适当移动三角板顶点 P:①能否使你的三角板两直角边分别通过点 B 与点 C?若能,请你求出这时 AP 的长;若不能,请说明理由 .②再次移动三角板位置,使三角板顶点 P 在 AD上移动,直角边 PH 始终通过点 B,另一直角边 PF与 DC的延长线交于点 Q,与 BC交于点 E,能否使 CE=2cm?若能,请你求出这时 AP 的长;若不能,请你说明理由 .(提示:根据勾股定理,列出一元二次方程,超初二范围)12、(难)如图所示,△ ABC是等腰直角三角形, AB=AC,D 是斜边 BC的中点, E、F 分别是AB、AC边上的点,且 DE⊥DF,若 BE=12,CF=5.求线段 EF的长。