勾股定理
勾股定理的内容

勾股定理的内容勾股定理,又称勾股定理,是古代数学中的一个重要定理。
在直角三角形中,直角三角形的两条直角边的平方和等于斜边的平方。
其数学表达形式为:a^2 + b^2 = c^2其中a、b、c分别代表直角三角形的两条直角边和斜边。
起源与发展勾股定理虽然现在被称为勾股定理,但最早是在《周髀算经》中发现的,成为世界上最早的几何著作之一。
据传,勾股定理是周公提出的,故得名“周公定理”。
后来被《算经》作者张丘建列入《增衍之术》中,并首次用文字表达了这一定理。
在中国古代,勾股定理的应用非常广泛,不仅用于地测和农业,还被运用在建筑和军事领域。
随着数学的发展,勾股定理也在世界各地广泛传播,并成为数学中的重要定理之一。
数学证明勾股定理的证明有多种方法,其中最著名的是毕达哥拉斯的证明。
毕达哥拉斯定理利用几何形状和平行移动来证明直角三角形的两个边的平方和等于斜边的平方。
这一证明方法被后人发扬光大,成为数学学科中的一个经典证明。
应用场景勾股定理在现代生活中的应用也非常广泛。
例如,在建筑领域中,利用勾股定理可以计算建筑物的结构稳定性;在工程设计中,可以测量距离和角度;在电子领域中,可以应用于信号传输和数据处理等方面。
总的来说,勾股定理是数学中的一个重要定理,不仅对几何学有重要意义,还在现代科学技术中有着广泛的应用。
结语通过对勾股定理的介绍,我们可以看到它在数学史上的重要地位和广泛应用。
了解勾股定理不仅有助于我们理解数学知识的深层含义,还可以帮助我们应用数学知识解决现实生活中的问题。
在学习数学的过程中,我们应该对勾股定理有更多的了解和探索,进一步探索数学世界的奥秘。
勾股定理

板块一 勾股定理1.勾股定理的内容:如果直角三角形的两直角边分别是a 、b ,斜边为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方。
注:勾——最短的边、股——较长的直角边、 弦——斜边。
CAB cba勾股定理3.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
即 222,,ABC AC BC AB ABC ∆+=∆在中如果那么是直角三角形。
4.勾股数:满足a 2 +b 2=c 2的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5; 5、12、13;7、24、25;8、15、17。
板块一、勾股定理【例1】 下列说法正确的是( )A. 若a b c ,,是ABC ∆的三边,则222a b c +=B. 若a b c ,,是Rt ABC ∆的三边,则222a b c +=C. 若 a b c ,,是Rt ABC ∆的三边,90A ∠=︒,则222a b c +=D. 若 a b c ,,是Rt ABC ∆的三边,90C ∠=︒,则222a b c +=【例2】 在Rt ABC ∆中, 90C ∠=︒,(1)如果34a b ==,,则c = ; (2)如果68a b ==,,则c = ; (3)如果512a b ==,,则c = ; (4)如果1520a b ==,,则c = .【例3】 若一个直角三角形三边的长分别是三个连续的自然数,则这个三角形的周长为【例4】 一个直角三角形的三边为三个连续偶数,则它的三边长分别为 .【例5】 已知直角三角形的两边长分别为3、4,求第三边长.【例6】 已知直角三角形两边x ,y 的长满足240x -,则第三边长为______________.【例7】 一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形周长为25C .斜边长为5D .三角形面积为20【例8】 如果梯子的底端距离墙根的水平距离是9m ,那么15m 长的梯子可以达到的高度为【例9】 如图,梯子AB 斜靠在墙面上,AC BC AC BC ⊥=,,当梯子的顶端A 沿AC 方向下滑x 米时,梯足B 沿CB 方向滑动y 米,则x 与y 的大小关系是( ) A .x y = B .x y > C .x y < D .不确定CA【例10】 如图,一个长为10米的梯子,斜靠在墙上,梯子的顶端距离地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 米(填“大于”、“等于”、“小于”)68【例11】 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D.8【例12】 若ABC ∆的三边a b c ,,满足条件:222338102426a b c a b c +++=++,则这个三角形最长边上的高为【例13】 如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的( )A. 1倍B. 2倍C. 3倍D. 4倍【例14】 如图,一根高8米的旗杆被风吹断倒地,旗杆顶端A 触地处到旗杆底部B 的距离为6米,则折断点C到旗杆底部B 的距离为CBA【例15】 已知,如图所示,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,•如果8cm AB =,10cm BC =,求EC 的长.【例16】 如图,有一个直角三角形纸片,两直角边6cm 8cm AC BC ==,,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 的长为多少?EDCBA【例17】 如图,正方形网格中,每个小正方形的边长为1,则网格上的三角形ABC 中,边长为无理数的边数是( )A. 0B. 1C. 2D. 3CBA【例18】 如图所示,在ABC ∆中,三边a b c ,,的大小关系是( )cbaCBAA. a b c <<B. c a b <<C. c b a <<D. b a c <<【例19】 设,,,a b c d 都是正数。
勾股定理

勾股定理勾股定理,又称商高定理,西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。
据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
在中国,相传于商代就由商高发现,记载在一本名为《周髀算经》的古书中。
而三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
直角边的平方和等于斜边的平方勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么A2+ b2= c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等勾股定理勾股定理的美妙证明证明[广西梁卷明的证法]:如图1,分别以AC、CB、BA为边长作正方形ACNM、正方形CBSQ、正方形BAPR,则易知⊿ABC≌⊿RBS,从而点Q 必在SR上,又把梯形ABNM沿BR方向平移,使点B与点R重合,则梯形ABNM平移至梯形PRQT的位置;显然⊿RSB≌⊿PTA, 如图2,再把⊿RSB沿BA方向平移,使点B与点A重合,则⊿RSB必与⊿PTA重合!故有:正方形ACNM的面积+正方形CBSQ的面积=正方形BAPR的面积,即得: a的平方 + b的平方 = c的平方.勾股定理【梁卷明证法】勾股定理 - 勾股数组勾股数组是满足勾股定理a2+ b2= c2的正整数组(a,b,c),其中的a,b,c称为勾股数。
例如(3,4,5)就是一组勾股数组。
任意一组勾股数(a,b,c)可以表示为如下形式:a = m−n,b = 2mn,c = m + n,其中勾股定理。
勾股定理公元前500-200年,《周髀算经》的图解《勾股圆方图》勾股定理 - 参考资料勾股定理 - 历史上的勾股定理定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方。
十种方法证明勾股定理

十种方法证明勾股定理勾股定理是中学数学中最基本的定理之一,解决了数学中的许多问题。
它是一个既基础且实用的定理,有许多方法可以证明它,下面介绍十种方法:1.欧拉定理证明法:构造出一个直角三角形,把它的两条直角边对应的两个正方形放在直角三角形外面,另一条边对应的正方形放在直角三角形内部,再利用欧拉定理计算出三个正方形的面积,可以证明勾股定理。
2.代数证明法:利用代数的平方公式,把直角三角形的两条直角边平方相加,再把斜边平方,然后再将两者相减,得到一个等式,即可证明勾股定理。
3.数学归纳法证明:用数学归纳法证明勾股定理,证明当n为正整数时,定理成立。
4.相似三角形证明法:构造出相似的三角形,利用相似三角形的性质,可以推导出勾股定理。
5.向量证明法:用向量的几何意义证明勾股定理,首先利用向量的长度和夹角的公式计算出向量的长度和夹角,再利用向量的点积公式计算出勾股定理中的各个变量,最后推导出勾股定理。
6.割圆术证明法:利用割圆术将直角三角形对角线作为半径画圆,利用圆上弧角定理,可以得到勾股定理。
7.平面几何证明法:用平面几何证明勾股定理,利用平面几何图形的形状和大小关系,推导出勾股定理。
8.解析几何证明法:用解析几何证明勾股定理,利用平面直角坐标系,将三角形的三个点用坐标表示出来,推导出勾股定理。
9.三角函数证明法:用三角函数证明勾股定理,利用三角函数的性质,将三角形分离出直角三角形和非直角三角形,再用三角函数计算出各个变量,推导出勾股定理。
10.古希腊证明法:古希腊人对勾股定理有自己的证明方法,即利用几何图形的形状和大小,通过构造几何图形推导出勾股定理。
这些证明方法都可以证明勾股定理的正确性,它们有不同的适用范围和难度级别,可以根据自己的水平和兴趣选择合适的证明方法。
勾股定理详解

勾股定理详解勾股定理定义及公式勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理是余弦定理的一个特例。
勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。
“勾三股四弦五”是勾股定理最基本的公式。
勾股数组程a²+ b²= c²的正整数组(a,b,c)。
(3,4,5)就是勾股数。
也就是说,设直角三角形两直角边为a和b,斜边为c,那a²+b²=c²。
勾股定理逆定理勾股定理的逆定理是判断三角形为锐角或钝角的一个简单的方法。
若c为最长边,且a²+b²=c²,则△ABC是直角三角形。
如果a²+b²>c²,则△ABC是锐角三角形。
如果a²+b²<c²,则△ABC是钝角三角形。
勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。
下面我便向大家介绍几种十分著名的证明方法。
【证法1】赵爽“勾股圆方图”第一种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的直角三角形围在外面形成的。
因为边长为的正方形面积加上4个直角三角形的面积等于外围正方形的面积,所以可以列出等式,化简得。
第二种方法:边长为c的正方形可以看作是由4个直角边分别为a、b,斜边为c的角三角形拼接形成的(虚线表示),不过中间缺出一个边长为(b-a)的正方形“小洞”。
因为边长为的正方形面积等于4个直角三角形的面积加上正方形“小洞”的面积,所以可以列出等式,化简得。
这种证明方法很简明,很直观,它表现了我国古代数学家赵爽高超的证题思想和对数学的钻研精神,是我们中华民族的骄傲。
【证法2】课本的证明做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b,所以面积相等. 即a²+b²+4×1/2ab=c²+4×1/2ab,整理得a²+b²=c²【证法3】1876年美国总统Garfield证明以a、b 为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于2/1ab. 把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD ≌RtΔCBE,∴∠ADE = ∠BEC.∵∠AED + ∠ADE = 90º,∴∠AED + ∠BEC = 90º.∴∠DEC = 180º―90º= 90º.∴ΔDEC是一个等腰直角三角形,它的面积等于1/2c².又∵∠DAE = 90º, ∠EBC = 90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于1/2(a+b)².∴1/2(a+b)²=2×1/2ab+1/2c².∴a²+b²=c².【趣闻】:在1876年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。
勾股定理

勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方。
这个定理在中国又称为“商高定理”,在外国称为“毕达哥拉斯定理”或者“百牛定理“(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”),法国、比利时人又称这个定理为“驴桥定理”。
他们发现勾股定理的时间都比我国晚,我国是最早发现这一几何宝藏的国家。
目前初二学生学,教材的证明方法采用赵爽弦图。
勾股定理是一个基本的几何定理,它是用代数思想解决集几何问题的最重要的工具之一,是数形结合的纽带之一。
勾股定理指出:直角三角形两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a^2+b^2=c^2周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理;三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明[1]。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
我国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
我国是发现和研究勾股定理最古老的国家之一。
我国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。
在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。
既方之,外半其一矩,环而共盘,得成三四五。
两矩共长二十有五,是谓积矩。
”因此,勾股定理在我国又称“商高定理”。
在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
在法国和比利时,勾股定理又叫“驴桥定理”。
还有的国家称勾股定理为“平方定理”。
西欧对此定理戏称为“笨蛋的难关(Asses' Bridge)”,照原文直译,就是“驴桥”,因此,我国也有将此命题译作“驴桥定理”的。
勾股定理的公式

勾股定理的公式
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。
勾股定理公式是a的平方加上b的平方等于c的平方。
如果直角三角形两直角边分别为a,b,斜边为C,那么公式就是:a^2+b^2=c^2。
勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
勾股定理

勾股定理勾股定理又叫商高定理、毕氏定理,或称毕达哥拉斯定理(Pythagor as Theorem).在一个直角三角形中,斜边边长的平方等于两条直角边边长平方之和。
如果直角三角形两直角边分别为a、b,斜边为c,那么a²+b²=c²据考证,人类对这条定理的认识,少说也超过 4000 年!中国最早的一部数学著作——《周髀算经》的第一章,就有这条定理的相关内容:周公问:“窃闻乎大夫善数也,请问古者包牺立周天历度。
夫天不可阶而升,地不可得尺寸而度,请问数安从出?”商高答:“数之法出于圆方,圆出于方,方出于矩,矩出九九八十一,故折矩以为勾广三,股修四,径隅五。
既方其外,半之一矩,环而共盘。
得成三、四、五,两矩共长二十有五,是谓积矩。
故禹之所以治天下者,此数之所由生也。
”就是说,矩形以其对角相折所称的直角三角形,如果勾(短直角边)为3,股(长直角边)为4,那么弦(斜边)必定是5。
从上面所引的这段对话中,我们可以清楚地看到,我国古代的人民早在几千年以前就已经发现并应用勾股定理这一重要的数学原理了。
在西方有文字记载的最早的证明是毕达哥拉斯给出的。
据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。
故西方亦称勾股定理为“百牛定理”。
遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
实际上,在更早期的人类活动中,人们就已经认识到这一定理的某些特例。
除上述两个例子外,据说古埃及人也曾利用“勾三股四弦五”的法则来确定直角。
但是,这一传说引起过许多数学史家的怀疑。
比如说,美国的数学史家M·克莱因教授曾经指出:“我们也不知道埃及人是否认识到毕达哥拉斯定理。
我们知道他们有拉绳人(测量员),但所传他们在绳上打结,把全长分成长度为3、4、5的三段,然后用来形成直角三角形之说,则从未在任何文件上得证实。
”不过,考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥板书,据专家们考证,其中一块上面刻有如下问题:“一根长度为 30个单位的棍子直立在墙上,当其上端滑下6个单位时,请问其下端离开墙角有多远?”这是一个三边为为3:4:5三角形的特殊例子;专家们还发现,在另一块泥板上面刻着一个奇特的数表,表中共刻有四列十五行数字,这是一个勾股数表:最右边一列为从1到15的序号,而左边三列则分别是股、勾、弦的数值,一共记载着15组勾股数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A P
C Q
图2-1
P的 Q的 R的 面积 面积 面积
R
图1
因为: SP=AC2
9 9 18
8
SQ=BC2 SR=AB2
B
所以:AC2+BC图22=AB2 4
4
AR P
CQ B 图2-2
P、Q、 R面积关
系
SP+SQ=SR
直角三 两直角边的平方和
角形三 边关系
等于斜边的平方
(图中每个小方格代表一个单位面积)
弦图 图1-1
图1-2
(1)直角三角形三边的关系
试一试
测量你的两块直角三角尺三边的长度,并将各边长度填入下表
三角尺 直角边 a 直角边 b 斜边c
关系
1
8.5
2
6.8
8.5
12
11.8 13.6
a2+b2≈c2 a2+b2≈c2
猜想:
直角三角形两条直角边的平方和等于斜边的平方
让我们一起再探究 1、等腰直角三角形三边关系
§14.1勾股定理 第1课时
直角三角形三边的关系
执教:李庆武 2009.10.16
勾股史话
两千两多千多年年前前,,古古希希腊有腊个有哥拉个毕达哥拉 斯斯学学派派,他,们他首们先发首现先了勾发股现定了理,勾因股此 定理,因 此在国在外国人们外通人常们称勾通股常定理称为勾毕股达哥定拉理斯 为毕达哥 拉定理斯。定为了理纪。念为毕达了哥纪拉斯念学毕派达,1哥95拉5 斯学派, 1年9希5腊5曾年经发希行腊了一曾枚经纪发念票行。了一枚纪念邮票。
读一读
我国古代把直角三角形中较短的直角边称为勾,较长的直
角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由公元3 世纪三国时期的数学家赵爽在为《周髀算经》作注时给出的.赵 爽是中国数学史上最先完成勾股定理证明的数学家。图1-2是在 北京召开的2002年国际数学家大会(TCM-2002)的会标,其 图案正是“弦图”,它标志着中国古代的数学成就.
探究 2:
一般的直角三角形 ABC三边的关系
(图3-1)
A
Q
b
R
c
S正方形R
4 1 431 2
25 S正方形Q= 16
S正方形P= 9
Ca B
P
R
图3-1 P
Q
图3-2 分割成若干个直角边为整数的三角形
所以:BC2+AC2=AB2
a2+b2=c2
概括:数学上可以说明:对于任意的直角
三角形,如果它的两条直角边分别为a、b,
x
例1 如图14.1.4,将长为5米的梯子AC斜靠在墙上,梯子底端到墙 的距离BC长为3米,求梯子上端A到墙的底边的垂直距离AB.
A
C
B
(图14.1.4)
A
解
如图14在 已.1R知.4t△斜,A边在BARCCt△中,一AB条C直中角,边BC
5 BC?=3米求,另A一C=条5米直,角根边据AB勾股定理得
√ √ C
AB=B AC勾2-B股C定2 理= :52A–B322=AC2=-4 B(米C)2 3
答:梯子上端A到墙的底边的垂直距离AB为4米。
1、本节课的学习内容:
利用图形探究直角三角形三边的关系
在直角三角形中,如果它的两条直角边分别 为a、b,斜边为c,那么一定有: a2+b2=c2
2、方法归纳
股b
c弦
斜边为c,那么一定有:R
Q a2+b2=c2
┏
勾a
这种关系我们称为勾股定理
P
直勾角股定三理角:形两条直角边的平图方3-和1 等于斜边的平方
(1)在直角三角形中,已知两边,可求第三边; (2)可用勾股定理建立方程.
试一试:
x622232 42
2
6
1、如图,X立方程
由a2+b2=c2得:c =√ a2+b2 a =√ c2-b2 3、注意的问题
(1)勾股定理必须在直角三角形的条件下才能运用。 (2)运用勾股定理求解问题必须分清楚字母a、b、c
所表示什么边。