(完整版)《勾股定理》典型练习题
(完整版)勾股定理练习题(含答案)

希望教育 勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2. Rt△ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt△的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+14. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )S d (A(B(C ) (D)2dd 2d +d+8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足则三角形的形状是( 2(6)100a -+=)A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__. 13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__. 16. 在Rt△ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BBC 为直径作半圆,则这个半圆的面积是 .18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗? 22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?AE答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15,所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.A 观测点。
勾股定理例题单选题100道及答案解析

勾股定理例题单选题100道及答案解析1. 在直角三角形中,两直角边分别为3 和4,则斜边的长度为()A. 5B. 6C. 7D. 8答案:A解析:根据勾股定理,斜边的平方等于两直角边的平方和,即斜边= √(3²+ 4²) = 52. 一个直角三角形的两条直角边分别为6 和8,那么斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:先求出斜边为√(6²+ 8²) = 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为4.83. 若直角三角形的三边长分别为2,4,x,则x 的值可能有()A. 1 个B. 2 个C. 3 个D. 4 个答案:B解析:当4 为斜边时,x = √(4²- 2²) = 2√3;当x 为斜边时,x = √(2²+ 4²) = 2√5,所以x 的值有2 个4. 已知直角三角形的两直角边长分别为5 和12,则斜边长为()A. 13B. 14C. 15D. 16答案:A解析:斜边长= √(5²+ 12²) = 135. 直角三角形的一条直角边为9,另一条直角边为12,则斜边的长为()A. 15B. 16C. 17D. 18答案:A解析:斜边= √(9²+ 12²) = 156. 一个直角三角形的斜边为10,一条直角边为6,则另一条直角边为()A. 8B. 9C. 11D. 12答案:A解析:另一条直角边= √(10²- 6²) = 87. 若直角三角形的周长为12,斜边长为5,则其面积为()A. 12B. 10C. 8D. 6答案:D解析:设两直角边分别为a、b,a + b + 5 = 12,a + b = 7,(a + b)²= 49,即a²+ 2ab + b²= 49,又因为a²+ b²= 25,所以2ab = 24,面积= 0.5ab = 68. 直角三角形的两直角边分别为6 和8,则斜边上的中线长为()A. 5B. 6C. 7D. 8答案:A解析:斜边= 10,斜边上的中线长为斜边的一半,即 59. 在△ABC 中,∠C = 90°,AB = 13,AC = 12,则BC 的长为()A. 5B. 6C. 7D. 8答案:A解析:BC = √(13²- 12²) = 510. 若一个直角三角形的两条边长分别为3 和5,则第三条边长为()A. 4B. √34C. 4 或√34D. 无法确定答案:C解析:当5 为斜边时,第三条边= √(5²- 3²) = 4;当 3 和5 为直角边时,第三条边= √(3²+ 5²) = √3411. 已知直角三角形的两边长分别为3 和4,则第三边长为()A. 5B. √7C. 5 或√7D. 不确定答案:C解析:当4 为斜边时,第三边= √(4²- 3²) = √7;当 3 和4 为直角边时,第三边= √(3²+ 4²) = 512. 一个直角三角形的两条直角边分别为15 和20,那么这个三角形的周长是()A. 60B. 75C. 80D. 85答案:D解析:斜边= √(15²+ 20²) = 25,周长= 15 + 20 + 25 = 6013. 直角三角形的一条直角边为12,斜边为13,则另一条直角边为()A. 5B. 6C. 7D. 8答案:A解析:另一条直角边= √(13²- 12²) = 514. 若直角三角形的斜边长为25,一条直角边长为7,则另一条直角边长为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2415. 在Rt△ABC 中,∠C = 90°,若a = 5,b = 12,则c = ()A. 13B. 14C. 15D. 16答案:A解析:c = √(5²+ 12²) = 1316. 一个直角三角形的两条直角边分别为8cm 和15cm,则斜边为()A. 17cmB. 18cmC. 19cmD. 20cm答案:A解析:斜边= √(8²+ 15²) = 17cm17. 若直角三角形的周长为30cm,斜边长为13cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 13 = 30,a + b = 17,(a + b)²= 289,即a²+ 2ab + b²= 289,又因为a²+ b²= 13²= 169,所以2ab = 120,面积= 0.5ab = 30cm²18. 直角三角形的一条直角边长为11,另一条直角边长为60,则斜边的长为()A. 61B. 62C. 63D. 64答案:A解析:斜边= √(11²+ 60²) = 6119. 在直角三角形中,两直角边分别为5 和12,那么斜边上的中线长为()A. 6.5B. 7.5C. 8.5D. 9.5答案:A解析:斜边= 13,斜边上的中线长为6.520. 已知一个直角三角形的两条直角边分别为6 和8,那么这个直角三角形斜边上的高为()A. 4.8B. 5C. 6D. 8答案:A解析:斜边= 10,三角形面积= 0.5×6×8 = 0.5×10×斜边上的高,解得斜边上的高为 4.821. 直角三角形的两直角边分别为9 和12,则此直角三角形的周长为()A. 21B. 30C. 36D. 42答案:C解析:斜边= √(9²+ 12²) = 15,周长= 9 + 12 + 15 = 3622. 若直角三角形的两直角边长分别为3cm 和4cm,则斜边上的高为()A. 2.4cmB. 2.5cmC. 2.6cmD. 2.7cm答案:A解析:斜边= 5cm,三角形面积= 0.5×3×4 = 0.5×5×斜边上的高,解得斜边上的高为2.4cm23. 一个直角三角形的两条直角边分别为7和24,则斜边为()A. 25B. 26C. 27D. 28答案:A解析:斜边= √(7²+ 24²) = 2524. 直角三角形的一条直角边为5,斜边为13,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(13²- 5²) = 1225. 在△ABC 中,∠C = 90°,BC = 6,AC = 8,则AB 的长为()A. 9B. 10C. 11D. 12答案:B解析:AB = √(6²+ 8²) = 1026. 若直角三角形的三边长分别为5,12,x,则x 的值可能是()A. 13B. 14C. 15D. 17答案:A解析:当x 为斜边时,x = √(5²+ 12²) = 13;当12 为斜边时,x = √(12²- 5²) = √119,因为选项中只有13,所以x = 1327. 一个直角三角形的两条直角边分别为18和24,则这个三角形的周长为()A. 60B. 72C. 84D. 96答案:C解析:斜边= √(18²+ 24²) = 30,周长= 18 + 24 + 30 = 7228. 直角三角形的一条直角边为16,斜边为20,则另一条直角边为()A. 12B. 13C. 14D. 15答案:A解析:另一条直角边= √(20²- 16²) = 1229. 在Rt△ABC 中,∠C = 90°,若a = 8,b = 15,则c = ()A. 17B. 18C. 19D. 20答案:A解析:c = √(8²+ 15²) = 1730. 已知直角三角形的两边长分别为5和13,则第三边长为()A. 12B. √194C. 12 或√194D. 不能确定答案:C解析:当13 为斜边时,第三边= √(13²- 5²) = 12;当 5 和13 为直角边时,第三边= √(5²+ 13²) = √19431. 一个直角三角形的两条直角边分别为10和24,则斜边为()A. 25B. 26C. 27D. 28答案:B解析:斜边= √(10²+ 24²) = 2632. 若直角三角形的周长为24,斜边长为10,则其面积为()A. 24B. 36C. 48D. 96答案:B解析:设两直角边分别为a、b,a + b + 10 = 24,a + b = 14,(a + b)²= 196,即a²+ 2ab + b²= 196,又因为a²+ b²= 100,所以2ab = 96,面积= 0.5ab = 2433. 直角三角形的一条直角边长为7,斜边为25,则另一条直角边为()A. 24B. 26C. 27D. 28答案:A解析:另一条直角边= √(25²- 7²) = 2434. 在△ABC 中,∠C = 90°,AB = 17,AC = 15,则BC 的长为()A. 8B. 9C. 10D. 11答案:A解析:BC = √(17²- 15²) = 835. 若一个直角三角形的两条边长分别为8和15,则第三条边长为()A. 17B. √161C. 17 或√161D. 无法确定答案:C解析:当15 为斜边时,第三条边= √(15²- 8²) = √161;当8 和15 为直角边时,第三条边= √(8²+ 15²) = 1736. 已知直角三角形的两边长分别为8和10,则第三边长为()A. 6B. 2√41C. 6 或2√41D. 不确定答案:C解析:当10 为斜边时,第三边= √(10²- 8²) = 6;当8 和10 为直角边时,第三边= √(8²+ 10²) = 2√4137. 一个直角三角形的两条直角边分别为20和21,则这个三角形的周长是()A. 60B. 61C. 62D. 63答案:D解析:斜边= √(20²+ 21²) = 29,周长= 20 + 21 + 29 = 7038. 直角三角形的一条直角边为24,斜边为25,则另一条直角边为()A. 7B. 8C. 9D. 10答案:A解析:另一条直角边= √(25²- 24²) = 739. 若直角三角形的斜边长为37,一条直角边长为12,则另一条直角边长为()A. 35B. 36C. 37D. 38答案:A解析:另一条直角边= √(37²- 12²) = 3540. 在Rt△ABC 中,∠C = 90°,若a = 12,b = 16,则c = ()答案:A解析:c = √(12²+ 16²) = 2041. 一个直角三角形的两条直角边分别为12cm 和16cm,则斜边为()A. 20cmB. 21cmC. 22cmD. 23cm答案:A解析:斜边= √(12²+ 16²) = 20cm42. 若直角三角形的周长为36cm,斜边长为15cm,则其面积为()A. 54cm²B. 60cm²C. 72cm²D. 81cm²答案:A解析:设两直角边分别为a、b,a + b + 15 = 36,a + b = 21,(a + b)²= 441,即a²+ 2ab + b²= 441,又因为a²+ b²= 15²= 225,所以2ab = 216,面积= 0.5ab = 54cm²43. 直角三角形的一条直角边长为18,另一条直角边长为24,则斜边的长为()A. 30B. 32C. 34D. 36答案:A解析:斜边= √(18²+ 24²) = 3044. 在直角三角形中,两直角边分别为7和24,那么斜边上的中线长为()A. 12.5B. 13C. 13.5D. 14答案:A解析:斜边= 25,斜边上的中线长为斜边的一半,即12.545. 已知一个直角三角形的两条直角边分别为9和12,那么这个直角三角形斜边上的高为()A. 7.2B. 7.5C. 7.8D. 8答案:A解析:斜边= 15,三角形面积= 0.5×9×12 = 0.5×15×斜边上的高,解得斜边上的高为7.246. 直角三角形的两直角边分别为15和20,则此直角三角形的周长为()A. 60B. 70C. 80D. 90答案:B解析:斜边= 25,周长= 15 + 20 + 25 = 6047. 若直角三角形的两直角边长分别为5cm和12cm,则斜边上的高为()A. 6cmB. 8cmC. 60/13 cmD. 120/13 cm答案:C解析:斜边= 13cm,三角形面积= 0.5×5×12 = 0.5×13×斜边上的高,解得斜边上的高为60/13 cm48. 一个直角三角形的两条直角边分别为25和60,则斜边为()A. 65B. 70C. 75D. 80答案:A解析:斜边= √(25²+ 60²) = 6549. 直角三角形的一条直角边为36,斜边为39,则另一条直角边为()A. 15B. 16C. 17D. 18答案:A解析:另一条直角边= √(39²- 36²) = 1550. 在△ABC 中,∠C = 90°,BC = 8,AC = 15,则AB 的长为()答案:B解析:AB = √(8²+ 15²) = 1751. 若直角三角形的三边长分别为8,15,x,则x 的值可能是()A. 17B. 18C. 19D. 20答案:A解析:当x 为斜边时,x = √(8²+ 15²) = 17;当15 为斜边时,x = √(15²- 8²) = √161,因为选项中只有17,所以x = 1752. 一个直角三角形的两条直角边分别为30和40,则这个三角形的周长为()A. 90B. 100C. 110D. 120答案:D解析:斜边= 50,周长= 30 + 40 + 50 = 12053. 直角三角形的一条直角边长为48,斜边为50,则另一条直角边为()A. 14B. 16C. 18D. 20答案:A解析:另一条直角边= √(50²- 48²) = 1454. 在Rt△ABC 中,∠C = 90°,若a = 10,b = 24,则c = ()A. 25B. 26C. 27D. 28答案:B解析:c = √(10²+ 24²) = 2655. 已知直角三角形的两边长分别为12和16,则第三边长为()A. 20B. 4√7C. 20 或4√7D. 不能确定答案:C解析:当16 为斜边时,第三边= √(16²- 12²) = 4√7;当12 和16 为直角边时,第三边= √(12²+ 16²) = 2056. 一个直角三角形的两条直角边分别为40和41,则斜边为()A. 58B. 59C. 60D. 61答案:D解析:斜边= √(40²+ 41²) = 6157. 若直角三角形的周长为48,斜边长为20,则其面积为()A. 48B. 96C. 192D. 384答案:B解析:设两直角边分别为a、b,a + b + 20 = 48,a + b = 28,(a + b)²= 784,即a²+ 2ab + b²= 784,又因为a²+ b²= 20²= 400,所以2ab = 384,面积= 0.5ab = 9658. 直角三角形的一条直角边为50,斜边为52,则另一条直角边为()A. 16B. 18C. 20D. 22答案:A解析:另一条直角边= √(52²- 50²) = 1659. 在△ABC 中,∠C = 90°,AB = 29,AC = 21,则BC 的长为()A. 20B. 22C. 24D. 26答案:A解析:BC = √(29²- 21²) = 2060. 若一个直角三角形的两条边长分别为10和26,则第三条边长为()A. 24B. 2√69C. 24 或2√69D. 无法确定答案:C解析:当26 为斜边时,第三条边= √(26²- 10²) = 24;当10 和26 为直角边时,第三条边= √(10²+ 26²) = 2√6961. 已知直角三角形的两边长分别为14和16,则第三边长为()A. 2√51B. 2√65C. 2√51 或2√65D. 不确定答案:C解析:当16 为斜边时,第三边= √(16²- 14²) = 2√51;当14 和16 为直角边时,第三边= √(14²+ 16²) = 2√6562. 一个直角三角形的两条直角边分别为55和73,则斜边为()A. 90B. 92C. 94D. 96答案:A解析:斜边= √(55²+ 73²) = 9063. 若直角三角形的周长为56,斜边长为25,则其面积为()A. 84B. 96C. 108D. 120答案:A解析:设两直角边分别为a、b,a + b + 25 = 56,a + b = 31,(a + b)²= 961,即a²+ 2ab + b²= 961,又因为a²+ b²= 25²= 625,所以2ab = 336,面积= 0.5ab = 8464. 直角三角形的一条直角边为65,斜边为68,则另一条直角边为()A. 21B. 23C. 25D. 27答案:A解析:另一条直角边= √(68²- 65²) = 2165. 在Rt△ABC 中,∠C = 90°,若a = 18,b = 24,则c = ()A. 30B. 32C. 34D. 36答案:A解析:c = √(18²+ 24²) = 3066. 一个直角三角形的两条直角边分别为18cm和24cm,则斜边为()A. 30cmB. 32cmC. 34cmD. 36cm答案:A解析:斜边= √(18²+ 24²) = 30cm67. 若直角三角形的周长为40cm,斜边长为17cm,则其面积为()A. 30cm²B. 60cm²C. 90cm²D. 120cm²答案:B解析:设两直角边分别为a、b,a + b + 17 = 40,a + b = 23,(a + b)²= 529,即a²+ 2ab + b²= 529,又因为a²+ b²= 17²= 289,所以2ab = 240,面积= 0.5ab = 60cm²68. 直角三角形的一条直角边长为32,另一条直角边长为24,则斜边的长为()A. 40B. 42C. 44D. 46答案:A解析:斜边= √(32²+ 24²) = 4069. 在直角三角形中,两直角边分别为11和60,则斜边上的中线长为()A. 30.5B. 31C. 31.5D. 32答案:C解析:斜边= 61,斜边上的中线长为30.570. 已知一个直角三角形的两条直角边分别为13和14,那么这个直角三角形斜边上的高为()A. 12B. 12.5C. 120/13D. 130/14答案:C解析:斜边= √(13²+ 14²) = √365,三角形面积= 0.5×13×14 = 0.5×√365×斜边上的高,解得斜边上的高为120/1371. 直角三角形的两直角边分别为21和28,则此直角三角形的周长为()A. 77B. 80C. 84D. 88答案:A解析:斜边= 35,周长= 21 + 28 + 35 = 8472. 若直角三角形的两直角边长分别为7cm和24cm,则斜边上的高为()A. 72/25 cmB. 84/25 cmC. 168/25 cmD. 252/25 cm答案:B解析:斜边= 25cm,三角形面积= 0.5×7×24 = 0.5×25×斜边上的高,解得斜边上的高为84/25 cm73. 一个直角三角形的两条直角边分别为75和100,则斜边为()A. 125B. 130C. 135D. 140答案:A解析:斜边= √(75²+ 100²) = 12574. 直角三角形的一条直角边为80,斜边为89,则另一条直角边为()A. 39B. 41C. 43D. 45答案:A解析:另一条直角边= √(89²- 80²) = 3975. 在△ABC 中,∠C = 90°,BC = 12,AC = 9,则AB 的长为()A. 13B. 14C. 15D. 16答案:C解析:AB = √(12²+ 9²) = 1576. 若直角三角形的三边长分别为15,20,x,则x 的值可能是()A. 25B. 26C. 27D. 28答案:A解析:当x 为斜边时,x = √(15²+ 20²) = 25;当20 为斜边时,x = √(20²- 15²) = 5√7,因为选项中只有25,所以x = 2577. 一个直角三角形的两条直角边分别为84和13,则斜边为()A. 85B. 86C. 87D. 88答案:A解析:斜边= √(84²+ 13²) = 8578. 若直角三角形的周长为60,斜边长为26,则其面积为()A. 72B. 96C. 108D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 60,a + b = 34,(a + b)²= 1156,即a²+ 2ab + b²= 1156,又因为a²+ b²= 26²= 676,所以2ab = 480,面积= 0.5ab = 12079. 直角三角形的一条直角边为96,斜边为100,则另一条直角边为()A. 28B. 32C. 36D. 40答案:B解析:另一条直角边= √(100²- 96²) = 3280. 在Rt△ABC 中,∠C = 90°,若a = 20,b = 21,则c = ()A. 29B. 30C. 31D. 32答案:A解析:c = √(20²+ 21²) = 2981. 已知直角三角形的两边长分别为20 和25,则第三边长为()A. 15B. 5√41C. 15 或5√41D. 不确定答案:C解析:当25 为斜边时,第三边= √(25²- 20²) = 15;当20 和25 为直角边时,第三边= √(20²+ 25²) = 5√4182. 一个直角三角形的两条直角边分别为63 和16,则斜边为()A. 65B. 67C. 69D. 71答案:A解析:斜边= √(63²+ 16²) = 6583. 若直角三角形的周长为70,斜边长为29,则其面积为()A. 120B. 130C. 140D. 150答案:A解析:设两直角边分别为a、b,a + b + 29 = 70,a + b = 41,(a + b)²= 1681,即a²+ 2ab + b²= 1681,又因为a²+ b²= 29²= 841,所以2ab = 840,面积= 0.5ab = 21084. 直角三角形的一条直角边为72,斜边为75,则另一条直角边为()A. 27B. 29C. 31D. 33答案:A解析:另一条直角边= √(75²- 72²) = 2785. 在△ABC 中,∠C = 90°,AB = 37,AC = 35,则BC 的长为()A. 12B. 14C. 16D. 18答案:A解析:BC = √(37²- 35²) = 1286. 若一个直角三角形的两条边长分别为18 和32,则第三条边长为()A. 38B. 14√2C. 38 或14√2D. 无法确定答案:C解析:当32 为斜边时,第三条边= √(32²- 18²) = 14√2;当18 和32 为直角边时,第三条边= √(18²+ 32²) = 3887. 已知直角三角形的两边长分别为9 和11,则第三边长为()A. √22B. √40C. √22 或√202D. 不确定答案:C解析:当11 为斜边时,第三边= √(11²- 9²) = √22;当9 和11 为直角边时,第三边= √(9²+ 11²) = √20288. 一个直角三角形的两条直角边分别为45和28,则斜边为()A. 53B. 55C. 57D. 59答案:A解析:斜边= √(45²+ 28²) = 5389. 若直角三角形的周长为66,斜边长为26,则其面积为()A. 96B. 108C. 112D. 120答案:B解析:设两直角边分别为a、b,a + b + 26 = 66,a + b = 40,(a + b)²= 1600,即a²+ 2ab + b²= 1600,又因为a²+ b²= 26²= 676,所以2ab = 924,面积= 0.5ab = 11290. 直角三角形的一条直角边为108,斜边为110,则另一条直角边为()A. 32B. 34C. 36D. 38答案:D解析:另一条直角边= √(110²- 108²) = 3891. 在Rt△ABC 中,∠C = 90°,若a = 30,b = 40,则c = ()A. 50B. 60C. 70D. 80答案:A解析:c = √(30²+ 40²) = 5092. 一个直角三角形的两条直角边分别为36cm 和48cm,则斜边为()A. 60cmB. 62cmC. 64cmD. 66cm答案:A解析:斜边= √(36²+ 48²) = 60cm93. 若直角三角形的周长为56cm,斜边长为20cm,则其面积为()A. 96cm²B. 112cm²C. 128cm²D. 144cm²答案:A解析:设两直角边分别为a、b,a + b + 20 = 56,a + b = 36,(a + b)²= 1296,即a²+ 2ab + b²= 1296,又因为a²+ b²= 20²= 400,所以2ab = 896,面积= 0.5ab = 96cm²94. 直角三角形的一条直角边为78,斜边为85,则另一条直角边为()A. 37B. 39C. 41D. 43答案:B解析:另一条直角边= √(85²- 78²) = 3995. 在△ABC 中,∠C = 90°,BC = 16,AC = 30,则AB 的长为()A. 34B. 36C. 38D. 40答案:A解析:AB = √(16²+ 30²) = 3496. 若直角三角形的三边长分别为24,10,x,则x 的值可能是()A. 26B. 22C. 26 或22D. 不能确定答案:C解析:当x 为斜边时,x = √(24²+ 10²) = 26;当24 为斜边时,x = √(24²- 10²) = 2297. 一个直角三角形的两条直角边分别为90和120,则斜边为()A. 150B. 160C. 170D. 180答案:A解析:斜边= √(90²+ 120²) = 15098. 若直角三角形的周长为84,斜边长为37,则其面积为()A. 120B. 126C. 132D. 138答案:B解析:设两直角边分别为a、b,a + b + 37 = 84,a + b = 47,(a + b)²= 2209,即a²+ 2ab + b²= 2209,又因为a²+ b²= 37²= 1369,所以2ab = 840,面积= 0.5ab = 12699. 直角三角形的一条直角边为132,斜边为137,则另一条直角边为()A. 45B. 47C. 49D. 51答案:A解析:另一条直角边= √(137²- 132²) = 45100. 在Rt△ABC 中,∠C = 90°,若a = 48,b = 55,则c = ()A. 73 B. 75 C. 77 D. 79答案:A解析:c = √(48²+ 55²) = 73。
勾股定理典型练习题(含答案)

勾股定理典型练习题(含答案)1.勾股定理典型练题勾股定理是几何中的一个重要定理。
在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载。
如图1所示,由边长相等的小正方形和直角三角形构成,可以用其面积关系验证勾股定理。
图2是由图1放入矩形内,已知AC = 4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为多少?已知AB = 3,得到∠BAC = 90°。
根据勾股定理,BC = 5.所以矩形KLMJ的面积为 4 × 5 + 3 × 4 = 32.因此,答案为C。
2.勾股定理典型练题XXX所示,是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形。
若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是多少?根据图中所示,正方形E的边长为2,所以面积为2 × 2 = 4.因此,答案为C。
3.勾股定理典型练题如图所示,在边长为4的等边三角形ABC中,AD是BC边上的高,点E,F是AD上的两点。
则图中阴影部分的面积是多少?首先,根据勾股定理,AC = 4,BC = 4,AB = 4√2.因此,三角形ABC的面积为4√2 × 4 / 2 = 8√2.由于三角形ADE和三角形ABF相似,所以ADE的面积是ABF的面积的一半。
同理,三角形BDF和三角形BCE相似,所以BDF的面积是BCE的面积的一半。
因此,阴影部分的面积为8√2 - 2 × 2 - 2 ×1 = 8√2 - 6.因此,答案为C。
4.勾股定理典型练题如图所示,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为多少?根据图中所示,正方形a和正方形c的边长分别为√5和√11.因此,正方形b的边长为√11 - √5,所以面积为(√11 - √5)² = 6.因此,答案为C。
5.勾股定理典型练题如图所示,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则S1和S2的大小关系是什么?首先,根据勾股定理,AB = √(BC² + AC²) = 2√2.因此,半圆的面积为π × (2√2 / 2)² = 2π。
(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
(完整版)勾股定理练习题(含答案)

勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A2d (Bd (C)2d (D)d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC为直径作半圆,则这个半圆的面积是 . ACB18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A 小汽车 小汽车BC AE C D答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。
勾股定理练习题(含答案)

勾股定理练习题(含答案)1.下列说法正确的是:C.若a、b、c是Rt△ABC的三边,A=90°,则a+b=c。
2.根据勾股定理,应该选B.a+b>c。
3.根据勾股定理,斜边长为√(k-1)²+(2k)²,即√(5k²-4)。
4.根据(a-b)(a+b-c)=0,可得a=b或a+b=c,所以它的形状为等腰三角形或直角三角形。
5.设另一直角边为x,则根据勾股定理得x²+9²=(x+1)²,解得x=40/9,周长为9+40/9+41/9=120/9=40/3,选C。
6.根据勾股定理得BC=√(13²-12²)=5,所以周长为15+13+5=33,选D。
7.根据勾股定理和中线长度公式得周长为2d+2√(d²-S),选C。
8.根据勾股定理得OP的长度为√(3²+4²)=5,选C。
9.根据勾股定理和海伦公式得BC=√(26²-24²/25)=17,选A。
10.根据(a-6)+b-8+c-10²=0,可得a+b+c=24,所以它的形状为等边三角形。
11.根据勾股定理和面积公式得面积为(8*15)/2=60,选D。
12.根据等腰三角形的性质,顶角的平分线与底边中线重合,所以答案为底边中线,即6.5.13.根据勾股定理得斜边长为√200=10√2,选D。
14.根据三角形边长比的性质,10:8:6无法构成三角形,所以不是三角形。
15.一个三角形的三边比为5:12:13,周长为60,则其面积为多少?16.在直角三角形ABC中,斜边AB=4,则AB+BC+AC=多少?17.如图,已知直角三角形ABC中,∠C=90°,BA=15,AC=12,以直角边BC为直径作半圆,则该半圆的面积为多少?18.若三角形三个内角的比为1:2:3,最短边长为1cm,最长边长为2cm,则该三角形三个角度数分别为多少?另外一边的平方是多少?19.长方形的一边长为3cm,面积为12cm²,则其一条对角线长为多少?20.如图,一个高为4m、宽为3m的大门,需要在对角线的顶点间加固一个木条,求该木条的长度。
勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10cm ,∠D=120°,则该零件另一腰AB 的长是______cm (结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地6.飞机在空中水平飞行上方4000米处,过了209.如图,在四边形CD=3,求AB 的长10.如图,一个牧童在小河的南的小屋B 的西8km 2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+,再利用面积法得,136011米,由勾所以飞机飞行的速度为CE=60.2⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9.解:延长BC 、AD 交于点E.(如图所示)第5题图第8题∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
勾股定理练习题及答案(共6套)

勾股定理课时练(1)1.在直角三角形ABC中,斜边AB=1,则AB222ACBC++的值是()A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD,AD∥BC,斜腰DC的长为10 cm,∠D=120°,则该零件另一腰AB的长是______ cm(结果不取近似值).3.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m,旗杆在断裂之前高多少m?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是米.6.飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7.如图所示,无盖玻璃容器,高18cm,底面周长为60cm,在外侧距下底1cm的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度. 8.一个零件的形状如图所示,已知AC=3cm,AB=4cm,BD=12cm。
求CD的长.9.如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB的长.10.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12.甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC,所以AB 222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360 ,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m ,AC=12m ,在直角三角形ABC 中,由勾股定理,222222201216=+=+=AC AB BC ,所以BC=20m ,20+12=32(m ), 故旗杆在断裂之前有32m 高. 5.86. 解:如图,由题意得,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时) 7. 解:将曲线沿AB 展开,如图所示,过点C 作CE ⊥AB 于E. 在R 90,=∠∆CEF CEF t ,EF=18-1-1=16(cm ),CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+8.解:在直角三角形ABC 中,根据勾股定理,得254322222=+=+=AB AC BC在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13.9. 解:延长BC 、AD 交于点E.(如图所示)∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8, 设AB=x ,则AE=2x ,由勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《勾股定理》典型例题分析一、知识要点:1、勾股定理勾股定理:直角三角形两直角边的平方和等于斜边的平方。
也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。
公式的变形:a2 = c2- b2, b2= c2-a2 。
2、勾股定理的逆定理如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。
这个定理叫做勾股定理的逆定理.该定理在应用时,同学们要注意处理好如下几个要点:①已知的条件:某三角形的三条边的长度.②满足的条件:最大边的平方=最小边的平方+中间边的平方.③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角.④如果不满足条件,就说明这个三角形不是直角三角形。
3、勾股数满足a2 + b2= c2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
常见勾股数有:(3,4,5)(5,12,13) (6,8,10)(7,24,25)(8,15,17)(9,12,15)4、最短距离问题:主要5、运用的依据是两点之间线段最短。
二、考点剖析考点一:利用勾股定理求面积1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆.2. 如图,以Rt △ABC 的三边为直径分别向外作三个半圆,试探索三个半圆的面积之间的关系.3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+S 3< S 1D. S 2- S 3=S 14、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
5、(难)在直线上依次摆放着七个正方形(如图4所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是、=_____________。
考点二:在直角三角形中,已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 .S 3S 2S 12.已知直角三角形的两边长为3、2,则另一条边长的平方是3、已知直角三角形两直角边长分别为5和12,求斜边上的高.4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的()A. 2倍B. 4倍C. 6倍D. 8倍5、在Rt△ABC中,∠C=90°①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则Rt△ABC的面积是=________。
6、如果直角三角形的两直角边长分别为1n2-,2n(n>1),那么它的斜边长是()A、2nB、n+1C、n2-1D、1n2+7、在Rt△ABC中,a,b,c为三边长,则下列关系中正确的是()A.222+= C. 222+= D.以上都有可能c b aa c ba b c+= B. 2228、已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A、242c m D、602c mc m C、482c m B、36 29、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为()A、5B、25C、7D、1510、已知在△ABC中,AB=13cm,AC=15cm,高AD=12cm,求△ABC的周长。
(提示:两种情况)考点三:应用勾股定理在等腰三角形中求底边上的高例、如图1所示,等腰中,,是底边上的高,若,求①AD的长;②ΔABC的面积.考点四:勾股数的应用、利用勾股定理逆定理判断三角形的形状、最大、最小角的问题1、下列各组数据中的三个数,可作为三边长构成直角三角形的是()A. 4,5,6B. 2,3,4C. 11,12,13D. 8,15,172、若线段a,b,c组成直角三角形,则它们的比为()A、2∶3∶4B、3∶4∶6C、5∶12∶13D、4∶6∶73、下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=3:4:5;④△ABC中,三边长分别为8,15,17.其中是直角三角形的个数有().A.1个 B.2个 C.3个 D.4个,则这个三角形一定是()4、若三角形的三边之比为:1A.等腰三角形B.直角三角形C.等腰直角三角形D.不等边三角形5、已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6、将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )A.钝角三角形 B. 锐角三角形 C. 直角三角形 D. 等腰三角形7、若△ABC的三边长a,b,c满足222+++=++,试判断△ABC的形状。
a b c20012a16b20c8、△ABC的两边分别为5,12,另一边为奇数,且a+b+c是3的倍数,则c应为,此三角形为。
例3:求(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是 度。
(2)已知三角形三边的比为1:3:2,则其最小角为 。
考点五:应用勾股定理解决楼梯上铺地毯问题某楼梯的侧面视图如图3所示,其中米,,,因某种活动要求铺设红色地毯,则在AB 段楼梯所铺地毯的长度应为 .考点六、利用列方程求线段的长(方程思想)1、小强想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能帮他算出来吗?2、一架长2.5m 的梯子,斜立在一竖起的墙上,梯子底端距离墙底0.7m (如图),如果梯子的顶端沿墙下滑0.4m ,那么梯子底端将向左滑动 米B C3、如图,一个长为10米的梯子,斜靠在墙面上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么,梯子底端的滑动距离 1米,(填“大于”,“等于”,或“小于”)4、在一棵树10 m 高的B 处,有两只猴子,一只爬下树走到离树20m 处的池塘A 处;•另外一只爬到树顶D 处后直接跃到A 外,距离以直线计算,如果两只猴子所经过的距离相等,试问这棵树有多高?5、如图,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm )计算两圆孔中心A 和B 的距离为 .CB6、如图:有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了 米.xzx7、如图18-15所示,某人到一个荒岛上去探宝,在A 处登陆后,往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再折向北方走到5km 处往东一拐,仅1km •就找到了宝藏,问:登陆点(A 处)到宝藏埋藏点(B 处)的直线距离是多少?考点七:折叠问题(较难的一类)1、如图,有一张直角三角形纸片,两直角边AC=6,BC=8,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CE 等于( )A. 425B. 322C. 47D. 352、如图所示,已知△ABC 中,∠C=90°,AB 的垂直平分线交BC •于M ,交AB 于N ,若AC=4,MB=2MC ,求AB 的长.3、折叠矩形ABCD 的一边AD,点D 落在BC 边上的点F 处,已知AB=8CM,BC=10CM ,求CF 和EC 。
8米 2米8米第6题图图18-1515328B A4、如图,在长方形ABCD 中,DC=5,在DC 边上存在一点E ,沿直线AE 把△ABC 折叠,使点D 恰好在BC 边上,设此点为F ,若△ABF 的面积为30,求折叠的△AED 的面积DCBAF E5、如图,矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝,将其折叠,使点D 与点B 重合,那么折叠后DE 的长是多少?6、如图,在长方形ABCD 中,将∆ABC 沿AC 对折至∆AEC 位置,CE 与AD 交于点F 。
(1)试说明:AF=FC ;(2)如果AB=3,BC=4,求AF 的长7、如图2所示,将长方形ABCD 沿直线AE 折叠,顶点D 正好落在BC 边上F 点处,已知CE=3cm ,AB=8cm ,则图中阴影部分面积为_______.A BCEFD8、如图2-3,把矩形ABCD沿直线BD向上折叠,使点C落在C′的位置上,已知AB=•3,BC=7,重合部分△EBD的面积为________.9、(难)如图5,将正方形ABCD折叠,使顶点A与CD边上的点M重合,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G。
如果M为CD边的中点,求证:DE:DM:EM=3:4:5。
10、如图2-5,长方形ABCD中,AB=3,BC=4,若将该矩形折叠,使C点与A点重合,•则折叠后痕迹EF的长为()A.3.74 B.3.75 C.3.76 D.3.772-511、(稍难)如图1-3-11,有一块塑料矩形模板ABCD,长为10cm,宽为4cm,将你手中足够大的直角三角板 PHF 的直角顶点P落在AD边上(不与A、D重合),在AD上适当移动三角板顶点P:①能否使你的三角板两直角边分别通过点B与点C?若能,请你求出这时 AP 的长;若不能,请说明理由.②再次移动三角板位置,使三角板顶点P在AD上移动,直角边PH 始终通过点B,另一直角边PF与DC的延长线交于点Q,与BC交于点E,能否使CE=2cm?若能,请你求出这时AP 的长;若不能,请你说明理由.(提示:根据勾股定理,列出一元二次方程,超初二范围)12、(难)如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。
(提示:连接AD,证△AED≌△CFD, 可得AE=CF=5,AF=BE=12,即可求)13、(好)如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP =160m。
假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?考点八:应用勾股定理解决勾股树问题1、如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A ,B ,C ,D 的面积的和为2、(好,稍难)已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 ( 2 )n.考点九、图形问题1、如图1,求该四边形的面积2、已知,在△ABC 中,∠A = 45°,AC = 2,AB = 3+1,则边BC 的长为 .ABCD E FG431213BC DA3、(好,稍难)某公司的大门如图所示,其中四边形ABCD是长方形,上部是以AD为直径的半圆,其中AB=2.3m,BC=2m,现有一辆装满货物的卡车,高为2.5m,宽为1.6m,问这辆卡车能否通过公司的大门?并说明你的理由.4、将一根长24㎝的筷子置于地面直径为5㎝,高为12㎝的圆柱形水杯中,设筷子露在杯子外面的长为h㎝,则h的取值范围。