高考数学复习第3章三角函数解三角形第4讲简单的三角恒等变形知能训练51

合集下载

2023年高考数学一轮复习第四章三角函数与解三角形4简单的三角恒等变换练习含解析

2023年高考数学一轮复习第四章三角函数与解三角形4简单的三角恒等变换练习含解析

简单的三角恒等变换考试要求 能运用两角和与差的正弦、余弦、正切公式推导二倍角的正弦、余弦、正切公式,并进行简单的恒等变换(包括推导出积化和差、和差化积、半角公式,这三组公式不要求记忆).知识梳理1.二倍角的正弦、余弦、正切公式 (1)公式S 2α:sin2α=2sin αcos α.(2)公式C 2α:cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)公式T 2α:tan2α=2tan α1-tan 2α. 2.常用的部分三角公式 (1)1-cos α=2sin2α2,1+cos α=2cos2α2.(升幂公式)(2)1±sin α=⎝⎛⎭⎪⎫sin α2±cos α22.(升幂公式)(3)sin 2α=1-cos2α2,cos 2α=1+cos2α2,tan 2α=1-cos2α1+cos2α.(降幂公式)思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)tan α2=sin α1+cos α=1-cos αsin α.( √ )(2)设5π2<θ<3π,且|cos θ|=15,那么sin θ2的值为155.( × )(3)半角的正弦、余弦公式实质就是将倍角的余弦公式逆求而得来的.( √ ) (4)存在实数α,使tan2α=2tan α.( √ ) 教材改编题1.sin15°cos15°等于( ) A .-14B.14C .-12D.12答案 B解析 sin15°cos15°=12sin30°=14.2.化简1+cos4的结果是( )A .sin2B .-cos2 C.2cos2 D .-2cos2答案 D解析 因为1+cos4=2cos 22, 又cos2<0,所以可得选项D 正确.3.已知α是第二象限的角,tan(π+2α)=-43,则tan α等于( )A .-22B .2C .-13D .-12答案 D解析 由tan(π+2α)=-43,得tan2α=-43,又tan2α=2tan α1-tan 2α=-43, 解得tan α=-12或tan α=2,又α是第二象限角,所以tan α=-12.题型一 三角函数式的化简例1 (1)(2021·全国甲卷)若α∈⎝ ⎛⎭⎪⎫0,π2,tan2α=cos α2-sin α,则tan α等于( )A.1515B.55C.53D.153答案 A解析 方法一 因为tan2α=sin2αcos2α=2sin αcos α1-2sin 2α, 且tan2α=cos α2-sin α,所以2sin αcos α1-2sin 2α=cos α2-sin α,解得sin α=14.因为α∈⎝ ⎛⎭⎪⎫0,π2, 所以cos α=154,tan α=sin αcos α=1515.方法二 因为tan2α=2tan α1-tan 2α=2sin αcos α1-sin 2αcos 2α=2sin αcos αcos 2α-sin 2α=2sin αcos α1-2sin 2α,且tan2α=cos α2-sin α,所以2sin αcos α1-2sin 2α=cos α2-sin α, 解得sin α=14.因为α∈⎝ ⎛⎭⎪⎫0,π2,所以cos α=154,tan α=sin αcos α=1515. (2)化简:2cos 4x -2cos 2x +122tan ⎝ ⎛⎭⎪⎫π4-x ·sin 2⎝ ⎛⎭⎪⎫x +π4=.答案 12cos2x解析 原式=2cos 2x cos 2x -1+122tan ⎝ ⎛⎭⎪⎫π4-x ·sin 2⎝⎛⎭⎪⎫x +π4=12cos 22x 2·⎝ ⎛⎭⎪⎫1-sin x cos x 1+sin x cos x·1-cos ⎝⎛⎭⎪⎫2x +π22=12cos 22x cos 2x -sin 2x =12cos2x . 教师备选1.(2020·全国Ⅰ)已知α∈(0,π),且3cos2α-8cos α=5,则sin α等于( ) A.53 B.23C.13D.59答案 A解析 由3cos2α-8cos α=5, 得3(2cos 2α-1)-8cos α=5, 即3cos 2α-4cos α-4=0,解得cos α=-23或cos α=2(舍去).又因为α∈(0,π),所以sin α>0, 所以sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫-232=53. 2.已知0<θ<π,则1+sin θ+cos θ⎝⎛⎭⎪⎫sin θ2-cos θ22+2cos θ=.答案 -cos θ解析 原式=⎝ ⎛⎭⎪⎫2sin θ2cos θ2+2cos 2θ2⎝ ⎛⎭⎪⎫sin θ2-cos θ24cos2θ2=cos θ2·⎝ ⎛⎭⎪⎫sin 2θ2-cos 2θ2⎪⎪⎪⎪⎪⎪cos θ2=-cos θ2·cos θ⎪⎪⎪⎪⎪⎪cos θ2.因为0<θ<π,所以0<θ2<π2,所以cos θ2>0,所以原式=-cos θ.思维升华 (1)三角函数式的化简要遵循“三看”原则: 一看角,二看名,三看式子结构与特征.(2)三角函数式的化简要注意观察条件中角之间的联系(和、差、倍、互余、互补等),寻找式子和三角函数公式之间的联系点.跟踪训练1 (1)21+sin4+2+2cos4等于( ) A .2cos2 B .2sin2 C .4sin2+2cos2 D .2sin2+4cos2答案 B解析 21+sin4+2+2cos4=2sin 22+2sin2cos2+cos 22+2+22cos 22-1 =2sin2+cos22+4cos 22=2|sin2+cos2|+2|cos2|.∵π2<2<π, ∴cos2<0,∵sin2+cos2=2sin ⎝ ⎛⎭⎪⎫2+π4,0<2+π4<π,∴sin2+cos2>0,∴原式=2(sin2+cos2)-2cos2=2sin2.(2)化简tan 27.5°+1tan 27.5°-7sin 27.5°+cos 27.5°等于( ) A.33B.233C. 3 D .2答案 B解析 原式=tan 27.5°+1tan 27.5°-8sin 27.5°+1 =sin 27.5°+cos 27.5°sin 27.5°-8sin 27.5°cos 27.5°+cos 27.5° =11-2sin 215°=1cos30°=233. 题型二 三角函数式的求值 命题点1 给角求值例2 (1)sin40°(tan10°-3)等于( ) A .2B .-2C .1D .-1 答案 D解析 sin40°·(tan10°-3)=sin40°·⎝ ⎛⎭⎪⎫sin10°cos10°-3 =sin40°·sin10°-3cos10°cos10°=sin40°·2⎝ ⎛⎭⎪⎫12sin10°-32cos10°cos10°=sin40°·2cos60°·sin10°-sin60°·cos10°cos10°=sin40°·2sin 10°-60°cos10°=sin40°·-2sin50°cos10°=-2sin40°·cos40°cos10°=-sin80°cos10°=-1.(2)cos20°·cos40°·cos100°=. 答案 -18解析 cos20°·cos40°·cos100° =-cos20°·cos40°·cos80°=-sin20°·cos20°·cos40°·cos80°sin20°=-12sin40°·cos40°·cos80°sin20°=-14sin80°·cos80°sin20°=-18sin160°sin20°=-18sin20°sin20°=-18.命题点2 给值求值 例3 (1)若cos ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎝ ⎛⎭⎪⎫2π3+2α等于( )A.29 B .-29C.79 D .-79答案 C解析 ∵cos ⎝ ⎛⎭⎪⎫π6-α=13.∴cos ⎝ ⎛⎭⎪⎫π6-α=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π6-α=sin ⎝ ⎛⎭⎪⎫π3+α=13,∴cos ⎝⎛⎭⎪⎫2π3+2α=1-2sin 2⎝ ⎛⎭⎪⎫π3+α=1-29=79.(2)(2022·长春质检)已知sin ⎝ ⎛⎭⎪⎫α-π3+3cos α=13,则sin ⎝ ⎛⎭⎪⎫2α+π6等于( ) A.23B.29C .-19D .-79 答案 D解析 ∵sin ⎝ ⎛⎭⎪⎫α-π3+3cos α=13,∴sin αcosπ3-cos αsin π3+3cos α=13, ∴12sin α-32cos α+3cos α=13, ∴12sin α+32cos α=13, ∴cos ⎝⎛⎭⎪⎫α-π6=13,∴sin ⎝ ⎛⎭⎪⎫2α+π6=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫α-π6+π2=cos2⎝ ⎛⎭⎪⎫α-π6=2cos 2⎝⎛⎭⎪⎫α-π6-1 =2×⎝ ⎛⎭⎪⎫132-1=-79.命题点3 给值求角例4 已知α,β均为锐角,cos α=277,sin β=3314,则cos2α=,2α-β=.答案 17 π3解析 因为cos α=277,所以cos2α=2cos 2α-1=17.又因为α,β均为锐角,sin β=3314,所以sin α=217,cos β=1314, 因此sin2α=2sin αcos α=437,所以sin(2α-β)=sin2αcos β-cos2αsin β=437×1314-17×3314=32.因为α为锐角,所以0<2α<π. 又cos2α>0,所以0<2α<π2,又β为锐角,所以-π2<2α-β<π2,又sin(2α-β)=32,所以2α-β=π3. 教师备选 1.cos40°cos25°1-sin40°的值为( )A .1B.3C.2D .2 答案 C解析 原式=cos 220°-sin 220°cos25°cos20°-sin20°=cos20°+sin20°cos25°=2cos25°cos25°= 2.2.已知A ,B 均为钝角,且sin 2A 2+cos ⎝⎛⎭⎪⎫A +π3=5-1510,sin B =1010,则A +B 等于( ) A.3π4 B.5π4 C.7π4D.7π6答案 C解析 因为sin 2A 2+cos ⎝⎛⎭⎪⎫A +π3=5-1510, 所以1-cos A 2+12cos A -32sin A =5-1510,即12-32sin A =5-1510, 解得sin A =55, 因为A 为钝角,所以cos A =-1-sin 2A =-1-⎝⎛⎭⎪⎫552=-255.由sin B =1010,且B 为钝角, 得cos B =-1-sin 2B =-1-⎝⎛⎭⎪⎫10102=-31010.所以cos(A +B )=cos A cos B -sin A sin B =⎝ ⎛⎭⎪⎫-255×⎝ ⎛⎭⎪⎫-31010-55×1010=22. 又A ,B 都为钝角,即A ,B ∈⎝ ⎛⎭⎪⎫π2,π,所以A +B ∈(π,2π), 所以A +B =7π4.3.已知cos ⎝ ⎛⎭⎪⎫θ+π4=1010,θ∈⎝ ⎛⎭⎪⎫0,π2,则sin ⎝ ⎛⎭⎪⎫2θ-π3=. 答案4-3310解析 由题意可得cos 2⎝ ⎛⎭⎪⎫θ+π4=1+cos ⎝ ⎛⎭⎪⎫2θ+π22=110,cos ⎝ ⎛⎭⎪⎫2θ+π2=-sin2θ=-45, 即sin2θ=45.因为cos ⎝ ⎛⎭⎪⎫θ+π4=1010>0,θ∈⎝⎛⎭⎪⎫0,π2,所以0<θ<π4,2θ∈⎝ ⎛⎭⎪⎫0,π2,根据同角三角函数基本关系式, 可得cos2θ=35,由两角差的正弦公式,可得sin ⎝ ⎛⎭⎪⎫2θ-π3=sin2θcos π3-cos2θsin π3 =45×12-35×32=4-3310. 思维升华 (1)给值(角)求值问题求解的关键在于“变角”,使其角相同或具有某种关系,借助角之间的联系寻找转化方法. (2)给值(角)求值问题的一般步骤 ①化简条件式子或待求式子;②观察条件与所求之间的联系,从函数名称及角入手; ③将已知条件代入所求式子,化简求值.跟踪训练2 (1)(2019·全国Ⅱ)已知α∈⎝⎛⎭⎪⎫0,π2,2sin2α=cos2α+1,则sin α等于( )A.15B.55C.33D.255 答案 B解析 由2sin2α=cos2α+1,得4sin αcos α=1-2sin 2α+1,即2sin αcos α=1-sin 2α.因为α∈⎝⎛⎭⎪⎫0,π2,所以cos α=1-sin 2α,所以2sin α1-sin 2α=1-sin 2α, 解得sin α=55. (2)(2021·全国乙卷)cos 2π12-cos 25π12等于( ) A.12B.33C.22D.32 答案 D 解析 因为cos5π12=sin ⎝ ⎛⎭⎪⎫π2-5π12=sin π12,所以cos2π12-cos 25π12=cos 2π12-sin 2π12=cos ⎝ ⎛⎭⎪⎫2×π12=cos π6=32.(3)已知sin 2⎝ ⎛⎭⎪⎫x +π4=13,则sin2x =. 答案 -13解析 ∵sin 2⎝ ⎛⎭⎪⎫x +π4=1-cos ⎝ ⎛⎭⎪⎫2x +π22=1+sin2x 2=13, ∴sin2x =-13.题型三 三角恒等变换的综合应用例5 (2022·河南中原名校联考)已知函数f (x )=4cos x cos ⎝ ⎛⎭⎪⎫x +π6- 3. (1)求f (x )的单调递增区间;(2)若α∈⎣⎢⎡⎦⎥⎤0,π2,且f (α)=65,求cos2α.解 (1)f (x )=4cos x cos ⎝⎛⎭⎪⎫x +π6- 3=4cos x ⎝⎛⎭⎪⎫32cos x -12sin x - 3=23cos 2x -2sin x cos x - 3 =3(1+cos2x )-sin2x - 3 =3cos2x -sin2x =2cos ⎝⎛⎭⎪⎫2x +π6, 令2k π-π≤2x +π6≤2k π(k ∈Z ),解得k π-7π12≤x ≤k π-π12(k ∈Z ),所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-7π12,k π-π12(k ∈Z ).(2)由于α∈⎣⎢⎡⎦⎥⎤0,π2,且f (α)=65,而f (α)=2cos ⎝ ⎛⎭⎪⎫2α+π6=65, 所以cos ⎝ ⎛⎭⎪⎫2α+π6=35, 因为0≤α≤π2,所以π6≤2α+π6≤7π6,则π6≤2α+π6≤π2, 所以sin ⎝ ⎛⎭⎪⎫2α+π6=45,则cos 2α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π6-π6=cos ⎝ ⎛⎭⎪⎫2α+π6cos π6+sin ⎝ ⎛⎭⎪⎫2α+π6sin π6=35×32+45×12 =33+410. 教师备选 已知函数f (x )=24sin ⎝ ⎛⎭⎪⎫π4-x +64cos ⎝ ⎛⎭⎪⎫π4-x . (1)求函数f (x )在区间⎣⎢⎡⎦⎥⎤π4,3π2上的最值;(2)若cos θ=45,θ∈⎝ ⎛⎭⎪⎫3π2,2π,求f ⎝ ⎛⎭⎪⎫2θ+π3的值.解 (1)由题意得f (x )=24sin ⎝ ⎛⎭⎪⎫π4-x +64cos ⎝ ⎛⎭⎪⎫π4-x =22×⎣⎢⎡⎦⎥⎤12sin ⎝ ⎛⎭⎪⎫π4-x +32cos ⎝ ⎛⎭⎪⎫π4-x =-22sin ⎝⎛⎭⎪⎫x -7π12.因为x ∈⎣⎢⎡⎦⎥⎤π4,3π2,所以x -7π12∈⎣⎢⎡⎦⎥⎤-π3,11π12,所以sin ⎝ ⎛⎭⎪⎫x -7π12∈⎣⎢⎡⎦⎥⎤-32,1,所以-22sin ⎝ ⎛⎭⎪⎫x -7π12∈⎣⎢⎡⎦⎥⎤-22,64,即函数f (x )在区间⎣⎢⎡⎦⎥⎤π4,3π2上的最大值为64,最小值为-22.(2)因为cos θ=45,θ∈⎝ ⎛⎭⎪⎫3π2,2π,所以sin θ=-35,所以sin2θ=2sin θcos θ=-2425,cos2θ=cos 2θ-sin 2θ =1625-925=725, 所以f ⎝ ⎛⎭⎪⎫2θ+π3=-22sin ⎝ ⎛⎭⎪⎫2θ+π3-7π12 =-22sin ⎝⎛⎭⎪⎫2θ-π4 =-12(sin2θ-cos2θ)=12(cos2θ-sin2θ) =12×⎝ ⎛⎭⎪⎫725+2425 =3150. 思维升华 (1)进行三角恒等变换要抓住:变角、变函数名称、变结构,尤其是角之间的关系;注意公式的逆用和变形使用.(2)形如y =a sin x +b cos x 化为y =a 2+b 2sin(x +φ),可进一步研究函数的周期性、单调性、最值与对称性.跟踪训练 3 (2022·云南曲靖一中质检)已知向量a =⎝ ⎛⎭⎪⎫cos x 2+sin x 2,2sin x2,b =⎝ ⎛⎭⎪⎫cos x 2-sin x 2,3cos x 2,函数f (x )=a·b .(1)求函数f (x )的最大值,并指出f (x )取得最大值时x 的取值集合;(2)若α,β为锐角,cos(α+β)=1213,f (β)=65,求f⎝⎛⎭⎪⎫α+π6的值.解 (1)f (x )=cos 2x2-sin 2x 2+23sin x 2cos x2=cos x +3sin x=2sin ⎝⎛⎭⎪⎫x +π6,令x +π6=π2+2k π(k ∈Z ),得x =π3+2k π,k ∈Z ,∴f (x )的最大值为2,此时x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =π3+2k π,k ∈Z . (2)由α,β为锐角,cos(α+β)=1213,得sin(α+β)=513,∵0<β<π2,∴π6<β+π6<2π3,又f (β)=2sin ⎝ ⎛⎭⎪⎫β+π6=65,∴sin ⎝ ⎛⎭⎪⎫β+π6=35∈⎝ ⎛⎭⎪⎫12,22,∴π6<β+π6<π4,∴cos ⎝ ⎛⎭⎪⎫β+π6=45,∴cos ⎝ ⎛⎭⎪⎫α-π6=cos ⎣⎢⎡⎦⎥⎤α+β-⎝⎛⎭⎪⎫β+π6=cos(α+β)cos ⎝ ⎛⎭⎪⎫β+π6+sin(α+β)sin ⎝ ⎛⎭⎪⎫β+π6=6365, ∴f ⎝ ⎛⎭⎪⎫α+π6=2sin ⎝ ⎛⎭⎪⎫α+π3=2sin ⎝⎛⎭⎪⎫π2+α-π6=2cos ⎝⎛⎭⎪⎫α-π6=12665. 课时精练1.已知tan α=3,则cos ⎝ ⎛⎭⎪⎫2α+π2等于( ) A .-32B.35 C .-35D.15答案 C解析 cos ⎝ ⎛⎭⎪⎫2α+π2=-sin2α=-2sin αcos α =-2sin αcos αcos 2α+sin 2α=-2tan α1+tan 2α=-2×31+32=-35.2.(2022·安庆模拟)已知θ∈⎝⎛⎭⎪⎫0,π2,tan θ=2,则cos2θ等于( )A .-23B.23C .-13D.13答案 C解析 cos2θ=cos 2θ-sin 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=-13. 3.(2022·威海模拟)tan67.5°-1tan67.5°的值为( )A .1B.2C .2D .4 答案 C解析 tan67.5°-1tan67.5°=sin67.5°cos67.5°-1sin67.5°cos67.5°=sin67.5°cos67.5°-cos67.5°sin67.5°=sin 267.5°-cos 267.5°sin67.5°cos67.5°=-cos135°12sin135°=2.4.(2022·黑龙江大庆中学模拟)若cos(30°-α)-sin α=13,则sin(30°-2α)等于( ) A.13 B .-13C.79D .-79答案 D解析 由cos(30°-α)-sin α=13,得32cos α-12sin α=13, 即cos(30°+α)=13,所以sin(30°-2α)=cos(60°+2α) =2cos 2(30°+α)-1=2×19-1=-79.5.(多选)已知f (x )=12(1+cos2x )sin 2x (x ∈R ),则下列结论正确的是( )A .f (x )的最小正周期T =π2B .f (x )是偶函数C .f (x )的最大值为14D .f (x )的最小正周期T =π 答案 ABC解析 ∵f (x )=14(1+cos2x )(1-cos2x )=14(1-cos 22x ) =14sin 22x =18(1-cos4x ), ∴f (-x )=18[1-cos4(-x )]=18(1-cos4x )=f (x ), T =2π4=π2, f (x )的最大值为18×2=14,故A ,B ,C 正确,D 错误.6.(多选)下列各式中,值为12的是( )A .cos 2π12-sin 2π12B.tan22.5°1-tan 222.5°C .2sin195°cos195°D.1+cosπ62答案 BC 解析 cos2π12-sin 2π12=cos ⎝ ⎛⎭⎪⎫2×π12 =cosπ6=32, 故A 错误;tan22.5°1-tan 222.5°=12·2tan22.5°1-tan 222.5 =12tan45°=12,故B 正确; 2sin195°cos195°=2sin(180°+15°)cos(180°+15°)=2sin15°cos15°=sin30°=12, 故C 正确;1+cosπ62=2+34=2+32≠12, 故D 错误. 7.求值:3-tan12°2cos 212°-1sin12°=.答案 8解析 原式=3-sin12°cos12°cos24°sin12°=3cos12°-sin12°cos24°sin12°cos12°=2sin 60°-12°14sin48°=2sin48°14sin48°=8.8.若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=.答案 -725解析 方法一 ∵cos ⎝ ⎛⎭⎪⎫π4-α=35,∴sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α =cos2⎝⎛⎭⎪⎫π4-α =2cos 2⎝ ⎛⎭⎪⎫π4-α-1=2×925-1=-725.方法二 ∵cos ⎝ ⎛⎭⎪⎫π4-α=22(sin α+cos α)=35,∴12(1+sin2α)=925, ∴sin2α=2×925-1=-725.9.(2022·杭州模拟)已知函数f (x )=2cos 2x +23sin x ·cos x .(1)求f ⎝ ⎛⎭⎪⎫π3的值; (2)若f ⎝ ⎛⎭⎪⎫α2=115,α∈⎝⎛⎭⎪⎫0,π3,求cos α的值.解 (1)因为f (x )=2cos 2x +23sin x cos x =1+cos2x +3sin2x =1+2sin ⎝⎛⎭⎪⎫2x +π6,所以f ⎝ ⎛⎭⎪⎫π3=1+2sin ⎝ ⎛⎭⎪⎫2π3+π6=1+2sin5π6=1+1=2. (2)由f ⎝ ⎛⎭⎪⎫α2=115,α∈⎝⎛⎭⎪⎫0,π3,得sin ⎝ ⎛⎭⎪⎫α+π6=35,cos ⎝⎛⎭⎪⎫α+π6=45,所以cos α=cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝ ⎛⎭⎪⎫α+π6sin π6=43+310. 10.如图,点P 在以AB 为直径的半圆上移动,且AB =1,过点P 作圆的切线PC ,使PC =1.连接BC ,当点P 在什么位置时,四边形ABCP 的面积等于12?解 设∠PAB =α,连接PB .∵AB 是圆的直径,∴∠APB =90°. 又AB =1,∴PA =cos α,PB =sin α.∵PC 是圆的切线,∴∠BPC =α. 又PC =1,∴S 四边形ABCP =S △APB +S △BPC =12PA ·PB +12PB ·PC ·sin α =12cos αsin α+12sin 2α =14sin 2α+14(1-cos 2α) =14(sin 2α-cos 2α)+14 =24sin ⎝⎛⎭⎪⎫2α-π4+14,由已知,得24sin ⎝⎛⎭⎪⎫2α-π4+14=12,∴sin ⎝⎛⎭⎪⎫2α-π4=22,又α∈⎝⎛⎭⎪⎫0,π2,∴2α-π4∈⎝ ⎛⎭⎪⎫-π4,3π4,∴2α-π4=π4,∴α=π4,故当点P 位于AB 的垂直平分线与半圆的交点时,四边形ABCP 的面积等于12.11.(2022·昆明一中模拟)已知m =2sin18°,若m 2+n =4,则1-2cos 2153°m n等于( )A .-14B .-12C.14D.12答案 B解析 因为m =2sin18°,m 2+n =4, 所以n =4-m 2=4-4sin 218°=4cos 218°, 因此1-2cos 2153°m n=-cos306°2sin18°·2cos18°=-cos54°2sin36°=-sin36°2sin36°=-12.12.(2022·杭州模拟)“-π4≤θ≤π12”是“3cos 2θ-12sin2θ≥1+32”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 A解析 由3cos 2θ-12sin2θ=32cos2θ-12sin2θ+32≥1+32,得cos ⎝⎛⎭⎪⎫2θ+π6≥12,所以-π4+k π≤θ≤π12+k π(k ∈Z ), 因此“-π4≤θ≤π12”是“3cos 2θ-12sin2θ≥1+32”的充分不必要条件. 13.在平面直角坐标系Oxy 中,角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边交单位圆O 于点P (a ,b ),且a +b =75,则cos ⎝ ⎛⎭⎪⎫2α+π2的值是.答案 -2425解析 由任意角的三角函数的定义得,sin α=b ,cos α=a .又a +b =75,∴sin α+cos α=75,两边平方可得sin 2α+cos 2α+2sin αcos α=4925,即1+sin2α=4925,∴sin2α=2425.∴cos ⎝ ⎛⎭⎪⎫2α+π2=-sin2α=-2425.14.已知α,β∈(0,π),且tan(α-β)=12,tan β=-17,则2α-β的值为.答案 -3π4解析 ∵tan α=tan [(α-β)+β]=tan α-β+tan β1-tan α-βtan β=12-171+12×17=13>0,且α∈(0,π),∴0<α<π2.又∵tan2α=2tan α1-tan 2α=2×131-⎝ ⎛⎭⎪⎫132=34>0,∴0<2α<π2.∵tan β=-17<0,β∈(0,π),∴π2<β<π, ∴-π<2α-β<0.∵tan(2α-β)=tan2α-tan β1+tan 2αtan β=34+171-34×17=1, ∴2α-β=-3π4.15.函数f (x )=4cos 2x 2cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为. 答案 2解析 因为f (x )=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin2x -|ln(x +1)|,x >-1,所以函数f (x )的零点个数为函数y =sin2x (x >-1)与y =|ln(x +1)|(x >-1)图象的交点的个数,作出两函数的图象如图,由图知,两函数图象有2个交点,所以函数f (x )有2个零点.16.如图,有一块以点O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另两点B ,C 落在半圆的圆周上.已知半圆的半径长为20m ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大,最大值是多少?解 如图,连接OB ,设∠AOB =θ,则AB =OB sin θ=20sin θ,OA =OB cos θ=20cos θ,且θ∈⎝⎛⎭⎪⎫0,π2. 因为A ,D 关于原点O 对称,所以AD =2OA =40cos θ.设矩形ABCD 的面积为S ,则S =AD ·AB =40cos θ·20sin θ=400sin2θ.因为θ∈⎝ ⎛⎭⎪⎫0,π2,所以当sin2θ=1,即θ=π4时,S max =400m 2.此时AO =DO =102m.故当点A ,D 到圆心O 的距离为102m 时,矩形ABCD 的面积最大,其最大面积是400m 2.。

2021年高考数学 第三章 第4课时 简单的三角恒等变换知能演练轻松闯关 新人教A版

2021年高考数学 第三章 第4课时 简单的三角恒等变换知能演练轻松闯关 新人教A版

2021年高考数学 第三章 第4课时 简单的三角恒等变换知能演练轻松闯关 新人教A 版1.sin 20°cos 20°cos 50°=( )A .2B .22C . 2D .12解析:选D .sin 20°cos 20°cos 50°=12sin 40°cos 50°=12sin 40°sin 40°=12.2.若sin α=45,则sin ⎝⎛⎭⎪⎫α+π4-22cos α=( ) A .225B .-225C .425D .-425解析:选A .sin ⎝ ⎛⎭⎪⎫α+π4-22cos α=sin αcos π4+cos α·sin π4-22cosα=45×22=225. 3.在△ABC 中,tan B =-2,tan C =13,则A 等于( )A .π4B .3π4C .π3D .π6解析:选A.tan A=tan[π-(B+C)]=-tan(B+C)=-tan B+tan C1-tan Btan C=--2+131-(-2)×13=1.故A=π4.4.sin(180°+2α)1+cos 2α·cos2αcos(90°+α)等于( )A.-sin αB.-cos αC.sin αD.cos α解析:选D.原式=(-sin 2α)·cos2α(1+cos 2α)·(-sin α)=2sin α·cos α·cos2α2cos2α·sin α=cos α.5.(xx·浙江杭州调研)已知tan(α+π4)=12,且-π2<α<0,则2sin2α+sin 2αcos(α-π4)=( )A.-255B.-3510C.-31010D.255解析:选A.由tan(α+π4)=tan α+11-tan α=12,得tan α=-13.又-π2<α<0,所以sin α=-10 10.6.设α是第二象限角,tan α=-43,且sin α2<cos α2,则cos α2=________.解析:∵α是第二象限角,∴α2可能在第一或第三象限.又sin α2<cos α2,∴α2为第三象限角,∴cos α2<0.∵tan α=-43,∴cos α=-35,∴cos α2=-1+cos α2=-55. 答案:-557.若sin x +cos x sin x -cos x=3,tan(x -y )=2,则tan(y -2x )=________.解析:由sin x +cos x sin x -cos x =3,得tan x +1tan x -1=3,即tan x =2.则tan(y -x )=-tan(x -y )=-2,∴tan(y -2x )=tan (y -x )-tan x 1+tan (y -x )tan x =-2-21-4=43.答案:438.2cos 5°-sin 25°sin 65°的值为________.解析:2cos 5°-sin 25°sin 65°=2co s 5°-sin(30°-5°)sin 65°=2cos 5°-12cos 5°+32sin 5°cos 25°=32sin 5°+32cos 5°cos 25°=3(sin 30°sin 5°+cos 30°cos 5°)cos 25°=3cos 25°cos 25°= 3.答案:39.已知tan α=-13,cos β=55,α∈(π2,π),β∈(0,π2),求tan(α+β)的值,并求出α+β的值.解:由cos β=55,β∈(0,π2),得sin β=255,tan β=2.∴tan(α+β)=tan α+tan β1-tan αtan β=-13+21+23=1.∵α∈(π2,π),β∈(0,π2),∴π2<α+β<3π2,∴α+β=5π4.10.求值:1+cos 20°2sin 20°-sin 10°⎝⎛⎭⎪⎫1tan 5°-tan 5°.解:原式=2cos210°2×2sin 10°cos 10°-sin 10°⎝⎛⎭⎪⎫cos 5°sin 5°-sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos25°-sin25°sin 5°cos 5°=cos 10°2sin 10°-sin 10°·cos 10°12sin 10°=cos 10°2sin 10°-2cos 10°=cos 10°-2sin 20°2sin 10°=cos 10°-2sin(30°-10°)2sin 10°=cos 10°-2⎝⎛⎭⎪⎫12cos 10°-32sin 10°2sin 10°=3sin 10°2sin 10°=32.[能力提升]1.tan 70°·cos 10°(3t an 20°-1)等于( ) A.1 B.2C.-1 D.-2=sin 70°cos 70°·cos 10°(3·sin 20°cos 20°-1)=cos 20°cos 10°sin 20°·3sin 20°-cos 20°cos 20°=cos 10°·2sin(20°-30°)sin 20°=-sin 20°sin 20°=-1.2.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -b C .若cos α=17,⎪⎪⎪⎪⎪⎪sin α sin βcos α cos β=3314,0<β<α<π2,则β等于( )A .π12B .π6C .π4D .π3解析:选D .依题意有sin αcos β-cos αsin β=sin(α-β)=3314,又0<β<α<π2,∴0<α-β<π2,故cos(α-β)=1-sin 2(α-β)=1314, 而cos α=17,∴sin α=437,于是sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β) =437×1314-17×3314=32. 故β=π3.3.已知α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin α·cos α-3cos 2α=0,则sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1=________.解析:∵α∈⎝ ⎛⎭⎪⎫0,π2,且2sin 2α-sin αcos α-3cos 2α=0,则(2sin α-3cos α)(sin α+cos α)=0,即2sin α=3cos α.又sin 2α+cos 2α=1,∴cos α=213, ∴sin ⎝⎛⎭⎪⎫α+π4sin 2α+cos 2α+1=22(sin α+cos α)(sin α+cos α)2+(-sin 2α+cos 2α)=268. 答案:2684.若α、β是锐角,且sin α-sin β=-12,cos α-cos β=12,则tan(α-β)=________.解析:∵sin α-sin β=-12,cos α-cos β=12,两式平方相加得:2-2cos αcos β-2sin αsin β=1 2,即2-2cos(α-β)=12,∴cos(α-β)=34.∵α、β是锐角,且sin α-sin β=-12<0,∴0<α<β<π2.∴-π2<α-β<0.∴sin(α-β)=-1-cos2(α-β)=-7 4 .∴tan(α-β)=sin(α-β)cos(α-β)=-73.答案:-7 35.已知函数f(x)=1-2sin⎝⎛⎭⎪⎫2x-π4cos x.(1)求函数f(x)的定义域;(2)设α是第四象限角,且tan α=-43,求f(α)的值.解:(1)函数f (x )要有意义,需满足cos x ≠0,解得x ≠π2+kπ,k ∈Z ,即f (x )的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≠π2+kπ,k ∈Z . (2)∵f (x )=1-2sin ⎝⎛⎭⎪⎫2x -π4cos x=1-2⎝ ⎛⎭⎪⎫22sin 2x -22cos 2x cos x=1+cos 2x -sin 2xcos x=2cos 2x -2sin x cos x cos x=2(cos x -sin x ),由tan α=-43得sin α=-43cos α,又sin 2α+cos 2α=1,∴cos 2α=925.∵α是第四象限的角,∴cos α=35,sin α=-45,∴f (α)=2(cos α-sin α)=145. 6.(选做题)已知0<α<π2<β<π,tanα2=12,cos(β-α)=210. (1)求sin α的值;(2)求β的值.解:(1)∵tanα2=12, ∴tan α=2tanα21-tan 2 α2=2×121-⎝ ⎛⎭⎪⎫122=43,由⎩⎨⎧sin αcos α=43,sin 2α+cos 2α=1,解得sin α=45(sin α=-45舍去).(2)由(1)知cos α=1-sin 2α=1-⎝ ⎛⎭⎪⎫452=35,又0<α<π2<β<π,∴β-α∈(0,π),而cos(β-α)=210, ∴sin(β-α)=1-cos 2(β-α)=1-⎝ ⎛⎭⎪⎫2102=7210,于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin(β-α) =45×210+35×7210=22.精品文档实用文档 又β∈⎝ ⎛⎭⎪⎫π2,π,∴β=3π4.28397 6EED 滭35625 8B29 謩d 20529 5031 倱39921 9BF1 鯱j,39113 98C9 飉4634732 87AC 螬36796 8FBC 込uD。

2019届高考数学一轮复习第三章三角函数解三角形第4讲简单的三角恒等变换课件文新人教版

2019届高考数学一轮复习第三章三角函数解三角形第4讲简单的三角恒等变换课件文新人教版

2 2.
[答案] π;3-2 2
题型一 三角函数式的化简与求值(基础保分题,自主练透)
例1 (1)化简:( 1 α-tanα2)·(1+tan α·tanα2). tan2
[解] ( 1 α-tanα2)·(1+tan α·tanα2) tan2
=(csoinsα2α2-csoinsα2α2)·(1+csoins
上,点M,N在OB上,设∠BOP=θ,平行四边形MNPQ的面积为S.
(1)求S关于θ的函数关系式.
(2)求S的最大值及相应的θ角.
[解] (1)分别过P,Q作PD⊥OB于D.QE⊥OB于E. 则四边形QEDP为矩形
在Rt△PDO中,PD=sin θ,OD=cos θ 在Rt△OEQ中,
OE=
33QE=
4.观察角的关系,尽量异角化同角,合理拆分角. 5.观察三角函数的名称的关系,常用弦切互化,异名化同名. 6.观察结构特征,明确变形方向,遇到分式要通分,整式要因 式分解.
【针对补偿】
1.化简 2+cos 2-sin21的结果是( )
A.-cos 1
B.cos 1
C. 3cos 1
D.- 3cos 1
1.半角公式
[知识梳理]
2.公式的常见变形
(1)1+cos α= 2cos2α2 ;
1-cos α= 2sin2α2 ;
(2)1+sin α=sin
α2+cos
α22;
1-sin α=sin
α2-cos
α22.
(3)tan
α2=1+sincoαs
α=1-sincoαs
α .
3.函数f(α)=acos α+bsin α(a,b为常数),可以化为f(α)= a2+b2 sin(α+φ)或f(α)= a2+b2 cos(α-φ),其中φ可由a,b的值唯 一确定.

《南方新课堂》2022年高考数学(理)总复习练习:第三章三角函数与解三角形 Word版含答案

《南方新课堂》2022年高考数学(理)总复习练习:第三章三角函数与解三角形 Word版含答案

第三章 三角函数与解三角形第1讲 弧度制与任意角的三角函数1.tan 25π6的值为( )A .-33 B.33C. 3 D .-32.已知cos θ·tan θ<0,那么角θ是( ) A .第一或其次象限角 B .其次或第三象限角 C .第三或第四象限角 D .第一或第四象限角3.已知角α终边上一点P (-4a,3a )(a <0),则sin α的值为( ) A.35 B .-35 C.45 D .-454.若角α的终边经过点P (1,m ),且tan α=-2,则sin α=( )A.55 B .-55 C.2 55 D .-2 555.已知点P ⎝⎛⎭⎫sin 3π4,cos 3π4落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π46.(2022年新课标Ⅰ)若tan α>0,则( ) A .sin α>0 B .cos α>0 C .sin2α>0 D .cos2α>07.已知两角α,β之差为1°,其和为1弧度,则α,β的大小分别为( ) A.π90和π180B .28°和27°C .0.505和0.495 D.180+π360和180-π3608.(2021年广东肇庆二模)若角α的终边上有一点P (-4,a ),且sin α·cos α=1225,则a =( )A .3B .±3 C.163或3 D .-163或-39.(2021年广东惠州二模)集合⎩⎨⎧⎭⎬⎫α⎪⎪k π+π4≤α≤k π+π2,k ∈Z 中的角所表示的范围(阴影部分)是( )A B C D10.推断下列各式的符号:(1)tan125°·sin278°; (2)cos 7π12tan 23π12sin 11π12.11.(1)已知扇形的周长为10,面积为4,求扇形圆心角的弧度数;(2)已知扇形的周长为40,当它的半径和圆心角取何值时,才能使扇形的面积最大?最大面积是多少?第2讲 同角三角函数的基本关系式与诱导公式1.(2021年河北石家庄二模)tan(-1410°)的值为( )A.33 B .-33 C. 3 D .-32.(2021年湖北黄冈一模)sin2021°的值属于区间( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-1,-12C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 3.下列关系式中,正确的是( ) A .sin11°<cos10°<sin168° B .sin168°<sin11°<cos10° C .sin11°<sin168°<cos10° D .sin168°<cos10°<sin11°4.已知sin α-cos α=2,α∈(0,π),则sin2α=( )A .-1B .-22C.22D .1 5.若tan α=2,则2sin α-cos αsin α+2cos α的值为( )A .0 B.34C .1 D.546.(2021年四川资阳一模)下列不等式成立的是( )A .tan ⎝⎛⎭⎫9π8>tan ⎝⎛⎭⎫π6B .sin ⎝⎛⎭⎫-3π10>sin ⎝⎛⎭⎫-π5C .sin π18>sin π10D .cos ⎝⎛⎭⎫-7π4>cos ⎝⎛⎭⎫-23π5 7.已知α是第三象限角,sin α=-13,则tan α=________.8.(2021年四川)设sin2α=-sin α,α∈⎝⎛⎭⎫π2,π,则tan2α的值是________.9.已知tan α=2,求: (1)2sin α-3cos α4sin α-9cos α; (2)4sin 2α-3sin αcos α-5cos 2α.10.(2021年广东揭阳一模)已知函数f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x.(1)求函数f (x )的定义域;(2)设α是第四象限角,且tan α=-43,求f (α)的值.第3讲 三角函数的图象与性质1.(2022年陕西)函数f (x )=cos ⎝⎛⎭⎫2x -π6的最小正周期是( ) A.π2B .πC .2πD .4π 2.(2021年北京丰台二模)下列四个函数中,最小正周期为π,且图象关于直线x =π12对称的是( )A .y =sin ⎝⎛⎭⎫x 2+π3B .y =sin ⎝⎛⎭⎫x 2-π3C .y =sin ⎝⎛⎭⎫2x +π3D .y =sin ⎝⎛⎭⎫2x -π3 3.已知函数f (x )=sin ⎝⎛⎭⎫x -π2(x ∈R ),下列结论错误的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 C .函数f (x )的图象关于直线x =0对称 D .函数f (x )是奇函数4.已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图象的两条相邻的对称轴,则φ=( )A.π4B.π3C.π2D.3π45.函数y =|tan x |cos x ⎝⎛⎭⎫0≤x <3π2,且x ≠π2的图象是( )A BC D6.(2021年广东肇庆二模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6 [A >0,ω>0,x ∈(-∞,+∞)]的最小正周期为2,且f (0)=3,则函数f (3)=( )A .- 3 B. 3 C .-2 D .27.(2022年江苏)已知函数y =cos x 与函数y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ=________.8.(2022年大纲)函数y =cos2x +2sin x 的最大值为________.9.在下列函数中:①y =4sin ⎝⎛⎭⎫x -π3;②y =2sin ⎝⎛⎭⎫x -5π6;③y =2sin ⎝⎛⎭⎫x +π6;④y =4sin ⎝⎛⎭⎫x +π3;⑤y =sin ⎝⎛⎭⎫x -73π. 关于直线x =5π6对称的函数是________(填序号).10.(2022年北京)函数f (x )=3sin ⎝⎛⎭⎫2x +π6的部分图象如图X3­3­1. (1)写出f (x )的最小正周期及图中x 0,y 0的值;(2)求f (x )在区间⎣⎡⎦⎤-π2,-π12上的最大值和最小值.图X3­3­111.是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎡⎦⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.第4讲 函数y =A sin(ωx +φ)的图象1.(2022年四川)为了得到函数y =sin(x +1)的图象,只需把函数y =sin x 的图象上的全部点( ) A .向左平行移动1个单位长度 B .向右平行移动1个单位长度 C .向左平行移动π个单位长度 D .向右平行移动π个单位长度2.(2021年广东珠海一模)函数y =sin ⎝⎛⎭⎫2x +π4的图象可由函数y =sin2x 的图象( ) A .向左平移π8个单位长度而得到B .向右平移π8个单位长度而得到C .向左平移π4个单位长度而得到D .向右平移π4个单位长度而得到3.函数y =sin(ωx +φ)(x ∈R ,ω>0,0≤φ<2π)的部分图象如图X3­4­1,则( )图X3­4­1A .ω=π2,φ=π4B .ω=π3,φ=π6C .ω=π4,φ=π4D .ω=π4,φ=5π44.(2021年广东东莞一模)已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3 (ω>0)的图象的两相邻对称轴之间的距离为π2,要得到y =f (x )的图象,只须把函数y =sin ωx 的图象( )A .向右平移π3个单位B .向右平移π6个单位C .向左平移π3个单位D .向左平移π6个单位5.将函数y =sin x 的图象向左平移φ(0≤φ<2π)个单位后,得到函数y =sin ⎝⎛⎭⎫x -π6的图象,则φ=( ) A.π6 B.5π6 C.7π6 D.11π66.(2021年广东肇庆一模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6[A >0,ω>0,x ∈(-∞,+∞)]的最小正周期为π,且f (0)=3,则函数y =f (x )在⎣⎡⎦⎤-π4,π4上的最小值是( ) A .- 6 B .-2 3 C .-3 D .2 37.(2021年江西)设f (x )=3sin3x +cos3x ,若对任意实数x 都有|f (x )|≤a ,则实数a 的取值范围是________.8.(2021年北京西城一模)已知函数f (x )=sin ⎝⎛⎭⎫2x +π6,其中x ∈⎣⎡⎦⎤-π6,a .当a =π3时,f (x )的值域是__________;若f (x )的值域是⎣⎡⎦⎤-12,1,则a 的取值范围是__________.9.(2021年广东广州一模)已知函数f (x )=A sin ⎝⎛⎭⎫ωx +π6 (A >0,ω>0)的图象在y 轴右侧的第一个最高点和第一个最低点的坐标分别为(x 0,2)和⎝⎛⎭⎫x 0+π2,-2. (1)求函数f (x )的解析式;(2)求sin ⎝⎛⎭⎫x 0+π4的值.10.(2021年安徽)设函数f (x )=sin x +sin ⎝⎛⎭⎫x +π3. (1)求f (x )的最小值,并求使f (x )取得最小值的x 的集合;(2)不画图,说明函数y =f (x )的图象可由y =sin x 的图象经过怎样的变化得到.第5讲 两角和与差及二倍角的三角函数公式1.(河南豫南九校2021届质检)已知sin ⎝⎛⎭⎫π4-x =35,则sin2x =( ) A.325 B.725C.925D.18252.(2021年新课标Ⅱ)已知sin2α=23,则cos 2⎝⎛⎭⎫α+π4=( ) A.16 B.13 C.12 D.233.设tan α,tan β是方程x 2-3x +2=0的两个根,则tan(α+β)的值为( ) A .-3 B .-1 C .1 D .34.若3sin α+cos α=0,则1cos 2α+sin2α的值为( )A.103B.53C.23D .-2 5.(2021年广东广州一模)已知函数f (x )=2sin2x ,为了得到函数g (x )=sin2x +cos2x 的图象,只要将函数f (x )=2sin2x 的图象( )A .向右平移π4个单位长度B .向左平移π4个单位长度C .向右平移π8个单位长度D .向左平移π8个单位长度6.若cos x cos y +sin x sin y =13,则cos(2x -2y )=________.7.(2022年新课标Ⅱ)函数f (x )=sin(x +φ)-2sin φcos x 的最大值为________.8.(2022年山东)函数y =32sin2x +cos 2x 的最小正周期为________.9.(2022年江苏)已知α∈⎝⎛⎭⎫π2,π,sin α=55. (1)求sin ⎝⎛⎭⎫π4+α的值;(2)求cos ⎝⎛⎭⎫5π6-2α的值.10.(2022年福建)已知函数f (x )=2cos x (sin x +cos x ).(1)求f ⎝⎛⎭⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.第6讲 简洁的三角恒等变换1.(2021年江西)若sin α2=33,则cos α=( )A .-23B .-13C.13D.232.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos2α=14,则tan α=( ) A.22 B.33 C. 2 D.33.(2022年浙江)为了得到函数y =sin3x +cos3x 的图象,可以将函数y =2cos3x 的图象( )A .向右平移π12个单位长度B .向右平移π4个单位长度C .向左平移π12个单位长度D .向左平移π4个单位长度4.已知sin α-cos α=2,α∈(0,π),则tan α=( )A .-1B .-22C.22D .1 5.sin47°-sin17°cos30°cos17°=( )A .-32B .-12C.12D.326.(2021年湖北)将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( )A.π12B.π6C.π3D.5π67.函数y =2sin x -cos x 的最大值为________.8.(2021年江西)函数y =sin2x +2 3sin 2x 的最小正周期T 为________.9.已知sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16,α∈⎝⎛⎭⎫π2,π,求sin4α的值.第7讲 正弦定理和余弦定理1.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的外形是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .不能确定2.已知△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,a =2,b =3,则sin Asin (A +C )=( )A.23B.32C .-23D .-323.(2021年广东深圳一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,a =3,b +c =3,则△ABC 的面积为( )A.34B.32 C.3 D .24.(广西百所示范性中学2021届高三第一次大联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2a -c )cos B =b cos C ,则B =( )A.π4B.π3C.π6D.π25.(2021年湖南)在锐角三角形ABC 中,角A ,B 所对边的长分别为a ,b .若2a sin B =3b ,则A =( ) A.π3 B.π4 C.π6 D.π126.(2021年新课标Ⅰ)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c,23cos2A +cos2A =0,a =7,c =6,则b =( )A .10B .9C .8D .57.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a =2,B =π6,c =2 3,则b =________.8.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =1,b =2,cos C =14,则sin B =________.9.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若cos B cos C -sin B sin C =12.(1)求角A ;(2)若a =2 3,b +c =4,求△ABC 的面积.10.(2022年安徽)设△ABC 的内角A ,B ,C 所对边的长分别是a ,b ,c ,且b =3,c =1,△ABC 的面积为2,求cos A 与a 的值.第8讲 解三角形应用举例1.某人向正东方向走x km 后,顺时针转150°,然后朝新方向走3 km ,结果他离动身点恰好 3 km ,那么x =( )A. 3 B .2 3 C .2 3或 3 D .32.两座灯塔A 和B 与海洋观看站C 的距离都等于a km ,灯塔A 在观看站C 的北偏东20°的方向,灯塔B 在观看站C 的南偏东40°的方向,则灯塔A 与灯塔B 的距离为( )A .a km B.2a km C .2a km D.3a km3.如图X3­8­1,一艘海轮从A 处动身,以40海里/时的速度沿东偏南50°方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观看灯塔,其方向是东偏南20°,在B 处观看灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2海里B .10 3海里C .20 2海里D .20 3海里图X3­8­1 图X3­8­24.有一长为1的斜坡,它的倾斜角为20°,现高不变,将倾斜角改为10°,则此时的斜坡长为( ) A .1 B .2sin10°C .2cos10°D .cos20°5.(2021年广东茂名二模)如图X3­8­2,设A ,B 两点在河的两岸,一测量者在A 的同侧河岸边选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A ,B 两点的距离为( )A .50 3 mB .50 2 mC .25 2 m D.25 22m6.(2022年广东)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,则“a ≤b ”是“sin A ≤sin B ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件7.(2021年广东肇庆二模)某日,某渔政船在东海某海疆巡航护渔,已知该船正以30(3-1)海里/时的速度向正北方向航行,该船在点A 处发觉北偏东30°方向的海面上有一个小岛,连续航行20分钟到达点B ,此时发觉该小岛在北偏东45°方向上.若该船向北连续航行,船与小岛的最短距离是( )A .6海里B .8海里C .10海里D .12海里8.如图X3­8­3,一缉私艇发觉在方位角(从正北方向顺时针转到目标方向线的水平角)45°方向、距离15海里的海面上有一走私船正以25海里/时的速度沿方位角为105°的方向逃跑.若缉私艇的速度为35海里/时,缉私艇沿方位角为45°+α的方向追去,若要在最短时间内追上该走私船.(1)求α的正弦值;(2)求缉私艇追上走私船所需的时间.图X3­8­39.(2022年北京)如图X3­8­4,在△ABC 中,B =π3,AB =8,点D 在边BC 上,且CD =2,cos ∠ADC =17.(1)求sin ∠BAD ; (2)求BD ,AC 的长.图X3­8­4第三章 三角函数与解三角形第1讲 弧度制与任意角的三角函数1.B 2.C3.B 解析:∵a <0,∴r =(-4a )2+(3a )2=-5a ,∴sin α=3a r =-35.故选B.4.D 解析:由三角函数的定义,得tan α=m =-2,∴r =5,sin α=-25=-2 55.故选D.5.D 解析:由sin 3π4>0,cos 3π4<0知,角θ是第四象限的角.∵tan θ=cos3π4sin 3π4=-1,θ∈[0,2π),∴θ=7π4.6.C 解析:tan α=sin αcos α>0,而sin2α=2sin αcos α>0.故选C.7.D 解析:由已知,得⎩⎪⎨⎪⎧α+β=1,α-β=π180,解得⎩⎨⎧α=180+π360,β=180-π360.8.D 解析:由于角α的终边上有一点P (-4,a ),依据三角函数的定义知,sin α=a16+a 2,cos α=-416+a 2,所以sin α·cos α=-4a 16+a 2=1225,即3a 2+25a +48=0.解得a =-3或a =-163.故选D. 9.C 解析:分k =2m ,k =2m +1(m ∈Z )两种状况争辩可得结果. 10.解:(1)∵125°,278°角分别为其次、四象限角, ∴tan125°<0,sin278°<0. 因此tan125°·sin278°>0.(2)∵π2<7π12<π,3π2<23π12<2π,π2<11π12<π,∴cos 7π12<0,tan 23π12<0,sin 11π12>0.因此cos 7π12tan 23π12sin 11π12>0.11.解:设扇形半径为R ,圆心角为θ,所对的弧长为l .(1)依题意,得⎩⎪⎨⎪⎧12θR 2=4,θR +2R =10,∴2θ2-17θ+8=0,解得θ=8或12.∵8>2π,舍去,∴θ=12rad.(2)扇形的周长为40,即θR +2R =40, S =12lR =12θR 2=14θR ·2R ≤14⎝⎛⎭⎫θR +2R 22=100. 当且仅当θR =2R ,即R =10,θ=2时,扇形面积取得最大值,最大值为100.第2讲 同角三角函数的基本关系式与诱导公式1.A 解析:tan(-1410°)=tan(-180°×8+30°)=tan30°=33. 2.B 解析:sin2021°=sin(5×360°+213°)=sin213°=sin(180°+33°)=-sin33°<-12.故选B.3.C 解析:∵sin168°=sin(180°-12°)=sin12°,cos10°=cos(90°-80°)=sin80°.由于正弦函数y =sin x 在区间[0°,90°]上为递增函数,因此sin11°<sin12°<sin80°,即sin11°<sin168°<cos10°.4.A 解析:∵sin α-cos α=2,∴(sin α-cos α)2=2.∴sin2α=-1.故选A.5.B 解析:分子、分母同时除以cos α,得2tan α-1tan α+2=4-12+2=34.6.D 解析:cos ⎝⎛⎭⎫-7π4=cos π4>0,cos ⎝⎛⎭⎫-23π5=cos 3π5<0.故选D. 7.24 解析:sin α=-13,cos α=-2 23,tan α=12 2=24. 8.3 解析:sin2α=2sin αcos α=-sin α,cos α=-12,α∈⎝⎛⎭⎫π2,π,则α=2π3,tan2α=tan 4π3=tan π3= 3. 9.解:(1)2sin α-3cos α4sin α-9cos α=2tan α-34tan α-9=2×2-34×2-9=-1.(2)4sin 2α-3sin αcos α-5cos 2α=4sin 2α-3sin αcos α-5cos 2αsin 2α+cos 2α=4tan 2α-3tan α-5tan 2α+1=4×4-3×2-54+1=1.10.解:(1)函数f (x )要有意义,需满足cos x ≠0,解得x ≠π2+k π,k ∈Z ,即函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≠π2+k π,k ∈Z .(2)∵f (x )=1-2sin ⎝⎛⎭⎫2x -π4cos x =1-2⎝⎛⎭⎫22sin2x -22cos2x cos x =1+cos2x -sin2xcos x=2cos 2x -2sin x cos x cos x=2(cos x -sin x ),由tan α=-43,得sin α=-43cos α.又sin 2α+cos 2α=1,∴cos 2α=925.∵α是第四象限的角,∴cos α=35,sin α=-45.∴f (α)=2(cos α-sin α)=145.第3讲 三角函数的图象与性质1.B 解析:由周期公式T =2πω,又ω=2,所以函数f (x )=cos ⎝⎛⎭⎫2x -π6的周期T =2π2=π.故选B. 2.C 解析:将x =π12代入选项A ,B ,C ,D 中,只有选项C 取得最大值y =sin ⎝⎛⎭⎫2×π12+π3=sin π2=1,所以关于直线x =π12对称,且T =2π2=π.3.D 解析:由函数的f (x )=sin ⎝⎛⎭⎫x -π2=-cos x (x ∈R ),可得函数f (x )是偶函数.故选D. 4.A 解析:由题设知,T =2×⎝⎛⎭⎫5π4-π4=2π,∴ω=2πT =1.∴π4+φ=k π+π2(k ∈Z ).∴φ=k π+π4(k ∈Z ).∵0<φ<π,∴φ=π4.故选A.5.C 解析:方法一:y =|sin x |·cos x|cos x |,分类争辩.方法二:y =|tan x |cos x 的符号与cos x 相同.故选C.6.A 解析:由f (0)=A 2=3,得A =2 3,ω=2π2=π⇒f (x )=2 3sin ⎝⎛⎭⎫πx +π6⇒f (3)=2 3sin ⎝⎛⎭⎫3π+π6=- 3.7.π6 解析:依题意,得cos π3=sin ⎝⎛⎭⎫2×π3+φ=12,又φ∈[0,π),则2π3+φ∈⎣⎡⎦⎤2π3,5π3.∴2π3+φ=5π6,φ=π6. 8.32 解析:y =cos2x +2sin x =-2sin 2x +2sin x +1=-2⎝⎛⎭⎫sin x -122+32,所以当sin x =12时,原函数取得最大值为32.9.①⑤ 解析:∵y =4sin ⎝⎛⎭⎫5π6-π3=4sin π2=4,y 取最大值,∴x =5π6为它的一个对称轴.又∵y =sin ⎝⎛⎭⎫5π6-7π3=-sin 3π2=1,∴x =5π6是对称轴.10.解:(1)f (x )的最小正周期为T =2π2=π.由图象知,y 0=f (x )max =3,2x 0+π6=π2+2k π,解得x 0=π6+k π,k ∈Z ,取k =1,x 0=76π.(2)由于x ∈⎣⎡⎦⎤-π2,-π12,所以2x +π6∈⎣⎡⎦⎤-5π6,0, 于是当2x +π6=0,即x =-π12时,f (x )取得最大值0;当2x +π6=-π2,即x =-π3时,f (x )取得最小值-3.11.解:y =-⎝⎛⎭⎫cos x -12a 2+a 24+58a -12,当0≤x ≤π2时,0≤cos x ≤1.令t =cos x ,则0≤t ≤1.∴y =-⎝⎛⎭⎫t -12a 2+a 24+58a -12,0≤t ≤1.若0≤a 2≤1,即0≤a ≤2,则当t =a 2,即cos x =a2时,y max =a 24+58a -12=1,解得a =32或a =-4(舍去).若a2<0,即a <0,则当t =0,即cos x =0时, y max =58a -12=1,解得a =125(舍去).若a2>1,即a >2,则当t =1,即cos x =1时, y max =a +58a -32=1,解得a =2013(舍去).综上所述,存在a =32符合题意.第4讲 函数y =A sin(ωx +φ)的图象1.A 2.A3.C 解析:∵T 4=3-1=2,∴T =8,∴ω=2πT =π4.令π4×1+φ=π2,得φ=π4,∴故选C.4.D 解析:两相邻对称轴之间的距离为T 2=π2,T =π,ω=2,要得到f (x )=sin ⎝⎛⎭⎫2x +π3的图象,只需把f (x )=sin2x 的图象向左平移π6个单位.5.D 解析:由函数y =sin x 向左平移φ个单位得到y =sin(x +φ)的图象.由条件知,函数y =sin(x +φ)可化为函数y =sin ⎝⎛⎭⎫x -π6,比较个各选项,只有y =sin ⎝⎛⎭⎫x +11π6=sin ⎝⎛⎭⎫x -π6. 6.C 解析:A =2 3,ω=2⇒f (x )=2 3sin ⎝⎛⎭⎫2x +π6,由-π4≤x ≤π4⇒-π3≤2x +π6≤2π3,得[f (x )]min =2 3sin ⎝⎛⎭⎫-π3=-3. 7.[2,+∞) 解析:f (x )=3sin3x +cos3x =2sin ⎝⎛⎭⎫3x +π6,|f (x )|max =2,∴a ≥2. 8.⎣⎡⎦⎤-12,1 ⎣⎡⎦⎤π6,π2 解析:当a =π3时,x ∈⎣⎡⎦⎤-π6,π3,2x +π6∈⎣⎡⎦⎤-π6,5π6,f (x )的值域是⎣⎡⎦⎤-12,1;若f (x )的值域是⎣⎡⎦⎤-12,1,π2≤2a +π6≤7π6,π6≤a ≤π2. 9.解:(1)由题意,可得A =2,T 2=⎝⎛⎭⎫x 0+π2-x 0=π2.∴T =π. 由2πω=π,得ω=2. ∴f (x )=2sin ⎝⎛⎭⎫2x +π6. (2)∵ 点(x 0,2)是函数f (x )=2sin ⎝⎛⎭⎫2x +π6在y 轴右侧的第一个最高点, ∴ 2x 0+π6=π2.∴ x 0=π6.∴sin ⎝⎛⎭⎫x 0+π4=sin ⎝⎛⎭⎫π6+π4 =sin π6cos π4+cos π6sin π4=12×22+32×22 =2+64.10.解:(1)f (x )=sin x +sin x cos π3+cos x sin π3=sin x +12sin x +32cos x=32sin x +32cos x =⎝⎛⎭⎫322+⎝⎛⎭⎫322sin ⎝⎛⎭⎫x +π6 =3sin ⎝⎛⎭⎫x +π6. 当sin ⎝⎛⎭⎫x +π6=-1时,f (x )min =-3,此时x +π6=3π2+2k π,∴x =4π3+2k π(k ∈Z ).∴f (x )的最小值为-3,此时x 的集合为 ⎩⎨⎧⎭⎬⎫x ⎪⎪x =4π3+2k π,k ∈Z .(2)将函数y =sin x 的图象向左平移π6个单位,得y =sin ⎝⎛⎭⎫x +π6,然后将函数y =sin ⎝⎛⎭⎫x +π6的图象上的点的纵坐标变为原来的3倍,得f (x )=3sin ⎝⎛⎭⎫x +π6.第5讲 两角和与差及二倍角的三角函数公式1.B 解析:由sin ⎝⎛⎭⎫π4-x =sin π4cos x -cos π4sin x =22×(cos x -sin x )=35,两边平方,得12(1-2cos x ·sin x )=925,1-sin2x =1825,sin2x =725.2.A 解析:∵sin2α=23,∴cos 2⎝⎛⎭⎫α+π4=12×⎣⎡⎦⎤1+cos ⎝⎛⎭⎫2α+π2=12(1-sin2α)=12×⎝⎛⎭⎫1-23=16. 3.A 解析:∵tan α,tan β是方程x 2-3x +2=0的两个根,∴tan α+tan β=3,tan αtan β=2,∴tan(α+β)=tan α+tan β1-tan αtan β=31-2=-3.故选A. 4.A5.D 解析:g (x )=sin2x +cos2x =2sin ⎝⎛⎭⎫2x +π4,将函数f (x )=2sin2x 的图象向左平移π8个单位长度即可.6.-79 解析:∵cos(x -y )=cos x cos y +sin x sin y =13,∴cos(2x -2y )=2cos 2(x -y )-1=29-1=-79.7.1 解析:f (x )=sin(x +φ)-2sin φcos x =sin x cos φ+cos x sin φ-2cos x sin φ=sin x cos φ-cos x sin φ=sin(x -φ),最大值为1.8.π 解析:y =32sin2x +cos 2x =32sin2x +1+cos2x 2=sin ⎝⎛⎭⎫2x +π6+12,其最小正周期为T =2π2=π. 9.解:(1)由于α∈⎝⎛⎭⎫π2,π,sin α=55, 所以cos α=-1-sin 2α=-2 55.故sin ⎝⎛⎭⎫π4+α=sin π4cos α+cos π4sin α =22×⎝⎛⎭⎫-2 55+22×55=-1010. (2)由(1),得sin2α=2sin αcos α=-45,cos2α=2cos 2α-1=35.所以cos ⎝⎛⎭⎫5π6-2α=cos 5π6cos2α+sin 5π6sin2α =-32×35+12×⎝⎛⎭⎫-45=-3 3+410.10.解:f (x )=2cos x (sin x +cos x )=2cos x sin x +2cos 2x=sin2x +cos2x +1=2sin ⎝⎛⎭⎫2x +π4+1. (1)f ⎝⎛⎭⎫5π4=2cos 5π4⎝⎛⎭⎫sin 5π4+cos 5π4 =2×⎝⎛⎭⎫-22⎝⎛⎭⎫-22-22=2.(2)函数f (x )的最小正周期T =2π2=π.若f (x )单调递增,则2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z .所以函数f (x )的单调递增区间为⎣⎡⎦⎤k π-3π8,k π+π8,k ∈Z . 第6讲 简洁的三角恒等变换1.C2.D 解析:sin 2α+cos2α=sin 2α+cos 2α-sin 2α=cos 2α=14.∵α∈⎝⎛⎭⎫0,π2,∴cos α=12,sin α=32.∴tan α= 3. 3.A 解析:由于y =sin3x +cos3x =2cos ⎝⎛⎭⎫3x -π4,所以将函数y =2cos3x 的图象向右平移π12个单位长度,得函数y =2cos3⎝⎛⎭⎫x -π12=2cos ⎝⎛⎭⎫3x -π4.故选A. 4.A 解析:方法一:∵sin α-cos α=2,∴2sin ⎝⎛⎭⎫α-π4= 2.∴sin ⎝⎛⎭⎫α-π4=1.∵α∈(0,π),∴α=3π4.∴tan α=-1.方法二:∵sin α-cos α=2,∴(sin α-cos α)2=2.∴sin2α=-1.∵α∈(0,π),∴2α∈(0,2π),∴2α=3π2.∴α=3π4.∴tan α=-1.故选A.5.C 解析:sin47°-sin17°cos30°cos17°=sin (30°+17°)-sin17°cos30°cos17°=sin30°cos17°+cos30°sin17°-sin17°cos30°cos17°=sin30°cos17°cos17°=12.6.B 解析:y =3cos x +sin x =2cos ⎝⎛⎭⎫x -π6,向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,m 的最小值是π6.7.5 解析:y =2sin x -cos x =5sin(x +φ),其中tan φ=-12,∴最大值为 5.8.π 解析:y =sin2x +2 3sin 2x =sin2x +2 3×1-cos2x 2=sin2x -3cos2x +3=2⎝⎛⎭⎫12sin2x -32cos2x +3=2sin ⎝⎛⎭⎫2x -π3+3,∴T =2π2=π. 9.解:∵sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=16, ∴2sin ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4+α=13. ∴sin ⎣⎡⎦⎤2⎝⎛⎭⎫π4+α=13.∴cos2α=13. 又∵α∈⎝⎛⎭⎫π2,π,∴2α∈(π,2π).∴sin2α=-1-cos 22α=-1-⎝⎛⎭⎫132=-2 23.∴sin4α=2sin2αcos2α=2×⎝⎛⎭⎫-2 23×13=-4 29.第7讲 正弦定理和余弦定理1.A 解析:由正弦定理,得a 2+b 2<c 2.由余弦定理,得cos C =a 2+b 2-c 22ab<0,所以C 是钝角,故选A.2.B 解析:sin A sin (A +C )=sin A sin B =a b =23.故选A.3.B 4.B5.A 解析:由2a sin B =3b ,得2sin A sin B =3sin B ,sin A =32,A =π3或2π3(舍去). 6.D 解析:23cos 2A +cos2A =25cos 2A -1=0,cos A =15或cos A =-15(舍去),a 2=b 2+c 2-2bc cos A,49=b 2+36-12b ×15,5b 2-12b -65=0,解得b =5或b =-135(舍去).7.2 解析:由余弦定理,得b 2=a 2+c 2-2ac cos B =4,∴b =2. 8.154 解析:由余弦定理,得c 2=a 2+b 2-2ab cos C =1+4-2×1×2×14=4,则c =2,即B =C ,故sin B =1-⎝⎛⎭⎫142=154. 9.解:(1)∵cos B cos C -sin B sin C =12,即cos(B +C )=12,∴B +C =60°.从而A =120°.(2)由余弦定理,得b 2+c 2+bc =a 2=12,① 又b +c =4,∴b 2+c 2+2bc =16.② 由①②,得bc =4,∴S △ABC =12bc sin A =12×4×32= 3.10.解:由三角形的面积公式,得 12bc sin A =12×3×1×sin A = 2.∴sin A =2 23. ∵sin 2A +cos 2A =1,∴cos A =±1-sin 2A =±13.当cos A =13时,a 2=b 2+c 2-2bc cos A =9+1-2×3×1×13=8,∴a =2 2;当cos A =-13时,a 2=b 2+c 2-2bc cos A =9+1+2×3×1×13=12,∴a =2 3.第8讲 解三角形应用举例1.C 解析:如图D63,在△ABC 中,AC =3,BC =3,∠ABC =30°. 由余弦定理,得AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC , ∴3=x 2+9-6x ·cos30°,解得x =3或2 3.图D63 图D642.D 解析:如图D64,依题意,得∠ACB =120°.由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos120°=a 2+a 2-2a 2·⎝⎛⎭⎫-12=3a 2,∴AB =3a .故选D. 3.A 解析:在△ABC 中,∠BAC =50°-20°=30°,∠ABC =40°+65°=105°,AB =40×0.5=20(海里),则∠ACB =45°.由正弦定理,得BC sin30°=20sin45°,解得BC =10 2.故选A.4.C 解析:如图D65,BD =1,∠DBC =20°,∠DAC =10°.在△ABD 中,由正弦定理,得1sin10°=ADsin160°.解得AD =2cos10°.图D65 图D665.B 解析:由于∠ACB =45°,∠CAB =105°,所以∠ABC =30°.所以依据正弦定理可知,ACsin ∠ABC=AB sin ∠ACB,即50sin30°=ABsin45°,解得AB =50 2 m .故选B.6.A 解析:由正弦定理,得a sin A =bsin B=2R (其中R 为△ABC 外接圆的半径),则a =2R sin A ,b =2R sin B ,a ≤b ⇔2R sin A ≤2R sin B ⇔sin A ≤sin B ,因此“a ≤b ”是“sin A ≤sin B ”的充要条件.故选A.7.C 解析:如图D66,∠DAC =30°,∠DBC =45°,AB =30(3-1)×13=10×(3-1),设CD =h ,则DA =3h ,DB =h .由AB =DA -DB =(3-1)h =10(3-1),得h =10. 8.解:(1)设缉私艇追上走私船所需的时间为t 小时,则有|BC |=25t ,|AB |=35t ,且∠CAB =α,∠ACB =45°+(180°-105°)=120°,依据正弦定理,得|BC |sin α=|AB |sin120°,即25t sin α=35t 32.∴sin α=5 314.(2)在△ABC 中,由余弦定理,得|AB |2=|AC |2+|BC |2-2|AC ||BC |cos ∠ACB , 即(35t )2=152+(25t )2-2×15×25t ×cos120°,即8t 2-5t -3=0.解得t =1或t =-38(舍去).答:缉私艇追上走私船需要1小时.9.解:(1)在△ADC 中,∵cos ∠ADC =17,∴sin ∠ADC =4 37.∴sin ∠BAD =sin(∠ADC -∠ABD ) =sin ∠ADC cos B -cos ∠ADC sin B =4 37×12-17×32=3 314.(2)在△ABD 中,由正弦定理,得BD =AB ×sin ∠BAD sin ∠ADB =8×3 3144 37=3. 在△ABC 中,由余弦定理,得 AC 2=AB 2+BC 2-2AB ×BC ×cos B =82+52-2×8×5×12=49, ∴AC =7.。

2023版高考数学一轮总复习第三章三角函数解三角形第四讲简单的三角恒等变换课件

2023版高考数学一轮总复习第三章三角函数解三角形第四讲简单的三角恒等变换课件
答案:21cos 2x
2.当
π
<α<2π
1+sin 时,化简:
α+cos αsin α2-cos 2+2cos α
α 2
=________.
解析:原式=2cos2α2+2sin
α 2cos
α2sin
α2-cos
α 2=
4cos2α2
2cos
α2cos
α2+sin α2sin
2cos
α 2
α2-cos
β)=-1,∴sin(α+β)=-21.
答案:-12
3.(考向 3)若 sin 2α= 55,sin(β-α)= 1100,且 α∈π4,π,
β∈π,32π,则 α+β 的值是(
)


A. 4
B. 4
C.54π或74π
D.54π或94π
解析:因为 α∈π4,π,且 0<sin 2α= 55<12,所以 2α∈56π,π,所以 α∈51π2,π2,cos 2α=- 1-sin22α= -2 5 5.因为 β∈π,32π,所以 β-α∈π2,1132π,又 sin(β- α)= 1100>0,所以 β-α∈π2,π,所以 cos(β-α)= - 1-sin2β-α=-31010.所以 cos(α+β)=cos [2α+(β-
∵tan β=-17<0, ∴π2<β<π,-π<2α-β<0, ∴2α-β=-34π. 答案:-34π
【题后反思】三角函数式求值的三种题型 (1)给角求值:该类问题中给出的角一般都不是特殊 角,需要通过三角恒等变换将其变为特殊角,或者能够正 负相消,或者能够约分相消,最后得到具体的值. (2)给值求值:一般是给出某些角的三角函数值,求另 外一些角的三角函数值,解题的关键在于“变角”,使相 关角相同或具有某种关系.

高考数学复习第三章三角函数解三角形第4讲简单的三角恒等变换文市赛课公开课一等奖省名师优质课获奖PPT

高考数学复习第三章三角函数解三角形第4讲简单的三角恒等变换文市赛课公开课一等奖省名师优质课获奖PPT
(2)当 x∈0,π2时,求函数 f(x)的值域.
29/35
[解]
(1)f(x)=2sin
x
3 2 sin
x+12cos
x
= 3×1-c2os 2x+12sin 2x
=sin2x-π3+ 23.
所以函数 f(x)的最小正周期为 T=π.
由-π2+2kπ≤2x-π3≤π2+2kπ,k∈Z,
解得-1π2+kπ≤x≤51π2+kπ,k∈Z,
3sin(π-C)= 3sin C,又 cos(A+B)=cos(π-C)=-cos C,故
3sin C=1-cos C,即 3sin C+cos C=1,即 2sinC+π6=1, 即 sinC+π6=12,由于π6<C+π6<76π,故只有 C+π6=56π,即 C
=23π.
第三章 三角函数、解三角形
第4讲 简单三角恒等变换
1/35
常见的三角恒等变换有三种形式:化简,求值,证明. (1)化简:要求是项数尽量少,次数尽量低,能求值的则求值, 常见的方法有切化弦、利用诱导公式、同角三角函数关系式 及和、差、倍角公式进行转化求解. (2)求值:分为条件求值与非条件求值,对条件求值问题要充 分利用条件进行转化求解,注意尽量用已知角表示未知角.
所以 fα2-π8
=2sin α=
23,即 sin α=
3 4.
又 α 是第二象限的角,
所以 cos α=- 1-sin2α=- 1- 432=- 413,
所以 sin 2α=2sin αcos α=2× 43×-
413=-
39 8.
17/35
2.求值:[2sin 50°+sin 10°(1+ 3tan 10°)]· 2sin280°. [解] 原式=

高考数学一轮复习第3章三角函数解三角形第4讲简单的三角恒等变形知能训练轻松闯关文北师大版

高考数学一轮复习第3章三角函数解三角形第4讲简单的三角恒等变形知能训练轻松闯关文北师大版

【2019最新】精选高考数学一轮复习第3章三角函数解三角形第4讲简单的三角恒等变形知能训练轻松闯关文北师大版1.若tan θ=,则=( )A. B.-3C. D.-33解析:选A.==tan θ=.2.(2016·赣州联考)化简=( )A.1 B.3C. D.2解析:选C.原式=cos220°-sin220°cos 25°(cos 20°-sin 20°)2=(cos 20°+sin 20°)(cos 20°-sin 20°)cos 25°(cos 20°-sin 20°)=cos 20°+sin 20°cos(45°-20°)==.3.已知α、β均为锐角,且tan β=,则tan(α+β)=( )A. B.12C. D.1解析:选D.因为tan β=,所以tan β==tan.又α、β均为锐角,所以β=-α,即α+β=,所以tan(α+β)=tan =1. 4.已知sin α=,sin(α-β)=-,α,β均为锐角,则角β等于( )A. B.π3 C.D.π6解析:选C.因为α,β均为锐角, 所以-<α-β<.又sin(α-β)=-,所以cos(α-β)=. 又sin α=,所以cos α=,所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=×-×=. 所以β=.5.若0<α<,-<β<0,cos =,sin =,则cos =( ) A. B .-33 C.D .-69解析:选C.由已知得<+α<,<-<, 所以sin =, cos =,cos =cos ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫π4+α-⎝ ⎛⎭⎪⎫π4-β2 =coscos +sinsin ⎝ ⎛⎭⎪⎫π4-β2 =.6.(2016·温州八校联考)若sin α+cos α=,0<α<π,则sin 2α+cos 2α的值为( ) A.B.-8+179C. D.-8±179解析:选C.因为sin α+cos α= <1且0<α<π,所以α为钝角.又由sin α+cos α=得1+2sin αcos α=,所以sin 2α=2sin αcos α=-1+=-,sin α-cos α=(sin α+cos α)2-2sin 2α===,所以cos 2α=cos2α-sin2α=-(sin α+cos α)·(sin α-cos α)=-×=-,从而sin 2α+cos 2α=+=.7.设α是第二象限角,tan α=-,且sin <cos ,则cos =________.解析:因为α是第二象限角,所以可能在第一或第三象限.又sin <cos ,所以为第三象限角,所以cos <0.因为tan α=-,所以cos α=-,所以cos =-=-.答案:-558.已知cos4α-sin4α=,且α∈,则cos=________.解析:因为cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α=,又α∈,所以2α∈(0,π),所以sin 2α==,所以cos=cos 2α-sin 2α=×-×=.答案:2-1569. 已知锐角α,β满足:sin β-cos β=,tan α+tan β+tan α·tan β=,则cos α=________.解析:由tan α+tan β+tan αtan β=,得tan(α+β)=,α,β∈,α+β=,所以sin(α+β)=,cos(α+β)=.对sin β-cos β=平方得1-2sin βcos β=,2sin βcos β=,sin β+cos β===.联立sin β-cos β=,得sin β=,cos β=,故cos α=cos[(α+β)-β]=cos(α+β)cos β+sin(α+β)sin β=×+×=.答案:3+431010.(2016·济南模拟)设α∈,β∈,且5sin α+5cos α=8,sin β+cos β=2,则cos (α+β)的值为________.解析:由5sin α+5cos α=8,得sin=,因为α∈,α+∈,所以cos =. 又β∈,β+∈, 由已知得 sin =.所以cos =-.所以cos(α+β)=sin ⎣⎢⎡⎦⎥⎤π2+(α+β)=sin ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫α+π6+⎝ ⎛⎭⎪⎫β+π3 =sincos +cos·sin ⎝⎛⎭⎪⎫β+π3 =-. 答案:-21011.已知tan α=-,cos β=,α∈,β∈,求tan(α+β)的值,并求出α+β的值. 解:由cos β=,β∈, 得sin β=,tan β=2. 所以tan(α+β)=tan α+tan β1-tan αtan β==1.因为α∈,β∈,所以<α+β<,所以α+β=. 1.4cos 50°-tan 40°=( ) A. B.2+32C.D .2-1解析:选C.4cos 50°-tan 40°=4sin 40°-sin 40°cos 40°==2sin 80°-sin 40°cos 40°=sin 80°+sin (60°+20°)-sin (60°-20°)cos 40°==sin 80°+sin 20°cos 40°=sin (50°+30°)+sin (50°-30°)cos 40°==·=.2.已知0<α<<β<π,cos =,sin(α+β)=. (1)求sin 2β的值; (2)求cos 的值.解:(1)法一:因为cos =coscos β+sinsin β=cos β+sin β=, 所以cos β+sin β=, 所以1+sin 2β=, 所以sin 2β=-.法二:sin 2β=cos ⎝ ⎛⎭⎪⎫π2-2β =2cos2-1=-. (2)因为0<α<<β<π, 所以<β-<π,<α+β<. 所以sin>0,cos(α+β)<0, 因为cos =,sin(α+β)=, 所以sin =,cos(α+β)=-.所以cos ⎝⎛⎭⎪⎫α+π4 =cos ⎣⎢⎡⎦⎥⎤(α+β)-⎝⎛⎭⎪⎫β-π4=cos(α+β)cos +sin(α+β)·sin ⎝ ⎛⎭⎪⎫β-π4 =-×+×=.3.已知0<α<<β<π,tan =,cos(β-α)=. (1)求sin α的值; (2)求β的值. 解:(1)因为tan =, 所以tan α===.由⎩⎪⎨⎪⎧sin αcos α=43,sin2α+cos2α=1.解得sin α=(sin α=-舍去). (2)由(1)知cos α== =,又0<α<<β<π,所以β-α∈(0,π), 而cos(β-α)=.所以sin(β-α)===, 于是sin β=sin[α+(β-α)]=sin αcos(β-α)+cos αsin (β-α)=×+×=. 又β∈,所以β=.。

高考数学总复习第三章 三角函数、三角恒等变换及解三角形第4课时 两角和与差的正弦、余弦和正切公式

高考数学总复习第三章 三角函数、三角恒等变换及解三角形第4课时 两角和与差的正弦、余弦和正切公式

第三章 三角函数、三角恒等变换及解三角形第4课时两角和与差的正弦、余弦和正切公式1. 计算:sin43°cos13°+sin47°cos103°=________.答案:12解析:原式=sin43°cos13°-cos43°sin13°=sin(43°-13°)=sin30°=12. 2. 已知cos ⎝ ⎛⎭⎪⎫θ-π4=35,θ∈⎝ ⎛⎭⎪⎫π2,π,则cos θ=________. 答案:-210解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以θ-π4∈⎝ ⎛⎭⎪⎫π4,3π4,所以sin ⎝ ⎛⎭⎪⎫θ-π4=45,cos θ=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫θ-π4+π4=cos ⎝ ⎛⎭⎪⎫θ-π4·cos π4-sin ⎝ ⎛⎭⎪⎫θ-π4sin π4=35×22-45×22=-210. 3. 计算:cos10°+3sin10°1-cos80°=________. 答案: 2解析:cos10°+3sin10°1-cos80°=2cos (10°-60°)2sin 240°=2cos50°2sin40°= 2. 4. 当函数y =sinx -3cosx(0≤x<2π)取得最大值时,x =________.答案:56π 解析:y =sinx -3cosx =2sin ⎝ ⎛⎭⎪⎫x -π3,由0≤x<2π, 得-π3≤x -π3<53π,∴ 当x -π3=π2,即x =56π时函数取得最大值. 5. 已知cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,则sin ⎝⎛⎭⎪⎫α+7π6=________. 答案:-45解析:∵ cos ⎝ ⎛⎭⎪⎫α-π6+sin α=453,∴ 32cos α+32sin α=453,3⎝ ⎛⎭⎪⎪⎫12cos α+32sin α=453, 3⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫π6+α=453,∴ sin ⎝ ⎛⎭⎪⎫π6+α=45, ∴ sin ⎝ ⎛⎭⎪⎫α+76π=-sin ⎝ ⎛⎭⎪⎫π6+α=-45. 6. 已知tan(α+β)=25,tan ⎝ ⎛⎭⎪⎫β-π4=14,那么tan ⎝ ⎛⎭⎪⎫α+π4=________. 答案:322 解析:因为α+π4+β-π4=α+β, 所以α+π4=(α+β)-⎝ ⎛⎭⎪⎫β-π4, 所以tan ⎝ ⎛⎭⎪⎫α+π4=tan[(α+β)-⎝ ⎛⎭⎪⎫β-π4] =tan (α+β)-tan ⎝ ⎛⎭⎪⎫β-π41+tan (α+β)tan ⎝ ⎛⎭⎪⎫β-π4=322.7. 若函数f(x)=(1+3tanx)cosx ,0≤x<π2,则f(x)的最大值为________. 答案:2 解析:f(x)=(1+3tanx)cosx =cosx +3sinx =2cos ⎝ ⎛⎭⎪⎫x -π3, ∴ 当x =π3时,f(x)取得最大值为2. 8. (2013·无锡期末)设函数f(x)=cos(3x +φ)(0<φ<π).若f(x)+f ′(x)是奇函数,则φ=________.答案:π6解析:f ′(x)=-3sin(3x +φ),f(x)+f ′(x)=cos(3x +φ)-3sin(3x +φ)=-2sin ⎝⎛⎭⎪⎫3x +φ-π6是奇函数,所以φ-π6=k π,k ∈Z ,即φ=k π+π6,k ∈Z .又0<φ<π, 所以k =0,φ=π6. 9. 已知函数f(x)=2sin ⎝ ⎛⎭⎪⎫13x -π6,x ∈R . (1) 求f ⎝ ⎛⎭⎪⎫5π4的值; (2) 设α、β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫3α+π2=1013,f(3β+2π)=65,求cos(α+β)的值. 解:(1) 由题设,知f ⎝ ⎛⎭⎪⎫5π4=2sin ⎝ ⎛⎭⎪⎫5π12-π6=2sin π4= 2. (2) 由题设,知1013=f ⎝⎛⎭⎪⎫3α+π2=2sin α, 65=f(3β+2π)=2sin ⎝ ⎛⎭⎪⎫β+π2=2cos β, 即sin α=513,cos β=35. 又α,β∈⎣⎢⎡⎦⎥⎤0,π2,∴ cos α=1213,sin β=45, ∴ cos(α+β)=cos αcos β-sin αsin β=1213×35-45×513=1665. 10. 已知向量a =(m ,sin2x),b =(cos2x ,n),x ∈R ,f(x)=a ·b ,若函数f(x)的图象经过点(0,1)和⎝ ⎛⎭⎪⎫π4,1. (1) 求m 、n 的值;(2) 求f(x)的最小正周期,并求f(x)在x ∈⎣⎢⎡⎦⎥⎤0,π4上的最小值; (3) 若f ⎝ ⎛⎭⎪⎫α2=15,α∈⎝ ⎛⎭⎪⎫0,π4时,求tan ⎝ ⎛⎭⎪⎫α+π4的值. 解:(1) f(x)=mcos2x +nsin2x ,因为f(0)=1,所以m =1.又f ⎝ ⎛⎭⎪⎫π4=1,所以n =1. 故m =1,n =1.(2) f(x)=cos2x +sin2x =2sin ⎝⎛⎭⎪⎫2x +π4,所以f(x)的最小正周期为π.因为x ∈⎣⎢⎡⎦⎥⎤0,π4,所以2x +π4∈⎣⎢⎡⎦⎥⎤π4,3π4,所以当x =0或x =π4时,f(x)取最小值1. (3) 因为f ⎝ ⎛⎭⎪⎫α2=15,所以cos α+sin α=15, 即sin ⎝ ⎛⎭⎪⎫α+π4=210.又α∈⎝ ⎛⎭⎪⎫0,π4, 故α+π4∈⎝ ⎛⎭⎪⎫π4,π2,所以cos ⎝ ⎛⎭⎪⎫α+π4=7210, 所以tan ⎝ ⎛⎭⎪⎫α+π4=272=17. 11. 已知函数f(x)=2cos ⎝⎛⎭⎪⎫ωx +π6(其中ω>0,x ∈R )的最小正周期为10π. (1) 求ω的值;(2) 设α、β∈⎣⎢⎡⎦⎥⎤0,π2,f ⎝⎛⎭⎪⎫5α+53π=-65,f ⎝ ⎛⎭⎪⎫5β-56π=1617,求cos(α+β)的值. 解:(1) T =2πω=10π,所以ω=15. (2) f ⎝ ⎛⎭⎪⎫5α+53π=2cos ⎣⎢⎡⎦⎥⎤15⎝⎛⎭⎪⎫5α+53π+π6=2cos ⎝ ⎛⎭⎪⎫α+π2=-2sin α=-65,所以sin α=35. f ⎝ ⎛⎭⎪⎫5β-56π=2cos ⎣⎢⎡⎦⎥⎤15⎝⎛⎭⎪⎫5β-56π+π6=2cos β=1617,所以cos β=817.因为α、β∈⎣⎢⎡⎦⎥⎤0,π2,所以cos α=45,sin β=1517,所以cos(α+β)=cos αcos β-sin αsin β=45×817-35×1517=-1385.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所以 β =
5. 若 0<α < =( A. 3 3 6 3 )
B.-
3 3 6 9
C.
D.-
解 < +α < , < - < , 4 4 4 4 4 2 2
6 π 2 2 π β 所以 sin +α = ,cos - = , 4 4 2 3 3 β π π β cosα+ =cos +α - - 2 2 4 4 π π β π π β =cos +α cos - +sin +α sin - 2 2 4 4 4 4 = 6 . 3
π 1 3 1 2 3 5 2- 15 所以 cos2α+ = cos 2α- sin 2α= × - × = . 3 2 2 2 3 2 3 6 答案: 2- 15 6
1 9. 已知锐角 α , β满足: sin β-cos β= , tan α+tan β+ 3tan α· tan 5 β= 3,则 cos α=________. 解析:由 tan α+tan β+ 3tan αtan β= 3,
1 6.(2016·温州八校联考)若 sin α+cos α= ,0<α<π,则 sin 2α+cos 2 3 α的值为( 8+ 17 A. 9 -8- 17 C. 9 ) B. -8+ 17 9 -8± 17 9 1 <1 且 0<α <π,所以 α 为钝角. 3
D.
解析:选 C.因为 sin α+cos α=
又 sin α=
5 2 5 ,所以 cos α= , 5 5
所以 sin β=sin[α -(α -β )]=sin αcos(α -β )-cos αsin(α -β ) = 5 3 10 2 5 2 10 = . × - ×- 5 10 5 10 2 π . 4 π 1 β π π 3 π β , - <β<0, cosα+ = ,sin - = ,则 cosα + 4 4 2 2 2 2 3 3
4 α α α 7. 设 α 是第二象限角, tan α=- , 且 sin <cos , 则 cos =________. 3 2 2 2 解析:因为 α 是第二象限角,所以 α α 可能在第一或第三象限.又 sin <cos 2 2
α α α ,所以 为第三象限角,所以 cos <0. 2 2 2 4 因为 tan α=- , 3 3 α 所以 cos α=- ,所以 cos =- 5 2 答案:- 5 5 1+cos α 5 =- . 2 5
2.(2016·赣州联考)化简 A.1 C. 2
cos220°-sin220° 解析:选 C.原式= = cos 25° (cos 20°-sin 20°)2 (cos 20°+sin 20°)(cos 20°-sin 20°) cos 20°+sin 20° = = cos 25°(cos 20°-sin 20°) cos(45°-20°) cos 20°+sin 20° = 2. cos 45°cos 20°+sin 45°sin 20° 3. 已知 α 、 β 均为锐角, 且 tan β= 3 3 1 2 cos α-sin α , 则 tan(α +β )=( cos α+sin α )
A.
B.
C. 3 解析:选 D.因为 tan β=
D.1 cos α-sin α 1-tan α ,所以 tan β= = cos α +sin α 1+tan α
π π π tan -α .又 α 、 β 均为锐角, 所以 β = -α , 即 α +β = , 所以 tan(α 4 4 4
π π 2 8.已知 cos4α-sin4α= ,且 α ∈0, ,则 cos2α+ =________. 2 3 3 2 解析:因为 cos4α-sin4α=(sin2α+cos2α)(cos2α-sin2α)=cos 2α= , 3 π 又 α ∈0, , 2 所以 2α ∈(0,π), 所以 sin 2α= 1-cos22α= 5 , 3
1 1 又由 sin α+cos α= 得 1+2sin αcos α= , 3 9 1 8 所以 sin 2α=2sin αcos α=-1+ =- , 9 9 sin α-cos α= (sin α+cos α)2-2sin 2α= 17 17 = , 9 3 所以 cos 2α=cos2α-sin2α=-(sin α+cos α)·(sin α-cos α) 1 17 17 =- × =- , 3 3 9 8 17 -8- 17 = 从而 sin 2α+cos 2α=- +- . 9 9 9 1 8 -2×- = 9 9
π π 得 tan(α +β )= 3,α,β∈0, ,α+β = , 2 3 所以 sin(α +β )= 3 1 ,cos(α +β )= . 2 2
第 4 讲 简单的三角恒等变形
1.若 tan θ= 3,则 A. 3 C. 3 3
sin 2θ =( 1+cos 2θ B.- 3 D.- 3 3
)
解析:选 A.
sin 2θ 2sin θcos θ = =tan θ= 3. 1+cos 2θ 1+2cos2θ -1 cos 40° =( cos 25° 1-sin 40° B. 3 D.2 )
+β )=tan
π =1. 4 5 10 , sin(α -β )=- , α, β均为锐角, 则角 β 等于( 5 10 B. π 3 π 6 )
4. 已知 sin α= 5π A. 12 π C. 4
D.
解析:选 C.因为 α ,β均为锐角, π π 所以- <α-β < . 2 2 又 sin(α -β )=- 10 3 10 ,所以 cos(α -β )= . 10 10
相关文档
最新文档