初一数学中的应用题几类问题总结
完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。
①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。
求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。
2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。
3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。
现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。
你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。
4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。
解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。
初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型
一、直接问题
例1:
一家商店共有商品150个,其中书籍与文具的总数为110个,书籍的数量是
文具的2倍。
求文具的数量。
解:设文具的数量为x,则书籍的数量为2x,根据题意可列方程: x + 2x = 110,解得 x = 40。
悉知文具的数量为40个。
二、尺寸问题
例2:
将一个正方形底边长为x m的长方体的长、宽、高依次加长,使得体积增加153 m³,求原底边和增长量各是多少?
解:设原正方形底边长为x,则原长方体的体积为x³,经计算可得(DO IT YOURSELF)。
故原底边长为3m,增长量为2m。
三、速度问题
例3:
甲、乙两地相距160km,甲以每小时40km的速度向乙方向行驶,而乙以每小时20km的速度向甲方向行驶。
两人出发时,距离甲地60km的地方对面接触,问:这次相遇到底花费了多少时间?
解:设相遇所需时间为t小时,甲行驶时间为t小时,乙行驶时间为(t - 60/20)小时,由此可列方程: 40t + 20(t - 60/20) = 160,解得t = 2。
故这次相遇花费了
2小时。
四、混合问题
例4:
有一瓶饮料,里面有150ml水,加了40g的糖。
若按这样的方法再加入50g
的糖,得到的糖水浓度为20%,求这瓶饮料总共有多少(ml)?
解:设原糖水总量为x ml,则从题意可列方程: (40+50)/(x+150) = 20%,解得 x = 650。
故这瓶饮料总共为650ml。
未完,待更新……。
初一数学应用题分类汇总(分类全)

应用题练习 行程问题1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?2、甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?3、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?二、工程类问题1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,则甲桶剩的水是乙桶所剩的4倍。
问每桶放出了多少升水?2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。
如果甲完成任务的31以后,由乙完成其余部分,则两人共用1小时50分钟。
间由甲、乙两人单独完成分别要用几小时?3、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产4、*工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?5、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。
初一数学应用题归类(十到十七类)

第十类分段计算的问题分段型一元一次方程的应用是指同一个未知量在不同的范围内的限制条件不同的一类应用题。
解决这类问题的时候,我们先要确定所给的数据所处的分段,然后要根据它的分段合理地解决。
应用最广泛的问题是,网费,电费、水费、打的费、上税费等。
例题1、某地上网有两种收费方式,用户可以任意选择其一:A.计时制:1.5元/时;B.包月制:45元/月;此外,每种上网方式都要加收通信费1元/时。
(1)某用户平均每月的上网时间为20小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(2)某用户平均每月的上网时间为30小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(3)某用户平均每月的上网时间为40小时,若选择方案A,应缴元上网费;若选择方案B,应缴元上网费;(4)某用户发现他家10月份的上网费,按方案A与方案B的缴费一样;求他家10月份的上网时间?(5)根据用户上网时间的不同,请你为用户选择省钱收费方式(选择方案A或选择方案B)?练习:昆明市出租车计价规则如下:行程不超过3千米,收起步价8元;超过3公里的部分每公里加收1.8元。
(1)、若乘坐出租车2.5公里,则应缴元车费;(2)、若乘坐出租车8公里,则应缴元车费;(3)、小明从学校坐出租车到家,共付出租车车费为26 元,求学校到小明家的路程?例2、电话计费问题下表有两种移动电话计费方式:月使用费固定收,主叫不超限定时间不再收费,主叫超时部分加收超时费,被叫免费(1)一个月内用移动电话主叫为t min(t是正整数).根据上表,列表说明:当t在不同时间范围内取值时,按方式一和方式二如何计费.(2)观察你的列表,你能从中发现如何根据主叫时间选择省钱的计费方式吗?通过计算验证你的看法.例3:某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元,请问张强第一次、第二次分别购买香蕉多少千克?例4. 依法纳税是每个公民的义务,《中华人民共和国个人所得税法》规定,有收入的公民依照下表中的规定的税率交纳个人所得税。
人教版初一数学重要知识点汇总

人教版初一数学重要知识点汇总初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
列一元一次方程解应用题的五个步骤(1)审:仔细审题,确定已知量和未知量,找出它们之间的等量关系.(2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数.(3)列:根据等量关系列出方程.(4)解:解方程,求得未知数的值.(5)答:检验未知数的值是否正确,是否符合题意,完整地写出答句.初一数学方法技巧1.请概括的说一下学习的方法曰:“像做其他事一样,学习数学要研究方法。
我为你们推荐的方法是:超前学习,展开联想,多做总结,找出合情合理。
2.请谈谈超前学习的好处曰:“首先,超前学习能挖掘出自身的潜力,培养自学能力。
经过超前学习,会发现自己能独立解决许多问题,对提高自信心,培养学习兴趣很有帮助。
”其次,够消除对新知识的“隐患”。
超前学习能够发现在现有的基础上,自己对新知识认识的不妥之处。
相反地,若直接听别人说。
似乎自己也能一开始就达到这种理解水平,实践证明,并非这样。
再次,超前学习中的有些内容,当时不能透彻理解,但经过深思之后,即使搁置一边,大脑也会潜意识“加工”。
初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其根本关系是:路程=时间×速度〔一〕相遇问题的等量关系:甲行距离+乙行距离 =总路程〔二〕追击问题的等量关系:〔1〕同时不同地:慢者行的距离+两者之间的距离=快者行的距离〔2〕同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间〔三〕环形跑道常用等量关系:〔1〕同时同向出发:快的走的路程-环行跑道周长=慢的走的路程〔第一次相遇)〔2〕同时反向出发:甲走的路程+乙走的路程 =环行周长〔第一次相遇〕〔四〕航行问题常用的等量关系:〔1〕顺水速度 =静水速度 +水流速度〔2〕逆水速度 =静水速度 - 水流速度〔3〕顺速–逆速= 2水速;顺速+逆速= 2船速〔4〕顺水的路程=逆水的路程例题 1、甲、乙两地相距162 公里,一列慢车从甲站开出,每小时走48 公里,一列快车从乙站开出,每小时走60 公里试问:1〕两列火车同时相向而行,多少时间可以相遇?2 〕两车同时反向而行,几小时后两车相距270 公里?3 〕假设两车相向而行,慢车先开出 1 小时,再用多少时间两车才能相遇?4 〕假设两车相向而行,快车先开25 分钟,快车开了几小时与慢车相遇?5〕两车同时同向而行〔快车在后面〕,几小时后快车可以追上慢车?6〕两车同时同向而行〔慢车在后面〕,几小时后两车相距 200 公里?例题 2、某连队从驻地出发前往某地执行任务,行军速度是6 千米 / 小时, 18 分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传到达该连队,小王骑自行车以 14 千米 / 小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?1练习:1、小明每天早上要在 7:20 之前赶到距家1000 米的学校上学,一天,小明以80 米/分的速度出发 ,5 分后 , 小明的爸爸发现他忘了带语文书,于是, 爸爸立即以180 米/ 分的速度去追小明,并且在途中追上了他。
列一元一次方程解应用题的几种常见题型及其特点

列一元一次方程解应用题的几种常见题型及其特点列一元一次方程解应用题是初一数学教学中的一大重点,而列一元一次方程解应用题又是学生从小学升入中学后第一次接触到用代数的方法处理应用题。
因此,认真学好这一知识,对于今后学习整个中学阶段的列方程(组)解应用题大有帮助。
(1)和、差、倍、分问题。
此问题中常用“多、少、大、小、几分之几”或“增加、减少、缩小”等等词语体现等量关系。
审题时要抓住关键词,确定标准量与比校量,并注意每个词的细微差别。
类似于:甲乙两数之和56,甲比乙多3(乙是甲的1/3),求甲乙各多少?这样的问题就是和倍问题。
问题的特点是,已知两个量之间存在合倍差关系,可以求这两个量的多少。
基本方法是:以和倍差中的一种关系设未知数并表示其他量,选用余下的关系列出方程。
(2)等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几何图形的面积、体积公式。
(3)调配问题。
从调配后的数量关系中找等量关系,常见是“和、差、倍、分”关系,要注意调配对象流动的方向和数量。
(4)行程问题。
要掌握行程中的基本关系:路程=速度×时间。
相遇问题(相向而行),这类问题的相等关系是:各人走路之和等于总路程或同时走时两人所走的时间相等为等量关系。
追及问题(同向而行),这类问题的等量关系是:两人的路程差等于追及的路程或以追及时间为等量关系。
环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
航行问题:速度关系是:①顺水速度=静水中速度+水流速度;②逆水速度=静水中速度-水流速度。
飞行问题、基本等量关系:①顺风速度=无风速度+风速②逆风速度=无风速度-风速行程问题可以采用画示意图的辅助手段来帮助理解题意,并注意两者运动时出发的时间和地点。
(5)工程问题。
基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
初一数学一元一次方程应用题的各种类型

初一数学一元一次方程应用题的各种类型一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇) (2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速 = 2水速;顺速 + 逆速 = 2船速(4)顺水的路程 = 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。
问:(1)爸爸追上小明用了多长时间? (2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、行程问题
1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?
2.从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h ,只需4小时即可到达。
求甲、乙两地间的距离。
3.一辆汽车已行驶12000km ,计划每月再行驶800km ,几个月后这辆汽车将行驶20800km ?
4.京沪高速公路全长1262km ,一辆汽车从北京出发,匀速行驶5小时后,提速20km/h ;又匀速行驶5小时后,减速10km/h ,又匀速行驶5小时后到达上海,求各段时间的车速。
(精确到1km/h )
5.甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?
二、工程类问题
1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,那么甲桶剩的水是乙桶所剩的4倍。
问每桶放出了多少升水?
2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。
如果甲完成任务的
3
1
以后,由乙完成其余部分,则两人共用1小时50分钟。
间由甲、乙两人单独完成分别要用几小时?
3、一工程原计划要270个工人若干天完成。
现只有200个工人,由于工作效率提高了50%,结果比原计划提前10天完成。
求原计划工作的天数?
4、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产多少个零件?
5、某工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。
若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?
6、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的
6
5?
7.一项工程,甲单独做20天完成,乙单独做10天完成,现在由乙先独做几天后,剩下的部分由甲独做,先后共花12天完成,问乙做了几天?
8.一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。
开始时三队合作,中途甲队另有任务,有乙、丙两队完成,用了6小时完工。
甲做了几小时?
9.整理一批图书,由一个从做要40小时完成。
现在计划由一部分人先做4小时,再增加2人和他们一一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体应先安排工人工作?
三、数字问题
1.一个三位数,各数位上的数字和是15,百位上的数字比十位上的数字大5,个位上的数字是十位上数字的3倍,则这个三位数是多少?
2.一个两位数的十们数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数,试求原两位数是多少?
3.小明今年的生日的前一天,当天和后一天的日期之和是78,小明今年几号过生日?
4.有一批课外书分给若干个儿童,若每人6本,最后缺2本;若每人分5本,最后多3本,请问有几名儿童呢?
5.如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?
四、利润问题
(1)利润=售价-进价 (2)利润率=
进价利润=进价
进价
售价 (3)打折销售中的售价=标价×
10
折数
(4)售价=成本+利润+成本×(1+利润率) (5)利润=利润率×成本 (6)利息=本金×利率
1.商店将进价为600元的商品按标价的8折销售,仍可获利120元,则商品的标价是多少元?
2.某商品的进价是2000元,标价为3000元,商品要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?
3.一家商店某种裢子按成本价提高50%后标价,又以8折优惠卖出,结果每条裤子获利10元,试求每条裤子的成本价是多少元?
4.某商场甲、乙两个柜组12月份营业额共64万元,1月份甲增长了20%,乙增长了15%,营业额共达到75万元,试求两柜组1月份各增长多少万元?
5.某商店对一种商品调价,按原价的八折出售,打折后的利润率是20﹪,已知该商品的原价是63元,求该商品的进价。
6.国家规定存款的纳税办法是:利息税=利息×20﹪,银行一年定期储蓄的年利率为2.25﹪,现在小明取出一年到期的本金和利息时,交纳了利息4.5元,则小明一年前存入银行的钱为多少元?
五、调配问题
1.某商店今年共销售21英寸,25英寸,29英寸3种彩电共360台,它们的销售数量的比是1:7:4,这三种彩电各销售多少台?
2.一本书封面的周长为68cm,长比宽多6cm,这本书封面的长和宽分别是多少?
3.某镇粮食仓库中,1号仓库存粮200t,2号仓库存粮70t,现在1号仓库每天运出15t,2号仓库每天运进25t粮,问几天后,2号仓库的存粮是1号仓库存粮的两倍?
4.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个。
应如何分配工人生产镜片和镜架,
才能使产品配套?
5.某种三色冰淇淋45g,咖啡色、红色和白色配料比为1:2:6,这种三色冰淇淋中咖啡色、红色、白色配料分别是多少?
6.甲队原有工人68人,乙队原有工人44人,现又有42名工人调入这两队,为了使乙队人数是甲队人数,应调往甲乙两队各多少人?
7.某个小组中的男女生共15人,若女生减少3人则男生的人数是女生的人数的2倍,问这个小组男女生的人数各为多少?
8.学校组织植树活动,已知在甲处植树的有27人,在乙处植树的有18人.如果要使在甲处植树的人数是乙处植树人数的2倍,需要从乙队调多少人到甲队?
9.学校组织植树活动,已知在甲处植树的有23人,在乙处植树的有17人.现调20人去支援,使在甲处植树的人数是乙处植树人数的2倍多3人,应调往甲、乙两处各多少人?
10.某中学组织同学们春游,如果每辆车座45人,有15人没座位,如果每辆车座60人,那么空出一辆车,其余车刚好座满,问有几辆车,有多少同学?
16.整理一批图书,由一个从做要40小时完成。
现在计划由一部分人先做4小时,再增加2人和他们一一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体应先安排工人工作?
内容 类型 题中涉及的数量及公式 等量关系 注意事项 和、差问题 由题意可知
弄清“倍数”关系及“多、少”关系等
调配问题
调配前的数量关系,调配后又有一种新的数量关系 调配前后的数量关系 等积变形问题 各体的体积公式
变形前的体积(容积)=变形后的体积(容积)。
分清半径、直径
行程问题
相遇问题 路程=速度×时间 时间=路程÷速度 速度=路程÷时间 快者+慢者=原来的距离
相向而行注意始发时间和地点
追及问题
快者-慢者=原来的距离
同向而行注意始发时间和地点
调配问题
从调配后的数量关系中找等量关系 调配对象流动的方向和数量
比例分配问题
全部数量=各种成分的数量之和 把一份设为x ,
例甲、乙的比为2:3 可设甲为2x ,乙为3x 。
工程问题
工作量=工作效率×工作时间 工作效率=工作量÷工作时间 工作时间=工作量÷工作效率 两个或多个工作效率不同的对象所完成的工作量的和等于总工作量 一般情况下把总工作量设为1
利息问题 本金×利率=利息, 本金+利息=本息。
利润率问题
商品利润=
%100 商品进价
商品利润
商品的利润=商品售价-商品进价 找出利润或利润率之间的关系
打几折就是按原售价的百分之几出售
数字问题 设a,b 分别为一个两位数的个位上与十位上的数字,则这个两位数可表示为10b+a
行船问题 顺流船行实际速度=船在静水中的速度+水流的速度
逆流船行实际速度=船在静水中的速度-水流的速度。