物联网智能交通方案设计说明

合集下载

物联网智能交通解决方案

物联网智能交通解决方案

物联网智能交通解决方案一、介绍物联网智能交通解决方案是基于物联网技术和智能交通系统的结合,旨在提高交通运输效率、减少交通事故、改善交通环境和提升交通管理水平。

本文将详细介绍物联网智能交通解决方案的原理、应用场景和技术支持。

二、原理物联网智能交通解决方案的核心原理是通过将交通设备、车辆和交通管理部门连接到互联网,实现实时数据的采集、传输和分析。

具体的原理包括以下几个方面:1. 传感器技术:通过在交通设备和车辆上安装传感器,实时采集交通流量、车速、车辆位置等数据。

2. 通信技术:利用无线通信技术,将采集到的数据传输到云平台或者交通管理中心。

3. 云计算技术:在云平台上对传输的数据进行存储和处理,实现数据的分析和挖掘。

4. 数据分析与决策支持:通过对交通数据的分析,提供交通管理决策的支持,包括交通流量调度、交通信号灯优化、交通事故预警等。

三、应用场景物联网智能交通解决方案可以应用于各种交通场景,包括城市道路、高速公路、机场、港口等。

以下是几个典型的应用场景:1. 交通流量监测与调度:通过采集交通流量数据,实时监测道路拥堵情况,并根据数据分析结果进行交通调度,以减少交通拥堵。

2. 交通信号灯优化:通过实时采集车辆位置和流量数据,优化交通信号灯的控制策略,减少等待时间和排队长度。

3. 交通事故预警:通过分析车辆位置和速度等数据,实时监测交通事故的发生概率,并提供预警信息给驾驶员和交通管理部门,以减少交通事故的发生。

4. 车辆追踪与管理:通过车辆定位技术,实时追踪车辆位置,提供车辆管理和调度的支持,包括车辆调度、路径规划等。

四、技术支持物联网智能交通解决方案依赖于多种技术的支持,包括传感器技术、通信技术、云计算技术和数据分析技术。

以下是几种常用的技术支持:1. 传感器技术:包括车载传感器、道路传感器和交通信号灯传感器等,用于采集交通数据。

2. 通信技术:包括无线通信技术(如4G、5G)和物联网通信技术(如NB-IoT、LoRa),用于传输采集到的数据。

物联网智能交通系统设计

物联网智能交通系统设计

物联网智能交通系统设计在当今快速发展的科技领域中,物联网智能交通系统成为了最引人注目的创新之一。

通过将传感器、通信技术和数据分析融入交通管理系统,物联网智能交通系统旨在提高交通效率、优化资源利用以及改善交通安全。

本文将探讨物联网智能交通系统的设计原则,并讨论其在实际应用中的优势。

一、系统构架设计物联网智能交通系统的构架设计应包括感知层、通信层、计算层和应用层四个主要组件。

感知层是系统的基础,通过各种传感器收集车流量、道路状况、气象条件等交通相关数据。

这些传感器可以是交通摄像头、雷达、地磁传感器等。

通信层负责将感知层收集的数据传输到计算层。

无线通信技术是实现通信层的关键,包括4G/5G网络、Wi-Fi和蓝牙等。

计算层是核心部分,其主要任务是对传感器数据进行处理和分析,提取有用信息并作出相应决策。

计算层可以采用云计算、边缘计算等技术,以提高系统的效率和响应速度。

应用层是最终用户与系统交互的界面,包括交通管理中心、移动终端等。

应用层向用户提供交通信息、导航服务、违规监测等功能。

二、系统功能设计1. 实时交通监测与分析物联网智能交通系统能够根据感知层传输的实时数据进行交通状况监测与分析。

通过对车流量、车速和路况等数据的分析,系统可以提供实时的交通拥堵信息,并在交通管理中心进行有效调控和指导。

2. 智能交通信号控制利用物联网技术,系统可以实现智能交通信号控制,根据实时交通状况对交通信号进行优化调整。

通过智能交通信号控制,可以降低交通拥堵,减少等待时间,提高交通效率。

3. 路况导航与路径规划物联网智能交通系统可基于实时交通数据提供导航服务。

通过分析车流量、实时路况和历史数据,系统可以准确预测交通拥堵状况,并为用户提供最佳路径规划,以避免拥堵和优化行程时间。

4. 交通事故监测与预警利用传感器和视频监控设备,物联网智能交通系统能够监测交通事故,并及时发出预警。

系统可以实时检测交通违法行为,并通过移动终端向交通管理人员发送警报,以便迅速采取救援措施。

物联网中的智能交通系统设计

物联网中的智能交通系统设计

物联网中的智能交通系统设计智能交通系统设计在物联网中的应用随着科技和信息技术的不断发展,物联网(Internet of Things,IoT)正在深入各个领域。

其中,智能交通系统是物联网的一个重要应用之一。

本文将探讨物联网中智能交通系统的设计方案,以及其在城市交通管理和汽车智能化方面的应用。

一、智能交通系统的设计方案在物联网中,智能交通系统是通过各种传感器、通信设备和数据处理分析系统实现的。

它的设计方案包括以下几个关键要素:1. 传感器网络:智能交通系统中的传感器网络负责采集各种交通数据,如道路流量、车速、车辆位置等。

传感器的种类包括车载传感器、摄像头、雷达等,它们通过无线通信将数据发送到数据处理中心。

2. 数据处理与分析:智能交通系统的数据处理与分析是核心环节,它负责对传感器收集到的数据进行实时处理和分析。

通过算法和模型,可以对交通状况进行预测、优化路线规划、实现智能信号控制等。

3. 实时通信与反馈:智能交通系统需要能够实时与驾驶员、交通管理中心等进行通信。

通过车载终端、手机应用等,驾驶员可以接收实时交通信息,并根据系统的反馈进行调整。

4. 基础设施升级:智能交通系统的设计需要对现有的交通基础设施进行改造和升级。

比如,设置智能交通信号灯、道路标志等,以适应智能化交通系统的需求。

二、智能交通系统在城市交通管理中的应用智能交通系统在城市交通管理中具有重要的应用价值:1. 路况监测与预测:智能交通系统可以通过传感器网络和数据分析,实时监测和预测城市的道路状况。

这些数据可以用于调整交通信号、制定交通管制措施,提高道路的通行效率。

2. 路线优化与规划:基于智能交通系统提供的交通数据,可以对城市的道路网络进行优化和规划。

通过智能化的路线规划,可以减少道路拥堵,提高城市交通的运行效率。

3. 交通事故预警:智能交通系统具备实时数据监测和分析能力,可以通过分析交通数据和驾驶员行为,预测交通事故的发生概率。

在事故预警系统的帮助下,可以及时采取措施避免交通事故的发生。

基于物联网的智能交通系统设计

基于物联网的智能交通系统设计

基于物联网的智能交通系统设计物联网(Internet of Things,简称IoT)是指通过互联网将各种可以独立工作的物体连接起来,实现彼此协同和信息交互。

智能交通系统则是指利用先进的信息技术,实现对交通流量、交通设施等的监控、管理和优化。

本文将针对基于物联网的智能交通系统的设计进行探讨。

一、引言智能交通系统的设计是应对现代城市交通问题的重要手段,而物联网作为一种新兴的技术手段,为智能交通系统的设计提供了更广阔的空间和更高效的应用。

本章主要介绍智能交通系统的背景和意义。

二、智能交通系统的基本架构智能交通系统的基本架构包括传感器网络、数据传输网络、数据存储和处理平台以及应用服务平台四个部分。

本章将详细介绍这四个部分的构成和功能。

1. 传感器网络传感器网络是智能交通系统中最基础的组成部分,通过安装在道路、车辆和交通设施上的传感器,采集交通数据。

这些传感器可以包括车流量检测器、摄像头、气象传感器等。

2. 数据传输网络数据传输网络是将传感器采集到的数据进行传输的通道,可以采用有线或者无线方式进行传输。

有线方式可以通过光纤或者网线进行传输,而无线方式则可以借助于无线传感器网络或者移动通信网络进行传输。

3. 数据存储和处理平台数据存储和处理平台是智能交通系统中的核心部分,它负责接收、存储和处理传感器采集到的数据。

这些数据可以用于交通流量分析、交通事故预警、交通信号优化等。

4. 应用服务平台应用服务平台是智能交通系统向用户提供交通信息和服务的界面,用户可以通过手机应用或者网页等方式使用这些服务。

应用服务平台可以提供路况查询、导航推荐、交通预测等功能。

三、智能交通系统的关键技术在实现基于物联网的智能交通系统过程中,需要借助于一些关键技术来提高系统的性能和效果。

本章将介绍一些关键技术,如数据挖掘、机器学习、云计算等。

1. 数据挖掘智能交通系统中产生的海量数据需要通过数据挖掘技术进行分析和处理,以发现其中的规律和异常。

物联网中的智能交通管理系统设计

物联网中的智能交通管理系统设计

物联网中的智能交通管理系统设计在物联网时代,智能交通管理系统的设计变得尤为重要。

随着城市化的快速发展,交通拥堵、交通事故频发成为影响居民生活质量的重要问题。

如何利用物联网技术来优化交通管理,提高交通效率,成为当今社会亟待解决的难题。

一、物联网技术在智能交通管理系统中的应用物联网技术的广泛应用,为智能交通管理系统的设计提供了丰富的可能性。

传感器技术可以实时监测道路交通情况,智能控制系统可以根据数据分析做出智能调度,提升交通管理效率。

同时,采用无线通讯技术可以实现交通信号灯、路灯等设备的远程控制,进一步提高交通管理的便捷性和灵活性。

二、数据分析对交通管理的重要性数据分析是智能交通管理系统设计不可或缺的一部分。

通过收集大量的交通数据,系统可以对交通流量、拥堵情况、车辆速度等信息进行实时监测和分析,为交通管理决策提供科学依据。

数据分析还可以帮助系统发现交通瓶颈、预测未来交通趋势,从而更好地优化交通路线和提升运输效率。

三、人工智能在智能交通管理系统中的应用人工智能技术的发展,为智能交通管理系统提供了更多的可能性。

利用深度学习算法可以实现交通信号灯的智能优化,根据实时路况调节绿灯时长,减少车辆等待时间。

同时,人工智能还可以实现智能导航系统,根据用户出行需求和路况情况推荐最佳路线,提高出行效率。

四、智能交通管理系统的挑战与展望尽管智能交通管理系统在物联网技术、数据分析和人工智能等方面取得了长足进步,但仍然面临着许多挑战。

如何保护用户隐私、防范网络安全风险、降低系统维护成本等问题亟待解决。

未来,智能交通管理系统将更加智能化、个性化,为人们出行提供更便捷、安全的服务。

总之,物联网技术在智能交通管理系统中发挥着重要作用。

通过数据分析和人工智能技术的应用,可以实现交通管理的智能化、高效率。

未来,智能交通管理系统将继续不断创新,为城市交通管理带来更多可能性。

愿智能交通管理系统设计者们继续努力,为城市交通发展贡献自己的力量。

物联网智能交通解决方案

物联网智能交通解决方案

物联网智能交通解决方案一、引言物联网智能交通解决方案是基于物联网技术的交通管理系统,旨在提升交通效率、减少交通事故、改善交通环境。

本文将详细介绍物联网智能交通解决方案的设计原理、实施步骤以及预期效果。

二、设计原理1. 物联网传感器技术物联网智能交通解决方案利用物联网传感器技术,通过在交通设施、车辆和行人上部署传感器,实时采集交通数据。

这些传感器可以感知车辆的位置、速度、方向等信息,同时也可以监测交通信号灯、路况等环境因素。

2. 数据通信与处理采集到的交通数据通过无线网络传输到数据中心,进行实时处理和分析。

数据中心利用大数据分析算法,对交通数据进行挖掘和分析,提取有用的信息,如交通流量、拥堵情况等。

3. 智能交通管理系统基于分析得到的交通数据,智能交通管理系统可以实时调整交通信号灯的时序,优化交通流量分配。

同时,系统还可以通过电子显示屏、移动应用等方式向驾驶员和行人提供实时的交通信息,帮助他们选择最佳的出行路线。

三、实施步骤1. 部署传感器网络首先,在交通设施、车辆和行人密集的区域部署物联网传感器网络。

传感器可以通过无线网络与数据中心进行通信,传输交通数据。

2. 建设数据中心搭建数据中心,用于接收和处理来自传感器的交通数据。

数据中心需要具备大数据存储和分析的能力,以便对交通数据进行挖掘和分析。

3. 开发智能交通管理系统基于交通数据分析的结果,开发智能交通管理系统。

系统需要实时监测交通状况,并根据交通数据调整交通信号灯的时序,以优化交通流量。

4. 提供实时交通信息通过电子显示屏、移动应用等方式,向驾驶员和行人提供实时的交通信息。

这些信息可以包括交通拥堵情况、最佳出行路线等,帮助用户做出更好的决策。

四、预期效果1. 提升交通效率通过实时调整交通信号灯的时序,优化交通流量分配,减少交通拥堵,提高交通效率。

用户可以更加便捷地出行,减少交通时间。

2. 减少交通事故通过监测交通数据,及时发现交通事故隐患,并采取措施进行预警和干预,减少交通事故的发生。

面向物联网的智能交通系统设计

面向物联网的智能交通系统设计

面向物联网的智能交通系统设计智能交通系统设计——连接未来的物联网之桥随着科技的不断进步和社会的不断发展,智能交通系统已经成为了现代城市发展的重要组成部分。

物联网作为一种新兴的技术,为智能交通系统的发展提供了新的机遇和挑战。

本文将就面向物联网的智能交通系统设计进行探讨,旨在探索如何利用物联网技术构建更加高效、安全和可持续的交通系统。

一、物联网与智能交通系统的融合1.智能交通系统概述智能交通系统是应用先进技术和信息通信技术于交通领域,通过感知、分析和控制等手段,提供更加高效、安全和便利的交通服务的一种综合性系统。

2.物联网技术的特点物联网技术具有广泛的使用场景和范围,其主要特点包括感知与识别能力、信息的自动化处理和互联互通、实时性和动态性、智能化和自适应等。

3.物联网与智能交通系统的融合物联网技术为智能交通系统的发展提供了更加广阔的空间,通过物联网技术,智能交通系统可以实现交通拥堵的自动感知与识别、路况信息的实时监测与分析、交通信号灯的智能控制等。

二、面向物联网的智能交通系统设计原则1.信息感知与识别通过物联网的感知技术,智能交通系统可以实时感知和识别交通状况,包括交通流量、车辆位置、环境条件等。

同时,利用物联网技术收集的数据,可以进行交通状况分析和预测,进而提供更加准确的交通信息。

2.数据共享与交互物联网技术可以实现设备之间的互联互通,智能交通系统可以通过数据共享和交互,实现车辆与交通设施之间的信息交流和协同控制。

通过实时数据的共享,可以提高整个交通系统的运行效率和安全性。

3.智能化与自适应智能交通系统应该具备智能化和自适应的能力,通过物联网技术,系统可以根据当前的交通状况实时调整交通信号灯的控制策略,优化交通流动,缓解交通拥堵。

另外,智能交通系统还可以通过学习算法,对历史交通数据进行分析和挖掘,实现交通优化和智能调度。

4.安全保障与应急响应面向物联网的智能交通系统设计要考虑交通安全保障和应急响应的问题。

基于物联网的智能交通信息系统设计与实现

基于物联网的智能交通信息系统设计与实现

基于物联网的智能交通信息系统设计与实现智能交通信息系统是基于物联网的应用领域之一,它利用各种传感器和通信技术,将城市交通流量、道路状况、车辆信息等实时数据进行收集、分析和处理,为交通参与者提供实时、准确、有效的交通信息服务,提高交通运输的效率和安全性。

本文将介绍如何设计和实现基于物联网的智能交通信息系统。

一、系统设计1. 系统架构基于物联网的智能交通信息系统的架构应包含传感器、通信网络、数据处理和用户应用等模块。

传感器模块负责采集交通流量、车辆位置、道路条件等数据;通信网络模块负责传输数据;数据处理模块负责对数据进行处理和分析;用户应用模块负责提供交通信息及相关服务。

2. 数据采集与传输在系统设计中,需要选择合适的传感器来采集交通相关数据。

例如,使用车辆感应器或摄像头感应器来实时监测交通流量,使用路面传感器来感知道路状况。

采集到的数据需要通过无线通信网络传输,如4G或5G网络,确保数据的及时性和稳定性。

3. 数据处理与分析数据处理与分析模块是系统的核心部分,负责对采集到的数据进行处理和分析,以提供准确的交通信息。

该模块可以利用数据挖掘和机器学习算法,对历史数据进行建模,预测交通拥堵状况和优化交通路径。

同时,可以利用实时数据,通过算法计算出最佳路径和推荐行驶速度,提供给用户做出决策。

4. 用户应用与服务用户应用模块是智能交通信息系统的最终交互界面,可以为用户提供实时的交通信息和相关服务。

用户可以通过手机应用程序或网页浏览器访问系统,获取道路拥堵情况、实时交通流量、最佳路径等信息。

同时,用户还可以通过应用程序实现导航、停车位查询、违规查询等交通服务。

二、系统实现1. 传感器部署与数据采集系统实现中需要根据交通流量、道路状况和车辆信息等需求,选择合适的传感器进行部署。

例如,在关键路段安装车辆感应器或摄像头感应器来实时监测交通流量;在主要道路和高速公路上安装路面传感器来感知道路状况。

通过这些传感器,可以实时采集交通相关数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物联网智能交通系统建设方案目录一、物联网信息平台 (4)1.1 物联网信息平台简介 (4)1.2 物联网信息平台创新点 (4)1.3 产品优势及特点 (6)1.4 物联网信息平台设备清单 (7)二、智能交通系统 (8)2.1 系统概述 (8)2.2 系统技术方案 (10)2.3 智能小车系统 (11)2.4 道路交通管理系统 (12)2.5 路灯自动控制系统 (14)2.6 ETC系统 (14)2.7 智能停车系统 (15)2.8 城市照明系统 (17)2.9 支持的实验 (18)2.10 智能交通实训系统设备清单 (19)三、配置清单及规格参数 (20)一、物联网信息平台1.1 物联网信息平台简介物联网信息平台以光载无线交换机和上层应用程序为核心,构建WiFi无线局域网,覆盖物联网实验室及其周边区域,配合实验室现有的有线网络交换机、网络路由器,建立融合有线网络、无线局域网络的物联网关键部分——网络层。

物联网信息平台是物联网综合应用实训室整体解决方案的核心和基础,在此基础上配合解决方案中的其他物联网接入设备和控制设备可以实现物联网基础教学、物联网基础实验、无线传感器网络教学、RFID技术的应用、传感器的学习及应用、智慧教室、物联网创新应用等功能,学生可亲身真实体验和感受到物联网技术给未来生产和生活带来的改变。

图(4)物联网信息平台组网图1.2 物联网信息平台创新点以物联网信息平台为核心构建的物联网综合应用实训室在实验教学、学生学习、教学管理、科学研究等方面都有创新:◆实验室建设的创新以工程实践为背景,将物联网感知层、网络层、应用层等3层架构清晰、完整地体现出来,构建整体化的物联网综合应用实训室,实现系统内的物与物、物与人的泛在链接,使各个实验区和实验设备不再是信息孤岛;同时,系统是一个开放的平台,具有高拓展性,方便实验设备接入和实验室扩展,充分体现统一规划、分布实施的思路;◆实验教学的创新以物联网信息平台为核心构建的物联网综合应用实训室系统为教师、学生提供了一个开放的环境平台,可承载各种物联网基础实验、综合性实验、创新应用实验以及跨课程、跨专业的实验;◆学习的创新物联网信息平台的接入采用标准计算机网络协议(TCP/IP),方便智能设备(笔记本电脑、平板电脑、智能手机等)的移动接入,同时系统预留外网接口,提供学生本地、远程网络访问实验室系统,开展本地/远程网络实验;物联网信息平台配置数据服务器,提供远程网络授权访问,支持资料下载、远程实验和远程授课、学习;◆提供教师物联网科研平台物联网信息平台提供一个开放的专业平台,包括硬件资源、网络资源、软件资源,是教师和学生开展物联网相关科研的极好平台,可以开展感知层基础研究、分布式天线系统研究、无线网络分布研究、室内定位研究、分布式数据库和云计算研究、以及应用系统研究。

1.3 产品优势及特点物联网信息平台的优势与特点:●以物联网信息平台为核心构建的物联网综合应用实训室系统涵盖物联网三层结构,系统中的每一个实验箱或物联网接入设备都可以转化成智能教学终端,实现彼此间的信息交换和联合教学;●以物联网信息平台为核心采用整体构建方式建设物联网综合应用实训室,充分体现统一规划、分布实施的思路,同时系统具有高拓展性,任一时间增加的物联网接入设备都可以自动连入整个系统,可为用户创造最优的投入增值;●以物联网信息平台为核心构建的物联网综合应用实训室系统以工程实例为建设基础,不仅可完成基础实验教学,还可以完成教学教研、竞赛训练和创新实验,真正实现了一室多用的效果;●智能手机、笔记本电脑以其它智能终端都可随时接入系统中,参与教学和学习过程,拓展了教学方式和教学内容;●系统拥有统一的物联网信息中心,集中处理物联网接入设备的数据,提供本地/远程网络接入访问,方便教学及分析;●通过物联网信息中心,系统可以模拟生产、生活中的场景和应用,使得教学更加灵活丰富,拓宽了学习者的视野,提高了学习者的兴趣;●整个系统可无缝联接到校园网或者互联网中,学习者可随时随地开展物联网学习和实验,打破了时间和空间的限制,开创了一种全新的学习模式;●构建稳定的WiFi覆盖环境,将区域内的传感器、控制设备、智能手机、手持终端、教学电脑等物联网接入设备联接起来,共同完成教学和管理功能;●构建统一的物联网数据中心,实验室管理、设备管理、人员考勤、环境监测、教学管理等系统能在同一数据中心之下运行;●提供本地/远程网络访问,提供本地/远程网络实验学习、资料下载、网络教学;●根据用户需求,开放部分程序源码以及API接口,提供二次开发支持;●采用国内首创、国际领先的光载无线技术,构建全新的物联网信息平台,提供教师、学生科学研究和创新实验研究平台。

实验内容物联网信息平台可以完成以下实验:实验1、有线局域网组网实验实验2、无线局域网组网实验实验3、有线和无线局域网混合组网实验实验4、物联网信息平台组装实验实验5、物联网信息平台测试实验实验6、无线信号分布实验实验7、物联网信息平台的管理与配置实验实验8、WiFi设备服务器的管理与配置实验实验9、网络层传输实验实验10、网络层应用层接口实验1.4 物联网信息平台设备清单二、智能交通系统2.1 系统概述智能交通实训系统接入统一的物联网信息平台,信息汇聚于统一的数据服务器,真正体现信息化的智能交通实训系统。

利用智能交通实训系统沙盘,配置智能小车、道路交通控制与管理设备、物联网信息平台(包括网络设备、数据库与应用系统服务器),实现基于物联网技术的智能交通实训系统,主要功能模块包括:智能小车、智能交通系统(交通路口控制、车辆速度测量)、路灯自动控制系统、ETC系统、智能停车系统、智能交通显示系统、城市照明系统等,其系统拓扑图如下图所示:智能交通实训系统拓扑图系统能够完整体现物联网三层结构(感知层、网络层、应用层),以及智能交通实训系统的主要功能单元,能够开展从底层的感知与控制、设备联网与数据传输,到上层的应用与管理等不同层次和领域的课程实验和综合实训,要求支持以下课程的实验和实训教学:1)专业技术课程:机器人技术与应用、智能交通系统工程应用、城市照明系统工程应用、物联网概论、RFID技术及应用、单片机与接口技术、网络与通信技术、传感器应用与检测技术、数据库设计及应用、嵌入式编程、无线网络技术、综合布线工程设计与施工;2)综合实训课程:城市停车管理系统集成、城市交通调度与导航系统集成、城市交通监控与诱导设备操作实务、城市交通监控与诱导系统集成、交通调度与导航项目规划实施实训、城市智能交通系统项目综合实训、城市照明系统项目综合实训、机器人项目实训、智能交通实训系统沙盘需设置高速公路测速点、高速公路ETC系统、城市道路路口交通控制点、城市道路路灯控制系统、智能停车场、城市道路照明监控系统、城市景观照明监控系统等。

智能交通沙盘及设备分布图如下图所示:2.2 系统技术方案物联网智能交通实训系统应用系统主要包括:物联网信息平台(包括网络设备、及数据库与应用系统服务器)、智能小车、智能交通系统(交通路口控制、车辆速度测量、违章记录)、路灯自动控制系统、ETC系统、智能停车系统、智能交通显示系统、城市道路照明系统、景观照明控制系统及实训台等。

物联网智能交通实训系统设置实训台,利用智能交通与城市照明沙盘的道路监控装置、车辆监控装置、智能小车、道路照明等,开设智能停车系统实训、ETC实训、智能公交系统实训、道路监控实训、城市照明控制等。

物联网智能交通实训系统可支持的专业课程:计算机网络、无线局域网技术、物联网技术导论、物联网概论、网络系统工程、智能交通工程应用、城市照明系统工程应用等。

2.3 智能小车系统智能小车是整个智能交通系统中非常重要的部分,只有小车移动才能完成各种智能交通的应用和功能。

智能小车采用模块化设计,便于装配、设备扩展和功能扩展。

主要功能:1)自动车具有根据预先规划的路径、寻线运行的能力,即能够在智能交通沙盘上,按照道路规划线,自动运行。

2)遥控车现场遥控:通过遥控器,现场遥控小车运行。

网络遥控:通过网络设备(笔记本电脑、智能手机)本地/远程网络遥控小车在智能交通沙盘上运行。

其控制方式可以采用直接控制智能小车,也可以采用通过实验室的服务器控制小车。

不同的控制方式,覆盖不同的技术,可以展开多种技术的教学与实践。

主要设备四驱电动车模型、减速电机及驱动模块、控制主板、传感器扩展板、云台、舵机、超声波传感器、寻线模块、红外接收传感器、红外遥控器、无线微型摄像头、WiFi设备服务器模块、车载RFID卡等。

支持的课程实验智能小车系统可支持的实验:LED灯控制实验;数码管显示实验;按键控制实验;自动车组装实验;步进电机驱动实验;步进电机控制实验;自动车舵机控制实验;自动车寻线自动行驶实验;自动车自动避障实验;自动车遥控实验;超声波测距实验;无线通信与控制实验;传感器与接口实验;远程网络无线遥控实验2.4 道路交通管理系统功能介绍智能交通系统包括交通路口控制、车辆速度测量等单元,实现十字路口红绿灯控制、道路的监控、车速测量等功能;并通过LCD显示屏,显示交通系统电子地图(GIS)、道路交通状况、环境参数、车辆跟踪、交通规划等,提供远程网络访问、及交通指引。

系统图系统功能如下:◆交通路口控制:十字路口双向交通控制,其控制器接入物联网信息平台,实现交通灯的自动运行、本地/远程网络控制以及参数的网络配置等。

◆车辆速度测量:通过雷达测速模块和光电模块,测量指定位置的车辆速度,及指定路段的区间车速。

◆违章记录:通过地感线圈、地磁模块以及测速装置,感知车辆经过道路路口、测速点、测速区间的违章情况,自动记录违章车辆的违章信息。

◆智能交通系统:LCD显示屏显示模拟系统电子地图,并将道路交通信息、环境感知数据、车辆位置信息实施显示在LCD显示屏上。

实现道路交通状况的显示与网络发布、特定车辆的位置跟踪和交通引导,并支持智能终端的本地/远程网络访问和信息发布。

◆站台公交线路到站播报、电子站牌提示:沙盘至少具备两个公交站台,供小车停靠,电子站台语音播报公交线路到站信息,实时显示各线路即将到站车辆及距离信息,方便市民及时了解乘车情况。

主要设备道路交通管理系统保护的设备有:红、黄、绿灯及控制器;车辆检测装置(地感线圈及车辆检测器、光电装置、地磁传感器);无线摄像头;雷达测速模块(测量即时速度);光电测速装置(区间测速)等。

支持的课程实验道路交通管理系统支持的课程实验:智能交通系统概论、RFID技术及应用、单片机与接口技术、网络与通信技术、传感器应用与检测技术、无线网络技术、综合布线工程设计与施工;城市交通调度与导航系统集成、城市交通监控与诱导设备操作实务、城市交通监控与诱导系统集成、交通调度与导航项目规划实施实训、城市智能交通系统项目综合实训。

相关文档
最新文档