考研数学三历年真题:1987年至2018年

合集下载

2018考研数学(三)真题

2018考研数学(三)真题

代入已知条件
f x dx 0, 得
0
1
2 1 1 f 1 1 0 f f x x dx 0 2 2 2 2 2 1 2 2 1 f x 1 1 1 x f f x dx 2 2 2 2 2 0 0 2 1 2 1 1 1 f f x dx 2 2 0 2 2 1 f 1 1 f x dx, 0 2 2 2
1 1 0 (5) 下列矩阵中, 与矩阵 0 1 1 相似的为 0 0 1 1 1 1 (A) 0 1 1 . 0 0 1 1 0 1 (B) 0 1 1 . 0 0 1


1 1 1 (C) 0 1 0 . 0 0 1
x
lim
0 x
x
2 x
2
0,
f 0 lim
x 0
cos x 1 lim x 0 x
x
2 x
2
1 , 2
f 0 lim
x 0
cos x 1 lim x 0 x

x 2 x

2
lim
1 ,Y 服从参数为 的泊松 2
设总体 X 的概率密度为 f x;
1 e , 其中 0, 为未知参数, X1 , X 2 X n 为来自总体 2
x
X 的简单随机样本,记 的最大似然估计量为 .
(Ι )求 ; (Ⅱ)求 E 和 D .
1 , 则 P AC A B 2

考研数三(1987-1997年)历年真题

考研数三(1987-1997年)历年真题

六、(本题满分 6 分)
设函数 f (x) 在[0, ) 上连续、单调不减且 f (0) 0 ,试证函数
F
(
x)


1 x
x tn f (t)dt,
0
若x 0,
0,
若x 0,
在[0, ) 上连续且单调不减(其中 n 0 ).
七、(本题满分 6 分)
从点 P1(1, 0) 作 x 轴的垂线,交抛物线 y x2 于点 Q1(1,1) ;再从 Q1 作这条抛物线的切线与 x 轴交于 P2 ,然后又从 P2 作 x 轴的垂线,交抛物线于点 Q2 ,依次重复上述过程得到一系列的点 P1,Q1; P2,Q2; ; Pn,Qn; .

1 n


(D) 若级数 un 收敛,且 un vn (n 1, 2, ) ,则级数 vn 也收敛
n1
n1
(3) 设 n 阶矩阵 A 非奇异( n 2 ), A 是矩阵 A 的伴随矩阵,则
()
(A) ( A ) A n1 A (C) ( A ) A n2 A
2
PY 1 1 ,则下列各式中成立的是
2
()
(A) PX Y 1
2
(B) PX Y 1
(C) PX Y 0 1
4
(D) PXY 1 1
4
三、(本题满分 6 分) 在经济学中,称函数
Q(x)

A[
K
x

(1
) L x
1
]x
x2 y24t2
2
九、(本题满分 6 分)
设 A 为 n 阶非奇异矩阵, 为 n 维列向量, b 为常数.记分块矩阵

1987考研数三真题

1987考研数三真题
D
七、已知某商品的需求量 x 对价格 p 的弹性 3 p3 ,而市场对该商品的最大需求量为 1(万件).求需
求函数.
2x1 x2 4x3 3x4 4, 八、解线性方程组 3x1x1x3x2x4x313,,
7x1 7x3 3x4 3.
4 2 3
(A) f b f a f b aa b
()
(B) f b f x1 f b x1 x1 b (C) f x2 f x1 f x2 x1 x1 x2 (D) f x2 f a f x2 aa x2
1987 年全国硕士研究生入学统一考试数学(三)试题
一、判断题(每题 2 分)
1
(1) lim e x . x0
(2) x4 sin xdx 0 .
() ()



(3)若级数 an 与 bn 均发散,则级数 an bn 必发散.
n 1
n1
n 1
九、设矩阵
A和
B
满足
AB

A+2B
,求矩阵
B
,其中
A


1
1
0

.
1 2 3
3 1 2
十、求矩阵A Nhomakorabea 0
1
4

的实特征值及对应的特征向量.
1 0 1
十一、
(1) 已知随机变量 X 的概率分布为 PX 1 0.2,PX 2 0.3,PX 3 0.5.,试写出 X 的 分布函数 F x .
(5)若两事件 A 和 B 同时出现的概率 P AB 0 ,则

2018年考研数学三真题及答案解析(完整版)

2018年考研数学三真题及答案解析(完整版)

(C) f x cos x
(D) f x cos x
【答案】(D)
【解析】根据导数的定义:
x sin x
x
lim
lim
x 0,可导;
(A) x0 x
x0 x
x sin x
x
lim
lim
x 0,可导;
(B) x0
x
x0 x
cos lim
x
1

lim

1 2
t 0
t 0
2= lim (1 bt)et 1 lim et 1 lim btet 1 b,
t 0
t
t t 0
t t 0
从而b 1.
综上,a 1,b 1.
(16)(本题满分 10 分)
设平面区域D由曲线y 3 1 x2 与直线y 3x及y轴围成, 计算二重积分 x2dxdy.
2018 年全国硕士研究生入学统一考试数学(三)试题及答案解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合题目要求的.
(1) 下列函数中,在 x 0 处不可导的是( )
(A) f x x sin x
(B) f x x sin x
x
x
x 0时,可得f (x) 2xf (x) f (x) 2xf (x) 0.
由公式得:f (x) Ce(2x)dx =Cex2 , f (0) 2 C 2. 故f (x)=2ex2 f (1) 2e.
(13) 设A为3阶矩阵, a1, a2, a3是线性无关的向量组,若Aa1 a1 a2, Aa2 a2 a3, Aa3 a1 a3,

1987考研数学一、二、三真题+答案 【无水印】

1987考研数学一、二、三真题+答案 【无水印】

1987年全国硕士研究生入学统一考试数学试题参考解答数 学(试卷Ⅰ)一、填空题(每小题3分,满分15分. 只写答案不写解题过程)(1) 与两直线 112x y t z t =⎧⎪=-+⎨⎪=+⎩及 121121x y z ++-==都平行,且过原点的平面方程是 50x y -+=(2) 当x =1/ln 2-;时,函数2xy x =取得极小值.(3) 由ln y x =与两直线(1)y e x =+-及0y =围成图形的面积= 3 / 2 (4) 设L 为取正向的圆周922=+y x ,则曲线积分dy x xdx y xy L)4()22(2-+-⎰的值是π18- .(5) 已知三维线性空间的一组基底)1,1,0(,)1,0,1(,)0,1,1(321===ααα,则向量α=(2, 0, 0)在上述基底下的坐标是 ( 1 , 1 , -1 )二、(本题满分8分)求正的常数a 与b ,使式1sin 1lim220=+-⎰→dt ta t x bx x x 成立. 解:假若1b ≠,则根据洛必达法则有2200011lim lim(01sin cos x x x bx x b x →→==≠--⎰,与题设矛盾,于是1b =.此时2222100002111lim lim(lim(sin 1cos x x x x bx x x x →→→===--⎰,即1=,因此4a =.三、(本题满分7分)(1) 设函数,f g 连续可微,(,),()u f x xy v g x xy ==+,求,.u vx x∂∂∂∂ 解:1212()u x xy f f f y f x x x ∂∂∂''''=⋅+⋅=+⋅∂∂∂;()(1)v x xy g y g x x∂∂+''=⋅=+⋅∂∂.(2) 设矩阵A 和B 满足2AB A B =+,其中A =301110014⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,求矩阵B .解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=522432223--⎛⎫⎪-- ⎪ ⎪-⎝⎭.四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解.其中常数0a >.解:由特征方程3222(9)0r r a r +++=,知其特征根根为12,30,3r r ai ==-±. 故对应齐次方程的通解为33123cos sin x x y C C e x C e x --=++ ,其中123,,C C C 为任意常数.设原方程的特解为*()y x Ax =,代入原方程可得A =219a+. 因此,原方程的通解为*33123()cos sin x x y x y y C C e x C e x --=+=+++219a+x . 五、选择题(每小题3分,满分12分) (1) 设常数0k >,则级数21)1(n nk n n+-∑∞= (C )(A) 发散(B) 绝对收敛(C) 条件收敛(D) 收敛与发散与k 的值有关.(2) 设)(x f 为已知连续函数,⎰=t sdx tx f t I 0)(,0,0s t >>,则I 的值(D )(A) 依赖于s 和t (B) 依赖于s 、t 、x(C) 依赖于t 和x , 不依赖于s (D) 依赖于s , 不依赖于t (3) 设1)()()(lim 2-=--→a x a f x f a x ,则在点x a =处(B)(A) ()f x 导数存在,0)(≠'a f (B) ()f x 取得极大值(C) ()f x 取得极小值(D) ()f x 的导数不存在.(4) 设A 为n 阶方阵, 且0≠=a A , 而*A 是A 的伴随矩阵,则*A =(C)(A) a(B) a/1(C) 1-n a (D) n a六、(本题满分10分) 求幂级数1121+∞=∑n n n x n 的收敛域,并求其和函数. 解:记112n n n u x n +=,有1112lim lim (1)22n nn n n n n n x u x n u n x +++→∞→∞=⋅=+,令12x <,知原级数在开区间(2,2)-内每一点都收敛.又当2x =-时,原级数=111111(2)2(1)2n n n n n n n ∞∞++==-=-∑∑,故由莱布尼兹判别法知其收敛;而当2x =时,原级数=11111122(1)2n n n n n n n ∞∞++===-∑∑,显然发散,故幂级数的收敛域为)2,2[-. 又记111111()()()22n n n n n x S x x x xS x n n ∞∞+=====∑∑,其中111()()2n n xS x n ∞==∑,有1111()()21/2n n x S x x ∞-='==-∑,于是102()2ln()1/22x dx S x x x ==--⎰,因此幂级数的和函数为2()2ln 2S x x x=-,[2,2)x ∈-.七、(本题满分10分) 计算曲面积分2(81)2(1)4SI x y dydz y dzdx yzdxdy =++--⎰⎰,其中s 是曲线 )31(01≤≤⎩⎨⎧=-=y x y z 绕Y 轴旋转一周所形成的曲面,它的法向量与Y 轴正向的夹角恒大于/2π.解:S 的方程为221y x z =++,记1S :223,()y x z =+,知1S S +为封闭曲面,设其 方向取外侧,所围区域为Ω,则由高斯公式,有12(81)2(1)4S S I x y dydz y dzdx yzdxdy +=++--⎰⎰12(81)2(1)4S x y dydz y dzdx yzdxdy-++--⎰⎰12102(1)0S dv y dydz Ω=⋅---+⎰⎰⎰⎰⎰=3212(13)yz xD D dy dzdx dzdx --⎰⎰⎰⎰⎰31(1)16234y dy ππ=-+⋅⋅=⎰.八、(本题满分10分)设函数)(x f 在闭区间[0,1]上可微,对于[0,1]上的每个x ,函数的值都在开区间(0,1)内,且1)(≠'x f .证明 在(0,1)内有且仅有一个x ,使()f x x =.证:令()()h t f t t =-,知()h t 在闭区间[0,1]上连续,又由题设知0()1f x <<,于是 有(0)(0)00,(1)(1)10h f h f =->=-<. 故由零点定理,在(0,1)内有x ,使()f x x =.假若)(x f 在开区间(0,1)内有两个不同的点1x 和2x ,使得11()f x x =,22()f x x =, 不妨设12x x <,则易见)(x f 在闭区间[0,1]上连续,在(0,1)内可导,故由拉格朗日定理知,(0,1)ξ∃∈,使得2121()()()f x f x f x x ξ-'=-,即()1f ξ'=.此与1)(≠'x f 矛盾!故在(0,1)内使()f x x =的x 只能有一个.九、(本题满分8分)问,a b 为何值时,线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=⎧⎪++=⎪⎨-+--=⎪⎪+++=-⎩有唯一解?无解?有无穷多解? 并求出无穷多解时的通解.解:对方程组的增广矩阵进行初等变换,得11110111100122101221()013200101321100010A A b a b a b a a ⎛⎫⎛⎫⎪ ⎪⎪ ⎪==→ ⎪ ⎪----+ ⎪ ⎪--⎝⎭⎝⎭○1 当1≠a 时,系数行列式2(1)0A a =-≠,故由克拉姆法则,原方程组有唯一解; ○2 当1a =,且1b ≠-时, ()3,()2r A r A ==, ()()r A r A ≠,故原方程组无解;○3 当1a =,且1b =-时, ()()24r A r A ==<,故原方程组有无穷的解. 此时显然有 11110101110122101221()00000000000000000000A A b ---⎛⎫⎛⎫⎪⎪⎪ ⎪=→→⎪ ⎪⎪⎪⎝⎭⎝⎭可见其通解为:12(1,1,0,0)(1,2,1,0)(1,2,0,1)T T T x c c =-+-+-,其中12,c c 为任意常数.十、填空题(每小题2分,满分6分)(1) 在一次试验中事件A 发生的概率为p ,现进行n 次独立试验,则A 至少发生一次的概率为np )1(1--;而事件A 至多发生一次的概率为1)1]()1(1[---+n p p n .(2) 三个箱子,第一个箱子有4个黑球1个白球,第二个箱子中有3个白球3个黑球,第三个箱子中有3个黑球5五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个 球为白球的概率为53/120,已知取出的是白球,此球属于第二箱的概率是20/53.(3) 已知连续随机变量X 的密度为1221)(-+-=x xe xf π,则X 的数学期望为 1 ;X 的方差为 1/2 .十一、(本题满分6分)设随机变量X ,Y 相互独立,其概率密度函数分别为⎩⎨⎧≤≤=它其0101)(x x f X ;⎩⎨⎧≤>=-00)(y y e y f y Y ,求随机变量Z =2X +Y 的概率密度函数()z f z .解:由题设,(,)X Y 的联合密度为01,0(,)()()0y X Y e x y f x y f x f y -⎧≤≤>==⎨⎩其 它, 故Z 的分布函数2()()(2)(,)z x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰,○1 当0z <时,2()00z x y zF z dxdy +≤==⎰⎰,此时()00z f z '==;○2 当02z ≤≤时,200001()22z yzz z y y yz z F z dy e dx e dy ye dy ----==-⎰⎰⎰⎰,此时 011()()(1)22z y z z z f z F z e dy e -'===-⎰;○3 当2z >时,121220001()(1)1(1)2z x y x z zz F z dx e dy e dx e e -----==-=--⎰⎰⎰,此时 21()()(1)2zz z f z F z e e -'==-综上所述,Z =2X +Y 的概率密度函数为()z f z =122120(1)02(1)2zz z e z e e z ---<⎧⎪-≤≤⎨⎪->⎩数 学(试卷Ⅱ)一、(本题满分15分)【 同数学Ⅰ、第一题 】 二、(本题满分14分) (1)(6分)计算定积分2||2(||).x x x e dx --+⎰解:因||x xe-是奇函数,||||x x e -是偶函数,故 原式=22||202||226.x x x e dx xe dx e --==-⎰⎰(2)(8分)【 同数学Ⅰ、第二题 】三、(本题满分7分)设函数(,,),yz f u x y u xe ==,其中f 有二阶连续偏导数,求2.z x y∂∂∂解:121yz u f f f e f x x∂∂''''=⋅+=⋅+∂∂,2111312123()y y y y z f xe f e e f f xe f x y ∂'''''''''=⋅++⋅+⋅+∂∂. 四、(本题满分8分)【 同数学Ⅰ、第四题 】 五、(本题满分12分)【 同数学Ⅰ、第五题 】 六、(本题满分10分)【 同数学Ⅰ、第六题 】 七、(本题满分10分)【 同数学Ⅰ、第七题 】 八、(本题满分10分)【 同数学Ⅰ、第八题 】 九、(本题满分8分)【 同数学Ⅰ、第九题 】 十、(本题满分6分)设12,λλ为n 阶方阵A 的特征值,12λλ≠,而21,x x 分别为对应的特征向量,试证明:21x x +不是A 的特征向量.证:假若21x x +是A 的特征向量,设其对应的特征值为3λ,则有12312()()A x x x x λ+=+, 即123132Ax Ax x x λλ+=+. 又由题设条件知111Ax x λ=,222Ax x λ=,故有131232()()0x x λλλλ-+-=.因21,x x 是属于不同特征值的特征向量,所以21,x x 线性无关, 从而13λλ=,且13λλ=,此与12λλ≠矛盾!因此21x x +不是A 的特征向量.数 学(试卷Ⅲ)一、填空题(每小题2分,满分10分. 把答案填在题中横线上) (1) 设)1ln(ax y +=, 其中a 为非零常数,则22)1(,1ax a y ax ay +-=''+='.(2) 曲线y arctgx =在横坐标为1点处的切线方程是4221-+=πx y ; 法线方程是4/)8(2++-=πx y .(3) 积分中值定理的条件是()[,]f x a b 在闭区间上连续,结论是[,],()()()baa b f x dx f b a ξξ∃∈=-⎰使得(4) 32()1nn n lin e n -→∞-=+.(5)⎰='dx x f )(c x f +)(;⎰'badx x f )2(=)2(21)2(21a f b f -. 二、(本题满分6分) 求极限 011lim()1x x xe →--解:200000111111lim()lim lim lim lim 1(1)222x x x x x x x x x x e x e x e x x e x e x x x →→→→→------=====--. 三、(本题满分7分)设⎩⎨⎧-=-=)cos 1(5)sin (5t y t t x ,求 22,.dy d y dx dx解:因5sin ,55cos dy dx t t dt dt ==-,5sin )sin 5(1cos 1cos dy t t dx t t ==--(0+),故t tdx dy cos 1sin -=, 且222sin 1()1cos 5(1cos )d y d t dtdx dt t dx t =⋅=---四、(本题满分8分) 计算定积分⎰1arcsin xdx x .解:2211121000111arcsin arcsin 2242x xdx x x π=-=-⎰⎰⎰,令sin x t =,有22120sin cos cos 4t tdt t ππ==⎰⎰,因此101arcsin 4248x xdx πππ=-⋅=⎰. 五、(本题满分8分)设D 是曲线sin 1y x =+与三条直线0x =,π=x ,0y =围成的曲边梯形.求D 绕x 轴旋 转一周所生成的旋转体的体积.解:223(sin 1)42V x dx ππππ=+=+⎰. 六、证明题(本题满分10分)(1)(5分)若()f x 在(,)a b 内可导,且导数)(x f '恒大于零,则()f x 在(,)a b 内单调增加. 证:12,(,)x x a b ∀∈,不妨设12x x <,则()f x 在12[,]x x 上连续,在12(,)x x 内可导,故由拉格朗日中值定理,12(,)(,)x x a b ξ∃∈⊂,使得2121()()()()f x f x f x x ξ'-=-. 由于)(x f '在(,)a b 内恒大于零,所以()0f ξ'>,又210x x ->,因此21()()0f x f x ->, 即21()()f x f x >,表明()f x 在(,)a b 内单调增加.(2)(5分)若()g x 在x c =处二阶导数存在,且0)(='c g ,0)(<''c g ,则()g c 为()g x 的一个极大值.证:因()()()lim 0x c g x g c g c x c →''-''=<-,而0)(='c g ,故()lim 0x c g x x c→'<-.由极限的保号性,0δ∃>,当(,)x c c δ∈-时,有()0g x x c '<-,即()0g x '>,从而()g x 在(,)c c δ-单增;当(,)x c c δ∈+时,有()0g x x c'<-,即()0g x '<,从而()g x 在(,)c c δ-单减.又由0)(='c g 知,x c =是()g x 的驻点,因此()g c 为()g x 的一个极大值.七、(本题满分10分)计算不定积分⎰+x b x a dx2222cos sin ( 其中,a b 为不全为零的非负数 )解:① 当0a =时,原式=22211sec tan xdx x c b b =+⎰;②当0b =时, 原式=22211c cot cs xdx x c a a=-+⎰;③当0ab ≠时,原式=22222(tan )sec 11arctan(tan )tan (tan )1ad x xdx a b x c a a x b ab ab bx b==+++⎰⎰.八、(本题满分15分) (1)(7分)求微分方程y x dxdyx-=,满足条件0|2==x y 的解. 解:原方程即11dy y dx x+=,故其通解为11211()()2dx dx xx y e e dx c x c x -⎰⎰=+=+⎰. 因0|2==x y ,所以1c =-.于是所求初值问题的解为xx y 12-=.(2)(8分)求微分方程 x e x y y y =+'+''2 的通解.解:由特征方程2210r r ++=,知其特征根根为1,21r =-.故对应齐次方程的通解为12()x y C C x e -=+ ,其中12,C C 为任意常数. 设原方程的特解为*()()x y x e ax b =+,代入原方程可得a =14,b =-14. 因此,原方程的通解为*212()()x y x y y C C x e -=+=++ 14(1)x x e -. 九、选择题(每小题4分,满分16分) (1).+∞<<∞=x e x x x f x-,sin )(cos 是(D )(A )有界函数(B )单调函数(C )周期函数 (D )偶函数(2). 函数()sin f x x x -(D)(A )当∞→x 时为无穷大 (B )当∞→x 时有极限 (C )在),(+∞-∞内有界 (D )在),(+∞-∞内无界(3) 设()f x 在x a =处可导,则xx a f x a f x )()(lim--+→等于(B)(A ))(a f ' (B ))(2a f ' (C )0(D ))2(a f '(4) 【 同数学Ⅰ、第五(2)题 】十、(本题满分10分)在第一象限内,求曲线12+-=x y 上的一点,使该点处切线与所给曲线及两坐标围成的面积为最小,并求此最小面积.解:设切点的横坐标为a ,则切线方程为2(1)2()y a a x a --=--,即221y ax a =-++故所围面积2312201112(1)(1)224243a a a s a x dx a a +=+--+=++-⎰. 令0s '=得驻点a =.由于0a s ''>,故所求点的坐标为2)3,其最小值为a s =23.数 学(试卷Ⅳ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 10lim xx e →=∞( ⨯ ) (2)4sin 0x xdx ππ-=⎰( √ )(3) 若级数1nn a∞=∑与1nn b∞=∑均发散,则级数1()nn n ab ∞=+∑必发散( ⨯ )(4) 假设D 是矩阵A 的r 阶子式,且含D 的一切1r +阶子式都等于0, 那么矩阵A 的一切1r +阶子式都等于0 ( √ ) (5) 连续型随机变量取任何给定实数值的概率都等于0( √ )二、选择题(每小题2分,满分10分.) (1) 下列函数在其定义域内连续的是(A)(A ) ()ln sin f x x x =+(B )⎩⎨⎧>≤=0cos 0sin )(x xx xx f (C )⎪⎩⎪⎨⎧>-=<+=010001)(x x x x x x f (D )⎪⎩⎪⎨⎧=≠=0001)(x x xx f (2) 若函数f(x)在区间(,)a b 内可导,21,x x 是区间内任意两点,且21x x <,则至少存一点ξ,使得(C )(A) ()()()(),f b f a f b a a b ξξ'-=-<<. (B) 111()()()(),f b f x f b x x b ξξ'-=-<<.(C) 212112()()()(),f x f x f x x x x ξξ'-=-<<. (D) 222()()()(),f x f a f x a a x ξξ'-=-<<. (3) 下列广义积分收敛的是 (C )(A )dx xxe⎰∞+ln (B )⎰∞+exx dx ln (C )⎰+∞ex x dx 2)(ln (D )⎰∞+exx dx ln (4) 设A 是n 阶方阵,其秩r < n , 那么在A 的n 个行向量中(A)(A) 必有r 个行向量线性无关(B) 任意r 个行向量线性无关(C) 任意r 个行向量都构成极大线性无关向量组 (D) 任意一个行向量都可以由其它r 个行向量线性表示 (5) 若二事件A 和B 同时出现的概率P( A B ) = 0 , 则(C)(A) A 和B 互不相容(互斥) (B) AB 是不可能事件 (C) AB 未必是不可能事件(D) P (A )=0或P (B )=0三、计算下列各题(每小题4分,满分16分) (1) 求极限 xxx xe 10)1(lim +→.解:因 1ln(1)(1)x xe x xxxe e ++=, 而 ln(1)x x xe xe x+ (当0x →), 故 000ln(1)lim lim lim 1x x x x x x xe xe e xx →→→+===, 从而 10lim(1)x xx xe e →+=.(2)已知1111ln 22++-+=x x y , 求y '.解:1)1)y =-,y '=-=212xx +. (3) 已知 y x yx arctg z -+=,求dz .解:222()()()()()()1()1()x y x y dx dy x y dx dy d x y x y dz x y x y x y x y+-+-+---==++++--22ydx xdy x y -+=+(4)求不定积分dx ex⎰-12.解:t =,有1)t t t t t e tdt te e dt te e c c==-=-+=+⎰⎰⎰四、(本题满分10分)考虑函数sin y x = )2/0(π≤≤x ,问:(1) t 取何值时,图中阴影部分的面积1s 与2s 之和21s s s +=最小?(2 ) t 取何值时,21s s s +=最大?解:因10sin sin sin cos 1ts t t xdx t t t =-=+-⎰,22sin ()sin cos sin sin 22t s xdx t t t t t t πππ=--=+-⎰,故122sin 2cos sin 12s s s t t t t π=+=+--,(0)2t π≤≤.令0s '=,得s 在(0,)2π内的驻点4t π=.而()14s π=,()122s ππ=-,(0)1s =,因此 4t π=时,s 最小;0t =时,s 最大.五、(本题满分6分)将函数231)(2+-=x x x f 展成x 的级数,并指出收敛区间. 解:因111111()(2)(1)121212f x xx x x x x ==-=-⋅------,而011nn x x ∞==-∑,(1,1)x ∈-, 且0011()2212n n n n n x x x ∞∞====-∑∑,(2,2)x ∈-, 故1100111()(1)222nn n n n n n n f x x x x ∞∞∞+====+=+∑∑∑,其收敛区间为(1,1)-.六、(本题满分5分) 计算二重积分2x De dxdy ⎰⎰,其中D 是第一象限中由直线y x =和3x y =围成的封闭区域. 解:联立y x =和3x y =,可解得两曲线交点的横坐标 0x =和1x =,于是22231130()12xx x x Dxe e dxdy dx e dy x x e dx ==-=-⎰⎰⎰⎰⎰ 七、(本题满分6分)已知某商品的需求量x 对价格P 的弹性为 33p -=η,而市场对商品的最大需求量为1(万件),求需求函数.解:由弹性的定义,有33p dx p x dp =-,即23dxp dp x=-, 于是有 3px ce -=,c 为待定常数.由题意 0p =时,1x =,故1c =,因此3p x e -=.八、(本题满分8分)解线性方程组 ⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x 【123431820160x x k x x -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,k 为任意常数】 解:对方程组的增广矩阵进行初等行变换,有2143410103101130120831101000167073300000---⎛⎫⎛⎫⎪⎪---- ⎪ ⎪→→⎪⎪⎪⎪-⎝⎭⎝⎭故原方程组与下方程组同解:132343826x x x x x =-⎧⎪=-+⎨⎪=⎩,令30x =,可得原方程组的特解(3,8,0,6)T β=-. 又显然原方程组的导出组与下方程组同解:1323420x x x x x =-⎧⎪=⎨⎪=⎩,令31x =,可得导出组的基础解系(1,2,1,0)T η=-. 因此原方程组的通解为:1234(,,,)(3,8,0,6)(1,2,1,0)T T x x x x k =-+-,其中k 为任意常数.九、(本题满分7分)设矩阵A 和B 满足2AB A B =+,求矩阵B ,其中A =423110123⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦.解:因2AB A B =+,故2AB B A -=,即(2)A E B A -=,故1(2)B A E A -=-=3862962129--⎛⎫⎪-- ⎪ ⎪-⎝⎭十、(本题满分6分) 求矩阵A =312014101--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦的实特征值及对应的特征向量.解:令0E A λ-=,即2(1)(45)0λλλ-++=,可见矩阵A 只有一个实特征值1λ=.易见,线性方程组()0E A X λ-=的基础解系为(0,2,1)T ,故A 对应于实特征值1λ=的特征向量为(0,2,1)T k ,(其中k 为非零任意常数).十一、(每小题4分,满分8分)(1) 已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======,试写出X 的分布函数()F x .解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x . (2) 已知随机变量Y 的概率密度为000)(2222<≥⎪⎩⎪⎨⎧=-y y e y f a y a y , 求随机变量YZ 1=的数学期望EZ .解:222222200111()()y y a a y EZ E f y dy edy dy Yy y a --+∞+∞+∞-∞===⋅==⎰⎰⎰. 十二、(本题满分8分)设有两箱同种零件.第一箱内装50件,其中10件一等品;第二箱内装有30件,其中18件一等品.现从两箱中随机挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件均不放回),试求:(1) 先取出的零件是一等品的概率p ;(2) 在先取出的零件是一等品的条件下,第二次取出的零件仍然是一等品的条件概率q . 解:设i B ={取出的零件为第i 箱中的},j A ={第j 次取出的是一等品},,1,2i j =, 显然12,B B 为正概完备事件组,故全概公式得(1) 11112121101182()()()()()2502305p P A P B P A B P B P A B ==+=⋅+⋅=; (2) 1211212122110911817276()()()()()25049230291421P A A P B P A A B P B P A A B ⨯⨯=+=⋅+⋅=⨯⨯, 于是,由贝叶斯公式得q =12211()690()0.48557()1421P A A q P A A P A ===≈.数 学(试卷Ⅴ)一、判断题(每小题答对得2分,答错得-1分,不答得0分,全题最低0分) (1) 【 同数学Ⅳ 第一(1)题 】 (2) 【 同数学Ⅳ 第一(2)题 】(3) 若函数()f x 在区间(,)a b 严格单增,则对区间(,)a b 内任何一点x 有()0f x '>. ( ⨯ ) (4) 若A 为n 阶方阵,k 为常数,而A 和kA 为A 和kA 的行列式,则kA k A =. ( ⨯ ) (5) 【 同数学Ⅳ 第一(5)题 】二、选择题(每小题2分,满分10分) (1) 【 同数学Ⅳ 第二(1)题 】 (2) 【 同数学Ⅳ 第二(2)题 】 (3) 【 同数学Ⅳ 第二(3)题 】 (4) 【 同数学Ⅳ 第二(4)题 】(5) 对于任二事件A 和B ,有()P A B -= (C)(A) ()()P A P B - (B) ()()()P A P B P AB -+ (C) ()()P A P AB - (D) )()()(B A P B P A P -- 三、计算下列各题(每小题4分,满分20分)(1) 求极限1ln(1)limx x arctgx→+∞+. 解:11ln(1)lim ln(1)0lim0lim /2x x x x x arctgx arctgx π→+∞→+∞→+∞++=== (2) 【 同数学Ⅳ 第三(2)题 】 (3) 【 同数学Ⅳ 第三(3)题 】 (4) 计算定积分dxex ⎰-12112解:t =,有111111021tt t te tdt tee dt e e ==-=-=⎰⎰⎰(5) 求不定积分⎰++5224x x xdx.解:22422221(1)11arctan 252(1)242xdx d x x c x x x ++==+++++⎰⎰. 四、(本题满分10分)考虑函数2y x =,10≤≤x ,问:(1) t 取何值时,图中阴影部分的面积(与数学Ⅳ第四题类似)1s 与2s 之和21s s s +=最小? (2 ) t 取何值时,21s s s +=最大?解:132223212041(1)33tts s s t x dx x dx t t t t =+=-+--=-+⎰⎰,(01)t ≤≤令0s '=,得(0,1)内的驻点12t =. 而11()24s =,1(0)3s =,2(1)3s =,因此 12t =时,s 最小;1t =时,s 最大.五、(本题满分5分)【 同数学Ⅳ 第六题 】 六、(本题满分8分)设某产品的总成本函数为21()40032C x x x =++,而需求函数为xp 100=,其中x 为产量(假定等于需求量),p 为价格. 试求:(1)边际成本; (2)边际收益; (3)边际利润; (4)收益的价格弹性. 解:(1)边际成本:()3MC C x x '==+;(2)收益函数:()R x p x =⋅=()MR R x'==;(3)利润函数:21()()()40032L x R x C x x x =-=--, 边际利润:()3ML L x x'==--;(4)收益的价格函数:2(100)()R x p==,收益的价格弹性:2222(100)1(100)p dR p R dp p =-⋅=-. 七、(本题满分8分)【 同数学Ⅳ 第八题 】 八、(本题满分7分)【 同数学Ⅳ 第九题 】 九、(本题满分6分)【 同数学Ⅳ 第十题 】十、(本题满分8分)已知随机变量X 的概率分布为(1)0.2,(2)0.3,(3)0.5P X P X P X ======, 试写出X 的分布函数()F x ,并求X 的数学期望与方差.解:X 的分布函数为()F x =0,0.2,0.5,1,⎧⎪⎪⎨⎪⎪⎩332211≥<≤<≤<x x x x , 10.220.330.5 2.3EX =⨯+⨯+⨯=;222210.220.330.5 5.9EX =⨯+⨯+⨯=222() 5.9 2.30.61DX EX EX =-=-=十一、(本题满分8分)【 同数学Ⅳ 第十二题 】。

2018年考研数学三真题及解析

2018年考研数学三真题及解析

2018年考研数学三真题及答案一、 选择题1.下列函数中,在 0x =处不可导的是()().sin A f x x x = ().B f x x =().?C f x cos x = ().D f x =答案:() D 解析:方法一:()()()000sin 0limlim lim sin 0,x x x x x x f x f x x xx A →→→-===可导 ()()()0000limlim 0,x x x x f x f x x B →→→-===可导()()()20001cos 102limlim lim 0,x x x x x f x f x x C x→→→---===可导 ()()()000102limlim x x x x f f x xD x →→→--==不存在,不可导 应选()D . 方法二:因为()(1)0f f x ==()()000102lim lim x x x x f x f x x→→→--==不存在 ()f x ∴在0x =处不可导,选()D 对()():?A f x xsinx =在 0x =处可导 对()()32:~?B f x xx x =在 0x =处可导对()():x x C f cos =在 0x =处可导.2.设函数()f x 在[0,1]上二阶可导,且()10,f x dx =⎰则()()1'0,02A f x f ⎛⎫<<⎪⎝⎭当时 ()()1''0,02B f x f ⎛⎫<< ⎪⎝⎭当时 ()()1'0,02C f x f ⎛⎫><⎪⎝⎭当时 ()()1''0,02D f x f ⎛⎫>< ⎪⎝⎭当时 答案()D【解析】将函数()f x 在12处展开可得()()()()()222111000''1111',22222''1111111''',22222222f f x f f x x f f x dx ff x x dx f f x dx ξξξ⎛⎫⎛⎫⎛⎫⎛⎫=+-+- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-=+-⎢⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦⎰⎰⎰故当''()0f x >时,()1011.0.22f x dx f f ⎛⎫⎛⎫>< ⎪ ⎪⎝⎭⎝⎭⎰从而有选()D 。

1987年考研数学三

1987年考研数学三

1987年考研数学三一、判断题.(1)∞=→xx e 10lim . ( )(2)⎰-=ππ0sin 4xdx x . ( )(3)若级数∑∞=1n na与∑∞=1n nb均发散,则级数∑∞=+1)(n n nb a必发散. ( )(4)假设D 是矩阵A 的r 阶子式,且0≠D ,但含D 的一切1+r 阶子式都等于0,那么矩阵A 的一切1+r 阶子式都等于0. ( ) (5)连续型随机变量取任何给定实数值的概率等于0. ( )二、选择题.(1)下列函数在其定义域内连续的是 ( )(A)x linx x f sin )(+=(B)⎩⎨⎧>≤=0cos 0sin )(x x x x x f(C)000,1,0,1)(>=<⎪⎩⎪⎨⎧-+=x x x x x x f(D)⎪⎩⎪⎨⎧=≠=0001)(x x xx f(2) 若)(x f 在),(b a 内可导且b x x a <<<21,则至少存在一点ξ,使得 ( ) (A) ()()b a a b f a f b f <<-'=-ξξ)()()((B)()()b x x b f x f b f <<-'=-ξξ111)()()( (C)()()211212)()()(x x x x f x f x f <<-'=-ξξ(D)()()222)()()(x a a x f a f x f <<-'=-ξξ(3)下列广义积分收敛的是 ( ) (A)dx xx e⎰+∞ln (B)⎰+∞exx dxln (C)()⎰+∞ex x dx2ln(D)⎰+∞exx dxln(4)设n 阶方阵A 的秩n r A r <=)(,那么在A 的n 个行向量中 ( ) (A)必有r 个行向量线性无关(B)任意r 个行向量都线性无关(C)任意r 个行向量都构成极大线性无关向量组 (D)任意一个行向量都可以由其他行向量线性表示(5)若两件事A 和B 同时出现的概率()0=AB P ,则 ( ) (A)A 和B 不相容(互斥)(B)AB 是不可能事件. (C)AB 未必是不可能事件(D)()0=A P 或()0=B P三、计算下列极限. (1)求极限()xx x xe101lim +→(2)已知1111ln22++-+=x x y ,求y '.(3)yx yx z -+=arctan,求dz (4)求不定积分dx ex ⎰-12.四、考虑函数x y sin =,20π≤≤x .问(1)t 取何值时,右图中阴影部分的面积21,S S 的面积之和最小? (2)t 取何值时,面积21S S S +=最大?五、将函数231)(2+-=x x x f 展开成x 的幂级数,并指出收敛区间.六、计算二重积分⎰⎰Dx dxdy e 2,其中D 是第一象限中由直线x y =和3x y =围成的封闭区域.七、已知某商品的需求量x 对价格p 的弹性33p -=η,而市场对该商品的最大需求量为1(万件)求需求函数.八、解线性方程组⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+-=-+-337713343424313214314321x x x x x x x x x x x x x九、设矩阵A 和B 满足B A AB 2+=,求矩阵A ,其中⎪⎪⎪⎭⎫⎝⎛-=321011324A .十、求矩阵⎪⎪⎪⎭⎫⎝⎛----=101410213A 的实特征值及对应的特征向量.十一、已知随机变量X 的概率分布为{}2.01==X P ,{}3.02==X P ,{}5.03==X P .试写出X 的分布函数()X F .十二、假设两箱同种零件:第一箱内装50件,其中10件一等品;第二箱内装30件,其中18件一等品.现在从两箱中随意挑出一箱,然后从该箱中先后随机取出两个零件(取出的零件不放回),试求:(1)先取出的零件是一等品的概率p :(2)先取出的零件是一等品的情况下,第二次取出的零件还是一等品的条件概率q .。

考研数学三1987真题

考研数学三1987真题

(A)有界函数
(2) 函数 f (x) x sin x (
(B)单调函数 )
(C)周期函数
(D)偶函数
(A)当 x 时为无穷大
(B)当 x 时有极限
(C)在( , )内有界
(D) 在( , )内无界
(3)设 f (x)在x a 处可导,则 lim f (a x) f (a x) 等于( )
(1)(5 分)若 f x在a,b 内可导,且导数 f x恒大于零,则 f (x)在a,b内单调增加。
(2)(5 分)若 g(x)在x c 处二阶导数存在,且 g(c) 0, g(c) 0.则 g(c)为g(x) 的一个极大值。
七、(本题满分 10 分)
dx
计算不定积分
(其中 a,b 为不全为零的非负数)
x0
x
(A) f (a) (B) 2 f (a) (C)0 (D) f (2a)
s
(4)设 f (x) 为已知连续函数, I t t f (tx)dx, s 0,t 0,则I 的值( ) 0
(A)依赖与 s 和 t
(B) 依赖与 s、t、x
(C) 依赖与 t 和 x,不依赖与 s (D) 依赖与 s,不依赖与 t
a2 sin 2 x b2 cos2 x
八、(本题满分 15 分)
(1)(7 分)求微分方程 x dy dx
x y, 满足条件 y
x
2
0 的解。
(2)(8 分)求微分方程 y 2 y y xex 的通解。
九、选择题(每小题 4 分,满分 16 分)
(1) f (x) x sin ecosx , x 是 ( )
t t
,

dy dx
,
d2 dx
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2) 幂级数
n 0
_
.
xn n 1
的收敛域是__
_
.
(3) 齐次线性方程组
x1 x2 x3 0, x1 x2 x3 0, x x x 0 2 3 1
只有零解,则 应满足的条件是__
_
.
(4) 设随机变量 X 的分布函数为
0 , F x A sinx, 1, x 0, 0 x x
HY-2018
(含 31 年共 31 套考研《数学三》历年真题)1987 年—2018 年全国硕士研究生入学统一考试《数学 三》真题试卷及答案
全国硕士研究生入学统一考试《数学三》真题目录(31 套)
1987 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1989 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1990 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1991 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1992 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1993 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1994 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1995 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1996 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1997 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1998 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 1999 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2000 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2001 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2002 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2003 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2004 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2005 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2006 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2007 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2008 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2009 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2010 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2011 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2012 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2013 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2014 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2015 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2016 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2017 年全国硕士研究生入学统一考试《数学三》真题试卷及答案 2018 年全国硕士研究生入学统一考试《数学三》真题试卷及答案
, 2
, 则 A =__________, P X 6 2
.
(5) 设随机变量 X 的数学期望 E ( X ) ,方差 D ( X ) 2 ,则由切比雪夫(Chebyshev)不 等式,有 P{ X 3 } __ _ .
二、选择题(本题满分 15 分,每小题 3 分.每小题给出的四个选项中,只有一项符合题目 要求,把所选项前的字母填在题后的括号内.) (1) 设 f x 2 x 3x 2, 则当 x 0 时 ( (A) f x 与 x 是等价无穷小量 (C) f x 是比 x 较高阶的无穷小量 (2) 在下列等式中,正确的结果是 ( (A) ) (B) f x 与 x 是同阶但非等价无穷小量 (D) f x 是比 x 较低阶的无穷小量 ) (B)
1
f x dx f x
df x f x
(C)
d f x dx f x dx
(D) d f x dx f x )
(3) 设 A 为 n 阶方阵且 A 0 ,则 (
(A) A 中必有两行(列)的元素对应成比例 (B) A 中任意一行(列)向量是其余各行(列)向量的线性组合 (C) A 中必有一行(列)向量是其余各行(列)向量的线性组合 (D) A 中至少有一行(列)的元素全为 0 (4) 设 A 和 B 均为 n n 矩阵,则必有 ( (A) A B A B (C) AB BA ) (B) AB BA (D)
1 1 (1) 求极限 lim sin cos . x x x
x
2
(2) 已知 z f (u , v ), u x y , v xy , 且 f (u , v) 的二阶偏导数都连续.求
2 z . xy
(3) 求微分方程 y 5 y 6 y 2e x 的通解.
A 以 A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件 A 为 ( (A) “甲种产品滞销,乙种产品畅销” (C) “甲种产品滞销” (B) “甲、乙两种产品均畅销”
)
(D) “甲种产品滞销或乙种产品畅销”
三、计算题(本题满分 15 分,每小题 5 分)
温馨提示:已排版编辑好,可直接打印!
1
1987 年全国硕士研究生入学统一考试真题试卷 《数学三》试题
(3)下列积分收敛的是
1989 年全国硕士研究生入学统一考试真题试卷 《数学三》试题
一、填空题(本题满分 15 分,每小题 3 分.把答案填在题中横线上.)
(1) 曲线 y x sin 2 x 在点 ,1 处的切线方程是__ 2 2
相关文档
最新文档