人教版初一数学上册全册优化教案(广东)教案

合集下载

2024-2025学年初中数学七年级上册(人教版)教案第3课时利用去括号解一元一次方程

2024-2025学年初中数学七年级上册(人教版)教案第3课时利用去括号解一元一次方程

第3课时利用去括号解一元一次方程教学步骤师生活动教学目标课题 5.2 第3课时利用去括号解一元一次方程授课人素养目标 1.会解含有括号的一元一次方程.2.知道解方程的基本思路是把“复杂”转化为“简单”,把“未知”转化为“已知”的过程.教学重点利用去括号解一元一次方程.教学难点利用去括号解一元一次方程.教学活动教学步骤师生活动活动一:回顾旧知,引入新知设计意图为后面学习去括号解方程作准备.【知识回顾】1.在前面的课时我们学习了一元一次方程的解法,当中有哪几个步骤?移项、合并同类项、系数化为1.2.你能快速求出方程6x-7=4x-1的解吗?移项,得6x-4x=-1+7.合并同类项,得2x=6.系数化为1,得x=3.3.去括号:(1)(3a+2b)+(6a-4b);原式=3a+2b+6a-4b.(2)(-3a+2b)-3(a-b);原式=-3a+2b-3a+3b.(3)-(5a+4b)+2(-3a+b).原式=-5a-4b-6a+2b.今天我们将在以上知识的基础上学习新的解方程的方法.【教学建议】提醒学生注意:(1)移项时要变号.(2)去括号注意两点:①如果括号外的数是负数,去括号后,原括号内各项都要改变符号;②将括号前的乘数与括号内的式子相乘时,乘数应乘括号内的每一项,不要漏乘.活动二:交流讨论,探究新知设计意图继续强化根据实际问题建立方程模型的能力,并引出带有括号的一元一次方程,学会求其解探究点利用去括号解一元一次方程(教材P124问题3)某工厂采取节能措施,去年下半年与上半年相比,月平均用电量减少2000kW·h(千瓦时),全年的用电量是150000kW·h.这个工厂去年上半年平均每月的用电量是多少?问题1设去年上半年平均每月的用电量是xkW·h,请你根据题意说一说相等关系是怎样的?并列出方程.问题2我们前面学过了用移项、合并同类项的方法解一元一次方程,对于这个方程,如果要用我们前面学过的知识求解,你觉得需要先对方程作怎样的变形?将方程中的括号去掉.问题3请你结合去括号的知识,解这个方程.【教学建议】让学生对比本节课与上节课解方程的过程,体会其中增加的步骤.方程左边去括号,得6x+6x-12000=150000.移项,得6x+6x=150000+12000.合并同类项,得12x=162000.系数化为1,得x=13500.由上可知,这个工厂去年上半年平均每月的用电量是13500kW·h.【对应训练】教材P126练习第2题.活动三:巩固提升,灵活运用设计意图规范展现利用去括号解一元一次方程的过程.设计意图构建方程模型解决涉及顺、逆水的行程问题,并进一步展现去括号等解方程的步骤.例1(教材P125例5)解下列方程:(1)2x-(x+10)=5x+2(x-1);(2)3x-7(x-1)=3-2(x+3).解:(1)去括号,得2x-x-10=5x+2x-2.移项,得2x-x-5x-2x=-2+10.合并同类项,得-6x=8.系数化为1,得x=−43.(2)去括号,得3x-7x+7=3-2x-6.移项,得3x-7x+2x=3-6-7.合并同类项,得-2x=-10.系数化为1,得x=5.例2(教材P125例6)一艘船从甲码头到乙码头顺水而行,用了2h;从乙码头返回甲码头逆水而行,用了2.5h.已知水流的速度是3km/h,求船在静水中的平均速度.问题1这道题中哪一个量是不变的?这艘船往返的路程.问题2根据题意你能得出怎样的相等关系?顺水速度×顺水时间=逆水速度×逆水时间.问题3题中涉及顺水、逆水因素,这类问题中又有哪些基本相等关系?顺水速度=静水速度+水流速度.逆水速度=静水速度-水流速度.问题4根据前面的分析,求出船在静水中的平均速度.解:设船在静水中的平均速度为xkm/h,则顺水速度为(x+3)km/h,逆水速度为(x-3)km/h.根据往返路程相等,列得方程2(x+3)=2.5(x-3).去括号,得2x+6=2.5x-7.5.移项及合并同类项,得-0.5x=-13.5.系数化为1,得x=27.答:船在静水中的平均速度为27km/h.【对应训练】教材P126练习第1,3题.【教学建议】请两个学生上台板演,其他学生独立完成解方程,教师讲解正确的解题步骤,提醒学生注意去括号时符号的变化规律,以减少解方程中的运算错误.【教学建议】教学时,教师要引导学生知晓:(1)找到一个不变的量,这个不变的量能以不同式子表示,是列方程的核心.(2)在匀速运动中,“路程=速度×时间”是基本的相等关系.活动四:随堂训练,课堂总结【随堂训练】见《创优作业》“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.解带括号的一元一次方程时,步骤有哪些?2.去括号时要注意什么?3.在行程问题中,涉及顺、逆水问题时,速度分别是怎样计算的?【知识结构】【作业布置】1.教材P130习题5.2第2,4(3),7,11,13题.2.《创优作业》主体本部分相应课时训练.板书设计第3课时利用去括号解一元一次方程1.利用去括号解一元一次方程2.涉及顺、逆水的行程问题教学反思1.注意去括号的符号问题:无论是整式中的去括号化简,还是解含括号的一元一次方程,去括号时的符号处理都是学生最容易犯错的地方.在教学过程中既要让学生了解去括号背后的原理,同时也要让学生进行一些必要的练习以巩固所学.2.突出列方程,结合实际问题讨论解方程:列方程和解方程是学习方程时的两个重点内容,一般的解法都较容易掌握,在每一个课时都需要注意在分析问题的数量关系的基础上,用数学的符号语言正确地表达.对于较难的问题,教师要加强对学生的引导,对每一个环节都进行具体的分析.解题大招利用方程同解求字母的值先求出其中一个不含字母参数的方程的解,再将其代入另一个方程,求出待求字母参数的值.例若关于x的方程x-3(kx+1)=8的解与方程2(x-2)+5=3x+2的解相同,求k的值.解:方程2(x-2)+5=3x+2,去括号,得2x-4+5=3x+2.移项,得2x-3x=2+4-5.合并同类项,得-x=1.系数化为1,得x=-1.把x=-1代入x-3(kx+1)=8,得-1-3(-k+1)=8.解得k=4.培优点根据几何图形面积构建方程模型例如图,长方形纸片的长是15cm,沿图中方式剪去两个宽为3cm的长条(阴影部分),剩下部分的面积是原长方形纸片面积的35.求原长方形纸片的面积.分析:设原长方形纸片的宽为xcm,再列式表示剪完后剩下部分的相邻两边的长,再根据面积关系建立方程求解.解:设原长方形纸片的宽是xcm,则它的面积是15xcm2.剪去两个宽为3cm的长条后,剩下部分也是一个长方形,长为15-3=12(cm),宽为(x-3)cm,面积是12(x-3)cm2.根据题意,得=12(x-3).15x×35即9x=12(x-3).解得x=12.则原长方形纸片的面积是15×12=180(cm2).。

最新人教版初一数学上册全册优化教案广东教案

最新人教版初一数学上册全册优化教案广东教案

人教版初一数学上册全册优化教案广东教案七年级数学(上)全册教案第一章有理数1.1 正数和负数(1)【教学目标】1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

【教学难点】正确区分两种不同意义的量。

【知识重点】两种相反意义的量【探索1】仅供学习与交流,如有侵权请联系网站删除谢谢75上课开始时,教师应通过具体的例子,简要说明在以前我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

【探索2】前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解,教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

然后总结:大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。

【探索3】仅供学习与交流,如有侵权请联系网站删除谢谢75经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.提出问题:请同学们举出用正数和负数表示的例子。

你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。

最新整理初一数学教案七年级数学上册全册导学案学练优(人教版).docx

最新整理初一数学教案七年级数学上册全册导学案学练优(人教版).docx

最新整理初一数学教案七年级数学上册全册导学案学练优(人教版).docx最新整理初一数学教案七年级数学上册全册导学案学练优(人教版)第一章有理数1.1正数和负数(1)学习目标:1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.2、会区分两种不同意义的量,会用符号表示正数和负数.3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.学习重点:两种意义相反的量学习难点:正确会区分两种不同意义的量教学方法:引导、探究、归纳与练习相结合教学过程一、学前准备1、小学里学过哪些数请写出来:、、.2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)回答上面提出的问题:.二、探究新知1、正数与负数的产生1)、生活中具有相反意义的量如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.请你也举一个具有相反意义量的例子:.2)负数的产生同样是生活和生产的需要2、正数和负数的表示方法1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。

正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。

2)活动两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.3)阅读P3练习前的内容3、正数、负数的概念1)大于0的数叫做,小于0的数叫做。

2)正数是大于0的数,负数是的数,0既不是正数也不是负数。

3)练习P3第一题到第四题(直接做在课本上)三、练习1、读出下列各数,指出其中哪些是正数,哪些是负数?—2,0.6,+,0,—3.1415,200,—754200,2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示四、应用迁移,巩固提高(A组为必做题)A组1.任意写出5个正数:________________;任意写出5个负数:_______________.2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.3.已知下列各数:,,3.14,+3065,0,-239.则正数有_____________________;负数有____________________.4.如果向东为正,那么-50m表示的意义是………………………()A.向东行进50mC.向北行进50mB.向南行进50mD.向西行进50m5.下列结论中正确的是…………………………………………()A.0既是正数,又是负数B.O是最小的正数C.0是最大的负数D.0既不是正数,也不是负数6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.其中是负数的有……………………………………………………()A.2个B.3个C.4个D.5个B组1.零下15℃,表示为_________,比O℃低4℃的温度是_________.2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.3.“甲比乙大-3岁”表示的意义是______________________.C组1.写出比O小4的数,比4小2的数,比-4小2的数.2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.正数和负数(2)学习目标:1、会用正、负数表示具有相反意义的量.2、通过正、负数学习,培养学生应用数学知识的意识.3、通过探究,渗透对立统一的辨证思想学习重点:用正、负数表示具有相反意义的量学习难点:实际问题中的数量关系教学方法:讲练相结合教学过程一、.学前准备通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.问题1:“零”为什么即不是正数也不是负数呢?引导学生思考讨论,借助举例说明.参考例子:温度表示中的零上,零下和零度.二.探究理解解决问题问题2:(教科书第4页例题)先引导学生分析,再让学生独立完成例(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;(2) 下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家商品进出口总额的增长率.解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.(2)六个国家商品进出口总额的增长率:美国-6.4%,德国1.3%,法国-2.4%,英国-3.5%,意大利0.2%,中国7.5%.三、巩固练习从0表示一个也没有,是正数和负数的分界的角度引导学生理解.在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.四、阅读思考(教科书第8页)用正负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97的零件是否合格?2.你知道还有那些事件可以用正负数表示允许误差吗?请举例.五、小结1、本节课你有那些收获?2、还有没解决的问题吗?六、应用与拓展必做题:教科书5页习题4、5、:6、7、8题选做题1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度。

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册教学设计(全册教案)

人教版七年级数学上册(全册)教案七年级数学上册教学计划一、基本情况分析1、学生情况分析:这学期我承担七(1)(2)两班的数学教学,这些学生整体基础参差不齐,小学没有养成良好的学习习惯,所以任务艰巨。

在小学所学知识的掌握程度上,对优生来说,能够透彻理解知识,知识间的内在联系也较为清楚,但位数不多。

对多数学生来说,简单的基础知识还不能有效掌握,成绩稍差。

学生的逻辑推理、逻辑思维能力,计算能力要得到加强,还要提升整体成绩,适时补充课外知识,拓展学生的知识面,抽出一定的时间给强化几何训练,全面提升学生的数学素质。

2、教材分析:1、第1章有理数:本章主要学习有理数的基本性质及运算。

本章重点内容是有理数的概念,性质和运算。

本章的难点在于理解有理数的基本性质、运算法则,并将它们应用到解决实际问题和计算中。

2、第2章整式的加减:本章主要是学习单项式和多项式的加减运算。

本章重点内容是单项式、多项式、同类项的概念;合并同类项及去括号的法则及整式的加减运算。

本章难点在于理解合并同类项和去括号的法则。

3、第3章一元一次方程:本章主要学习一元一次方程的概念、等式的基本性质、一元一次方程的解法及应用。

本章重点内容是理解等式的基本性质;掌握解一元一次方程的一般步骤;列方程解决实际问题的基本思路。

本章难点在于解一元一次方程,并利用一元一次方程解决简单的实际问题。

4、第4章几何图形初步:本章主要学习线段和角有关的性质。

本章的重点是区别直线、射线、线段,角的有关性质和计算;理解互为余角、互为补角的性质及应用。

本章的难点在于线段和角的有关计算。

二、教学目标和要求(一)知识与技能1.获得数学中的基本理论、概念、原理和规律等方面的知识,了解并关注这些知识在生产、生活和社会发展中的应用。

2.学会将实践生活中遇到的实际问题转化为数学问题,从而通过数学问题解决实际问题。

体验几何定理的探究及其推理过程并学会在实际问题进行应用。

3.初步具有数学研究操作的基本技能,一定的科学探究和实践能力,养成良好的科学思维习惯。

人教版初一数学上册全册优化教案(广东)教案

人教版初一数学上册全册优化教案(广东)教案

七年级数学(上)全册教案第一章有理数1.1 正数和负数(1)【教学目标】1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

【教学难点】正确区分两种不同意义的量。

【知识重点】两种相反意义的量【探索1】上课开始时,教师应通过具体的例子,简要说明在以前我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

【探索2】前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解,教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

然后总结:大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。

【探索3】经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.提出问题:请同学们举出用正数和负数表示的例子。

你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。

【练习】P3练习1,2,3,4【小结】围绕下面两点,以师生共同交流的方式进行:1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

新人教版七年级上册数学教案5篇

新人教版七年级上册数学教案5篇

新人教版七年级上册数学教案5篇2021最新人教版数学七年级上册教案篇一一、教材分析1、教材的地位和作用课题学习《从数据谈节水》,是人教实验版数学八年级(上)教材第十一章《数据的描述》的第三节。

这一节是在学习了用统计图表描述数据以后的一节活动课,它是对七年级第四章《数据的收集与整理》及本章数据的描述等知识的巩固和深化,是对所学的有关数据处理知识的综合运用。

在这一活动中让学生感受统计与实际生活的联系以及在解决实际问题中的作用,促使学生掌握基本的统计方法,通过对数据的直观描述尽可能多地获取有用的信息,同时增强学生的节水意识及环保意识。

2、教学目标根据学生的学习内容、新课程理念和认知水平,特制定如下目标:(1)知识与技能:进一步巩固处理数据的基本步骤和方法,能灵活选用统计图对具体问题的数据进行清晰、有效地描述,并获取有用信息并作出合理决策。

(2)过程与方法:让学生亲身经历独立思考、动手操作、团结合作、互相交流的学习过程,积累数学活动的经验,学会合理处理信息,发展数学应用意识。

(3)情感与态度:使学生感受统计在生产生活中的作用;培养学生的数感;使学生乐于接触社会环境中的数学信息,激发学生的节水及环保意识。

3、重点和难点(1)重点:培养学生的数感和统计观念。

(2)难点:能根据具体问题选择适当的统计图描述数据并获取有用的信息,并作出合理的判断和预测。

二、学情分析我今天所授课的班级,应该说学生的数学素质参差不齐,有部分学生在课堂上乐于参与数学活动,而另一部分学生则学习基础较差,会被动参与,因此应激发学生参与活动学习的兴趣,使之获得成就感。

三、教法和学法分析枯燥的数据是令人乏味的,首先可采用激趣法:恰当收集选取图片和视频资料,为课题学习营造学生熟悉的生活情境,吸引学生,巧妙设疑,激发学生的活动兴趣。

分层安排活动,能力强的学生自主思考,独立完成,能力差的学生分组分工合作完成,然后全班交流。

例外,提供更多的学习扩展资料供学生浏览。

新人教版七年级上册数学教案汇总5篇

新人教版七年级上册数学教案汇总5篇

新人教版七年级上册数学教案汇总5篇新人教版七年级上册数学教案汇总5篇七年级数学的教案很有意思。

教案的作用有很多,作为新的老师教案的重要性是不容小觑的,随着教案的完成,对于教材和知识点的把握更有力度,更有利于将来的讲课。

下面小编给大家带来关于新人教版七年级上册数学教案,希望会对大家的工作与学习有所帮助。

新人教版七年级上册数学教案篇1课的开始,由于小学阶段学生已经接触过了平行线,我从观察街道上的十字路口,展示两条路相交的情景,引入课题,从而增强学生学习活动的亲切感,同时也把学生推向主体学习地位。

这为引出本课的学习内容做了铺垫。

在课堂中,让学生回忆角的知识,让学生从角的顶点和两边入手去寻找对顶角的特征,让学生有明确的方向向教学目标靠拢。

在寻找对顶角的练习中明确指出两条相交线就可以组成两组对顶角,这为最后的合作探究奠定了根底。

在探究对顶角的性质的时候,引导学生从已学的知识推倒对顶角相等,这符合学生的思维学习过程。

在讲解例2的过程中,让学生思考并让学生分析解题的思路,并将学生的解题思路和正确答案进展结合并板演,这为习题的解题过程书写提供了格式。

在合作探究时,先告知学生在寻找对顶角组数时应先明确两条相交线就可以组成两组对顶角,这与前面前后照应,最终总结出寻找对顶角的方法。

最后学生总结这节课的收获,使学生回忆一节课的重点和难点,起到强调稳固作用。

此外本节课还存在诸多的缺乏之处:1.在提出问题的时候,学生的思考时间较少,只有程度较好的学生思考出来,大局部学生都还在思考中。

2.欠缺对“学困生”的关注,没能用更好的语言激发他们。

3.没能让每位学生都有足够的时间发表自己的观点。

4.没能进展很好的知识延伸和拓展。

5.合作探究的题目有一定的难度,大多数学生还是没能研究出结果。

新人教版七年级上册数学教案篇2《邓稼先》一文的作者是杨振宁,也是科学家,且与邓稼先有着五十年的友情。

他写邓稼先大气磅礴,始终以一百多年的中国近代史为背景,把邓稼先放在国际大舞台上来写,显示作者博大深远的视野,并且限度地凸现了一个立体的光芒四射的邓稼先的形象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(此文档为word格式,下载后您可任意编辑修改!)七年级数学(上)全册教案第一章有理数1.1 正数和负数(1)【教学目标】1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;2、能区分两种不同意义的量,会用符号表示正数和负数;3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。

【教学难点】正确区分两种不同意义的量。

【知识重点】两种相反意义的量【探索1】上课开始时,教师应通过具体的例子,简要说明在以前我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。

(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。

【探索2】前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?这些问题都必须要求学生理解,教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。

然后总结:大于0的数叫做正数,而在正数前面加上负号“-”的数叫做负数。

这阶段主要是让学生学会正数和负数的表示。

强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。

【探索3】经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维.提出问题:请同学们举出用正数和负数表示的例子。

你是怎样理解“正整数”“负整数,,’’正分数”和“负分数”的呢?请举例说明。

【练习】P3练习1,2,3,4【小结】围绕下面两点,以师生共同交流的方式进行:1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。

3、0既不是正数也不是负数。

1.1 正数和负数(2)【教学目标】1、通过对数“零”的意义的探讨,进一步理解正数和负数的概念;2、利用正负数正确表示相反意义的量(规定了指定方向变化的量)3、进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。

【教学难点】深化对正负数概念的理解【知识重点】正确理解和表示向指定方向变化的量【知识回顾与深化】回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?【探索1】有没有一种既不是正数又不是负数的数呢?学生思考并讨论.(数0既不是正数又不是负数,是正数和负数的分界,是基准。

这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导)例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。

那么某一天某地的最高温度是零上7℃,最低温度是零下5℃时,就应该表示为+7℃和-5℃,这里+7℃和-5℃就分别称为正数和负数.那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数。

【探索2】引入负数后,数按照“两种相反意义的量”来分,可以分成几类?例题:(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值。

(2)2001年下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%。

写出这些国家2001年商品进出口总额的增长率。

说明:这是一个用正负数描述向指定方向变化情况的例子,通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。

这种描述在实际生活中有广泛的应用,应予以重视。

教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。

归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义。

类似的例子很多,如:水位上升-3m,实际表示什么意思呢?收人增加-10%,实际表示什么意思呢?等等。

可视教学中的实际情况进行补充.【练习】P4练习【小结】以问题的形式,要求学生思考交流:1、引人负数后,你是怎样认识数0的,数0的意义有哪些变化?2、怎样用正负数表示具有相反意义的量?(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)1.2.1 有理数【教学目标】1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。

【教学难点】正确理解正负数分类的标准和按照一定的标准进行分类。

【知识难点】正确理解有理数的概念。

【探索1】在以前的学习中,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).观察黑板上的9个数,并给它们进行分类。

学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如,对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,.··…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数”,然后得出“整数”“分数”和“有理数”的概念。

【探索2】试一试:按照以上的分类,你能画出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)1、任意写出三个有理数,并说出是什么类型的数,与同伴进行交流.2、P8练习.此练习中出现了集合的概念,可向学生作如下的说明.把一些数放在一起,就组成了一个数的集合,简称“数集”,所有有理数组成的数集叫做有理数集.类似地,所有整数组成的数集叫做整数集,所有负数组成的数集叫做负数集……;数集一般用圆圈或大括号表示,因为集合中的数是无限的,而本题中只填了所给的几个数,所以应该加上省略号.思考:上面练习中的四个集合合并在一起就是全体有理数的集合吗?有理数可分为正数和负数两大类,对吗?为什么?教学时,要让学生总结已经学过的数,鼓励学生概括,通过交流和讨论,教师作适当的指导,逐步得到如下的分类表。

【小结】到现在为止我们学过的数都是有理数(圆周率除外),有理数可以按不同的标准进行分类,标准不同,分类的结果也不同。

1.2.2 数轴【教学目标】1、掌握数轴的概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

【教学难点】&【知识重点】数轴的概念和用数轴上的点表示有理数【探索1】教师通过实例演示得到温度计读数.问题1:温度计是我们日常生活中用来测量温度的重要工具,你会读温度计吗?请你尝试读出图中三个温度计所表示的温度?问题2:在一条东西向的马路上,有一个汽车站,汽车站东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(小组讨论,交流合作,动手操作)教师:由上述两问题我们得到什么启发?你能用一条直线上的点表示有理数吗?让学生在讨论的基础上动手操作,在操作的基础上归纳出:可以表示有理数的直线必须满足什么条件?从而得出数轴的概念以及数轴的三要素:原点、正方向、单位长度。

数轴:一般地,在数学中人们用画图的方式把数“直观化”。

通常用一条直线上的点表示数,这条直线叫做数轴。

数轴三要素:(1)在直线上任取一个点表示数0,这个点叫做原点。

(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向。

(3)选取适当的长度为单位长度。

【探索2】1、你能举出一些在现实生活中用直线表示数的实际例子吗?2、如果给你一些数,你能相应地在数轴上找出它们的准确位置吗?如果给你数轴上的点,你能读出它所表示的数吗?3、哪些数在原点的左边,哪些数在原点的右边,由此你会发现什么规律?4、每个数到原点的距离是多少?由此你会发现了什么规律?(小组讨论,交流归纳)归纳出一般结论,教科书第9页的归纳。

一般地,设a是一个正数,则数轴上表示数a的点在原点的右边,与原点的距离是a个单位长度;表示数—a的点在原点的左边,与原点的距离是a个单位长度。

【练习】P10练习【小结】1、数轴的三个要素;2、数轴的做法以及数与点的转化方法。

1.2.3 相反数【教学目标】1、掌握相反数的概念,进一步理解数轴上的点与数的对应关系;2、通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;3、体验数形结合的思想。

【教学难点】归纳相反数在数轴上表示的点的特征【知识重点】相反数的概念【探索1】请将下列4个数分成两类,并说出为什么要这样分类。

4,-2,-5,+2允许学生有不同的分法,只要能说出道理,都要给予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。

(引导学生观察与原点的距离)思考结论:P 10的思考:数轴上与原点的距离是2的点有几个?这些点表示的数是什么?与原点的距离是5的点有几个?这些点表示的数是什么?再换2个类似的数试一试。

归纳:一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,它们分别在原点左右,表示-a和a,我们说这两点关于原点对称。

给出相反数的定义:只有符号不同的两个数叫做互为相反数。

【探索2】你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?学生思考讨论交流,教师归纳总结。

相关文档
最新文档