2016年12月九年级上学期期末数学试卷
九年级数学上学期期末考试试题(扫描版) 新人教版

福建省福州市2016届九年级数学上学期期末考试试题福州市2015—2016学年第一学期九年级期末质量检测数学试卷参考答案及评分标准一、选择题(每题3分,满分36分)二、填空题(每题4分,满分24分)三、解答题(满分90分)19.解:根据题意得:△21410a =-⨯⨯=, ………………………4分解得14a =. ………………………7分 20.解:22111x x -+=+, ………………………3分 2(1)2x -=, ………………………5分11x ∴=, 21x =. ………………………7分 21.(1)D (1, 1). ……………………3分 (2)解:反比例函数的解析式为ky x=, ………………4 分 且该函数图象过点D (1,1),∴11k= , ∴1k = , ……………6分 ∴反比例函数的解析式为1y x=. ………………7分第23图B'C'BAC22. 解:(1)根据题意,可以画如下的树状图:……………4分由树状图可以看出,所有可能的结果共有9种,这些结果出现的可能性相等.………6分 (2)由(1)得:其中两次摸出的球上的数字积为奇数的有4种情况, …………8分 ∴P(两次摸出的球上的数字积为奇数)=49. ……………10分23. 解:由旋转的性质可得:ABC ∆≌AB C ''∆,点B '在AC 上, ………………2分∴AC AC '=,B AB C ''∠=∠. …………4分 又90BAC CAC '∠=∠=︒,∴45ACC AC C ''∠=∠=︒. …………6分 ∴453075AB C ACC CC B '''''∠=∠+∠=︒+︒=︒,…8分 ∴75B AB C ''∠=∠=︒ . …………9分24.解:(1)(10)[10010(12)]y x x =--- …………3分(10)(10010120)x x =--+2103202200x x =-+-. …………5分(2)y 2103202200x x =-+-210(16)360x =--+, …………7分由题意可得: 10<x ≤15, …………8分 ∵=-10a <0,对称轴为直线=16x , …………9分∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大, …………10分 ∴当=15x 时,y 取最大值为350元. …………11分 答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.25. (1)证明:连接AE ,OE ,如图. …………1分∵AB 是O 的直径,∴90AEB ∠=︒. …………2分∵AC 是O 的切线,∴AC AB ⊥.即90CAB ∠=︒. …………3分∵在Rt AEC ∆中,D 为AC 的中点, ∴1.2DE DC AD AC ===∴DEA DAE ∠=∠ . …………4分 ∵OA OE = ,∴OEA OAE ∠=∠ .∴90DEO DEA OEA DAE OAE CAB ∠=∠+∠=∠+∠=∠=︒.…………5分即DE OE ⊥ 又OE 是半径,∴DE 是⊙O 的切线. …………6分(2)∵3,AO = ∴223,AB AO ==∵90CAB AEB ︒∠=∠=,B B ∠=∠,∴BCA ∆∽BAE ∆. …………7分 ∴BC ABAB BE=. 即2()AB BE BC BE BE EC =⋅=+. …………8分又∵1CE = ,∴2120BE BE +-=. …………9分 解得 3BE = 或4BE =- (不合题意,舍去),…………10分∴3BE =. ∴4BC =.∴在Rt ABC ∆中,222AC BC AB =-=.…………11分∴1232ABC S AB AC ∆=⋅=. …………12分26. 解:(1)5t - . …………3分 (2) 当CP CQ = 时,如图①, 5t t =-∴5.2t =…………5分 当QP QC = 时,如图②, 过点Q 作QH AC ⊥,H 为垂足, 则11(5t)22HC PC ==-,QC t =. …………6分 由QHC ∆∽ABC ∆,得CH CQ CB CA =, 即 1(5t)2,45t -= ∴25.13t =…………7分 当PQ PC = 时,如图③,过点P 作PN QC ⊥,N 为垂足,则12NC t =,…8分 由PNC ∆∽ABC ∆,得PC CN AC CB =,15t 2,54t-=40.13t =解得 …………………9分 综上所述,当52t =或2513t =或4013t =时,PCQ ∆为等腰三角形. (3)连接BP ,BM ,如图④,则90BMQ ∠=︒ , ∵M 为PQ 的中点,∴BP BQ =. …………………10分过点P 作PK AB ⊥,K 为垂足,由AP t = ,得45PK t =, 35AK t =.∴335BK t =-, …………………11分在Rt BKP ∆中,222PB BK PK =+ 22)54()533(t t +-=, 而4BQ t =-, ∴22)54()533(t t +-= 2(4)t - , …………12分 解得2235=t . 第26题图④xyNPDBA CO第27题图①∴2235=t . …………13分 27. 解:(1)令0y = ,得2230x x --=, 解得 11x =-,23x = …………2分 ∴()1,0A -,(3,0)B …………4分(2)设2(,23)P x x x --,过点P 作PN x ⊥轴,垂足为N .连接BP ,设NBP CDB ∠=∠. 令0x = ,得2233y x x =--=-,∴()0,3.C -∵2223(1)4y x x x =--=--∴()1,4.D - …………………5分 如图①,由勾股定理,得2,CD = 32,CB = 25,BD =∴222BD BC CD =+,∴90BCD ∠=︒. …………6分 ∵90,BCD PNB ∠=∠=︒NBP CDB ∠=∠.∴BCD ∆∽PNB ∆. …………7分 ∴PN NBBC CD=, 2322=,即2560x x -+=, …………8分 解得12x =,23x =(不合题意,舍去). ∴2,3x y ==-当时.∴(2,3).P - …………9分(3)正确做出等边OBM ∆和线段ME 所对应的旋转线段MF ,如图②.…………10分 过点B ,F 作直线交对称轴于点G . 由题意可得:OM BM = ,ME MF = ,OME BMF ∠=∠,第27题图②xyKGFMHDBAOE∴EOM ∆≌FBM ∆, ∴60MBF MOB ︒∠=∠=.∵6060120OBF OBM MBF ︒︒︒∠=∠+∠=+=为定值,…………11分∴BF 所在直线为定直线. 过D 点作DK BF ⊥,K 为垂足.在Rt BGH ∆中,18012060,30,HBG HGB ︒︒︒∠=-=∴∠=︒∵2HB =,∴4BG =,23HG = . ∵(1,4)D -,∴4DH =23 4.DG ∴=+ …………12分 在Rt DGK ∆中, 30DGK ∠=︒ ∴1232DK DG == …………13分 ∵当点E 与点H 重合时,这时1BF OH == , 则415GF =+= .而3323GK DK ==+>5,即点K 在点F 运动的路径上, 所以线段DF 的长的最小值存在,最小值是23……14分a11 感谢下载资料仅供参考!。
【人教版】2016届九年级上期末数学试卷及答案解析

九年级(上)期末数学试卷一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和13.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=35.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<48.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣39.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.14.同圆的内接正三角形与外切正三角形的周长比是.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是mm.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.2015-2016学年四川省绵阳市江油市九年级(上)期末数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求)1.下列事件是必然事件的是()A.打开电视机,正在播放篮球比赛B.守株待兔C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:打开电视机,正在播放篮球比赛是随机事件,A不正确;守株待兔是随机事件,B不正确;明天是晴天是随机事件,C不正确;在只装有5个红球的袋中摸出1球,是红球是必然事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是()A.﹣1和1 B.1和1 C.2和1 D.0和1【考点】一元二次方程的一般形式.【分析】根据一元二次方程的一般形式进行选择.【解答】解:一元二次方程2x2﹣x+1=0的一次项系数和常数项依次是﹣1和1.故选:A.【点评】本题考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故A选项错误;B、不是轴对称图形,是中心对称图形,故B选项错误;C、既是轴对称图形,也是中心对称图形,故C选项正确;D、是轴对称图形,不是中心对称图形,故D选项错误.故选:C.【点评】本题考查了中心对称及轴对称的知识,解题时掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.方程2x(x﹣3)=5(x﹣3)的根是()A.x=B.x=3 C.x1=,x2=3 D.x1=﹣,x2=3【考点】解一元二次方程-因式分解法.【分析】先把方程变形为:2x(x﹣3)﹣5(x﹣3)=0,再把方程左边进行因式分解得(x ﹣3)(2x﹣5)=0,方程就可化为两个一元一次方程x﹣3=0或2x﹣5=0,解两个一元一次方程即可.【解答】解:方程变形为:2x(x﹣3)﹣5(x﹣3)=0,∴(x﹣3)(2x﹣5)=0,∴x﹣3=0或2x﹣5=0,∴x1=3,x2=.故选C.【点评】本题考查了运用因式分解法解一元二次方程的方法:先把方程右边化为0,再把方程左边进行因式分解,然后一元二次方程就可化为两个一元一次方程,解两个一元一次方程即可.5.如图,⊙O是△ABC的外接圆,已知∠ACB=60°,则∠ABO的大小为()A.30°B.40°C.45°D.50°【考点】圆周角定理.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得∠AOB=120°,再根据三角形内角和定理可得答案.【解答】解:∵∠ACB=60°,∴∠AOB=120°,∵AO=BO,∴∠B=÷2=30°,故选:A.【点评】此题主要考查了圆周角定理,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.6.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【专题】压轴题;操作型.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.【点评】要学会灵活的运用公式求解.7.如图,抛物线y1=﹣x2+4x和直线y2=2x,当y1<y2时,x的取值范围是()A.0<x<2 B.x<0或x>2 C.x<0或x>4 D.0<x<4【考点】二次函数与不等式(组).【分析】联立两函数解析式求出交点坐标,再根据函数图象写出抛物线在直线上方部分的x 的取值范围即可.【解答】解:联立,解得,,∴两函数图象交点坐标为(0,0),(2,4),由图可知,y1<y2时x的取值范围是0<x<2.故选A.【点评】本题考查了二次函数与不等式,此类题目利用数形结合的思想求解更加简便.8.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.1 B.3 C.﹣1 D.﹣3【考点】关于原点对称的点的坐标.【分析】根据关于原点对称的点的坐标特点可得a、b的值,进而得到答案.【解答】解:∵点A(1,a)、点B(b,2)关于原点对称,∴b=﹣1,a=﹣2,a+b=﹣3,故选:D.【点评】此题主要考查了关于原点对称的点的坐标特点,关键是掌握两个点关于原点对称时,它们的坐标符号相反.9.王洪存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为()A.5% B.20% C.15% D.10%【考点】由实际问题抽象出一元二次方程.【分析】设定期一年的利率是x,则存入一年后的本息和是5000(1+x)元,取3000元后余[5000(1+x)﹣3000]元,再存一年则有方程[5000(1+x)﹣3000]•(1+x)=2750,解这个方程即可求解.【解答】解:设定期一年的利率是x,根据题意得:一年时:5000(1+x),取出3000后剩:5000(1+x)﹣3000,同理两年后是[5000(1+x)﹣3000](1+x),即方程为[5000(1+x)﹣3000]•(1+x)=2750,解得:x1=10%,x2=﹣150%(不符合题意,故舍去),即年利率是10%.故选D.【点评】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和=本金×(1+利率×期数),难度一般.10.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在【考点】根与系数的关系.【分析】先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.【解答】解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.【点评】本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.11.若函数,则当函数值y=8时,自变量x的值是()A.±B.4 C.±或4 D.4或﹣【考点】函数值.【专题】计算题.【分析】把y=8直接代入函数即可求出自变量的值.【解答】解:把y=8代入函数,先代入上边的方程得x=,∵x≤2,x=不合题意舍去,故x=﹣;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣.故选:D.【点评】本题比较容易,考查求函数值.(1)当已知函数解析式时,求函数值就是求代数式的值;(2)函数值是唯一的,而对应的自变量可以是多个.12.如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c >0;④△>0;⑤4a﹣2b+c<0,其中正确的个数为()A.1 B.2 C.3 D.4【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴x=1计算2a+b与0的关系;再由根的判别式与根的关系,进而对所得结论进行判断.【解答】解:①由抛物线的开口向下知a<0,故本选项错误;②由对称轴为x==1,∴﹣=1,∴b=﹣2a,则2a+b=0,故本选项正确;③由图象可知,当x=1时,y>0,则a+b+c>0,故本选项正确;④从图象知,抛物线与x轴有两个交点,∴△>0,故本选项错正确;⑤由图象可知,当x=﹣2时,y<0,则4a﹣2b+c<0,故本选项正确;故选D.【点评】本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.二、填空题(本大题共6个小题,每小题3分,共18分,将答案直接填写在题中横线上)13.小明制作了十张卡片,上面分别标有1~10这是个数字.从这十张卡片中随机抽取一张恰好能被4整除的概率是.【考点】概率公式.【分析】由小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8,直接利用概率公式求解即可求得答案.【解答】解:∵小明制作了十张卡片,上面分别标有1~10这是个数字.其中能被4整除的有4,8;∴从这十张卡片中随机抽取一张恰好能被4整除的概率是:=.故答案为:.【点评】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.同圆的内接正三角形与外切正三角形的周长比是1:2.【考点】正多边形和圆.【分析】作出正三角形的边心距,连接正三角形的一个顶点和中心可得到一直角三角形,解直角三角形即可.【解答】解:如图所示:∵圆的内接正三角形的内心到每个顶点的距离是等边三角形高的,设内接正三角形的边长为a,∴等边三角形的高为a,∴该等边三角形的外接圆的半径为 a∴同圆外切正三角形的边长=2×a×tan30°=2a.∴周长之比为:3a:6a=1:2,故答案为:1:2.【点评】本题考查了正多边形和圆的知识,解题时利用了圆内接等边三角形与圆外接等边三角形的性质求解,关键是构造正确的直角三角形.15.△ABC中,E,F分别是AC,AB的中点,连接EF,则S△AEF:S△ABC=.【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由E、F分别是AB、AC的中点,可得EF是△ABC的中位线,直接利用三角形中位线定理即可求得BC=2EF,然后根据相似三角形的性质即可得到结论.【解答】解:∵△ABC中,E、F分别是AB、AC的中点,EF=4,∴EF是△ABC的中位线,∴BC=2EF,EF∥BC,∴△AEF∽△ABC,∴S△AEF:S△ABC=()2=,故答案为:.【点评】本题考查了相似三角形的判定和性质,三角形的中位线的性质,熟记三角形的中位线的性质是解题的关键.16.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小孔的直径AB是8mm.【考点】相交弦定理;勾股定理.【专题】应用题;压轴题.【分析】根据垂径定理和相交弦定理求解.【解答】解:钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,则下面的距离就是2.利用相交弦定理可得:2×8=AB×AB,解得AB=8.故答案为:8.【点评】本题的关键是利用垂径定理和相交弦定理求线段的长.17.将抛物线y=x2﹣2向上平移一个单位后,又沿x轴折叠,得新的抛物线,那么新的抛物线的表达式是y=﹣x2+1.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律和关于x轴对称的点的坐标特征得到(0,﹣2)变换后的对应点的坐标为(0,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向上平移一个单位所得对应点的坐标为(0,﹣1),点(0,﹣1)关于x轴的对称点的坐标为(0,1),因为新抛物线的开口向下,所以新抛物线的解析式为y=﹣x2+1.故答案为【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.18.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A、B、C、D分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x2﹣2x﹣3,AB为半圆的直径,则这个“果圆”被y轴截得的弦CD的长为3+.【考点】二次函数综合题.【分析】连接AC,BC,有抛物线的解析式可求出A,B,C的坐标,进而求出AO,BO,DO的长,在直角三角形ACB中,利用射影定理可求出CO的长,进而可求出CD的长.【解答】解:连接AC,BC,∵抛物线的解析式为y=x2﹣2x﹣3,∴点D的坐标为(0,﹣3),∴OD的长为3,设y=0,则0=x2﹣2x﹣3,解得:x=﹣1或3,∴A(﹣1,0),B(3,0)∴AO=1,BO=3,∵AB为半圆的直径,∴∠ACB=90°,∵CO⊥AB,∴CO2=AO•BO=3,∴CO=,∴CD=CO+OD=3+,故答案为:3+.【点评】本题是二次函数综合题型,主要考查了抛物线与坐标轴的交点问题、解一元二次方程、圆周角定理、射影定理,读懂题目信息,理解“果圆”的定义是解题的关键.三、解答题(本大题共6个小题,共46分,解答应写出文字说明,证明过程或推理步骤)19.(1)解方程:x2﹣3x+2=0.(2)已知:关于x的方程x2+kx﹣2=0①求证:方程有两个不相等的实数根;②若方程的一个根是﹣1,求另一个根及k值.【考点】根的判别式;解一元二次方程-因式分解法.【分析】(1)把方程x2﹣3x+2=0进行因式分解,变为(x﹣2)(x﹣1)=0,再根据“两式乘积为0,则至少一式的值为0”求出解;(2)①由△=b2﹣4ac=k2+8>0,即可判定方程有两个不相等的实数根;②首先将x=﹣1代入原方程,求得k的值,然后解此方程即可求得另一个根.【解答】(1)解:x2﹣3x+2=0,(x﹣2)(x﹣1)=0,x1=2,x2=1;(2)①证明:∵a=1,b=k,c=﹣2,∴△=b2﹣4ac=k2﹣4×1×(﹣2)=k2+8>0,∴方程有两个不相等的实数根;②解:当x=﹣1时,(﹣1)2﹣k﹣2=0,解得:k=﹣1,则原方程为:x2﹣x﹣2=0,即(x﹣2)(x+1)=0,解得:x1=2,x2=﹣1,所以另一个根为2.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了用因式分解法解一元二次方程.20.(1)解方程:+=;(2)图①②均为7×6的正方形网络,点A,B,C在格点上.(a)在图①中确定格点D,并画出以A、B、C、D为顶点的四边形,使其为轴对称图形(画一个即可).(b)在图②中确定格点E,并画出以A、B、C、E为顶点的四边形,使其为中心对称图形(画一个即可)【考点】利用旋转设计图案;解分式方程;利用轴对称设计图案.【分析】(1)化分式方程为整式方程,然后解方程,注意要验根;(2)可画出一个等腰梯形,则是轴对称图形;(3)画一个矩形,则是中心对称图形.【解答】解:(1)由原方程,得5+x(x+1)=(x+4)(x﹣1),整理,得2x=9,解得x=4.5;(2)如图①所示:等腰梯形ABCD为轴对称图形;;(3)如图②所示:矩形ABDC为轴对称图形;.【点评】此题比较灵活的考查了等腰梯形、矩形的对称性,是道好题.21.一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是黄色的概率.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是黄球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是黄球的有4种情况,∴两次摸出的球都是红球的概率为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.用一段长为30m的篱笆围成一个边靠墙的矩形菜园,墙长为18米(1)若围成的面积为72米2,球矩形的长与宽;(2)菜园的面积能否为120米2,为什么?【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)设垂直于墙的一边长为x米,则矩形的另一边长为(30﹣2x)米,根据面积为72米2列出方程,求解即可;(2)根据题意列出方程,用根的判别式判断方程根的情况即可.【解答】解:(1)设垂直于墙的一边长为x米,则x(30﹣2x)=72,解方程得:x1=3,x2=12.当x=3时,长=30﹣2×3=24>18,故舍去,所以x=12.答:矩形的长为12米,宽为6米;(2)假设面积可以为120平方米,则x(30﹣2x)=120,整理得即x2﹣15x+60=0,△=b2﹣4ac=152﹣4×60=﹣15<0,方程无实数解,故面积不能为120平方米.【点评】此题主要考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.如图,⊙O的直径AB为10cm,弦BC为6cm,D,E分别是∠ACB的平分线与⊙O,直径AB的交点,P为AB延长线上一点,且PC=PE.(1)求AC、AD的长;(2)试判断直线PC与⊙O的位置关系,并说明理由.【考点】切线的判定.【分析】(1)连结BD,如图,根据圆周角定理由AB为直径得∠ACB=90°,则可利用勾股定理计算出AC=8;由DC平分∠ACB得∠ACD=∠BCD=45°,根据圆周角定理得∠DAB=∠DBA=45°,则△ADB为等腰直角三角形,由勾股定理即可得出AD的长;(2)连结OC,由PC=PE得∠PCE=∠PEC,利用三角形外角性质得∠PEC=∠EAC+∠ACE=∠EAC+45°,加上∠CAB=90°﹣∠ABC,∠ABC=∠OCB,于是可得到∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,则∠OCE+∠PCE=90°,于是根据切线的判定定理可得PC为⊙O的切线.【解答】解:(1)连结BD,如图1所示,∵AB为直径,∴∠ACB=90°,在Rt△ACB中,AB=10cm,BC=6cm,∴AC==8(cm);∵DC平分∠ACB,∴∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°∴△ADB为等腰直角三角形,∴AD=AB=5(cm);(2)PC与圆⊙O相切.理由如下:连结OC,如图2所示:∵PC=PE,∴∠PCE=∠PEC,∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠CAB=90°﹣∠ABC,∠ABC=∠OCB,∴∠PCE=90°﹣∠OCB+45°=90°﹣(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.【点评】本题考查了切线的判定、圆周角定理、勾股定理、等腰直角三角形的判定与性质、等腰三角形的性质等知识;熟练掌握圆周角定理和切线的判定是解决问题的关键.24.如图,在平面直角坐标系xOy中,直线y=x+2与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c的对称轴是x=﹣且经过A,C两点,与x轴的另一交点为点B.(1)求抛物线解析式.(2)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似?若存在,求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据函数值相等的两点关于对称轴对称,可得B点坐标,根据待定系数法,可得函数解析式;(2)根据相似三角形的性质,可得关于m的方程,根据自变量与函数值的对应关系,可得M点坐标.【解答】解:(1)当x=0时,y=2,即C(0,2),当y=0时,x+2=0,解得x=﹣4,即A(﹣4,1).由A、B关于对称轴对称,得B(1,0).将A、B、C点坐标代入函数解析式,得,解得,抛物线的解析式为y=﹣x2﹣x+2;(2)抛物线上是存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,如图,设M(m,﹣m2﹣m+2),N(m,0).AN=m+4,MN=﹣m2﹣m+2.由勾股定理,得AC==2,BC==.当△ANM∽△ACB时,=,即=,解得m=0(不符合题意,舍),m=﹣4(不符合题意,舍);当△ANM∽△BCA时,=,即=,解得m=﹣3,m=﹣4(不符合题意,舍),当m=﹣3时,﹣m2﹣m+2=2,即M(﹣3,2).综上所述:抛物线存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与△ABC相似,点M的坐标(﹣3,2).【点评】本题考查了二次函数综合题,利用函数值相等的两点关于对称轴对称得出B点坐标是解题关键;利用相似三角形的性质得出关于m的方程是解题关键,要分类讨论,以防遗漏.。
人教版初中九年级数学上册期末考试试卷和参考答案

人教版初中九年级数学上册期末考试试卷和参考答案此套人教版初中九年级数学上册期末考试试卷和参考答案免费下载由绿色圃中小学教育网整理,所有试卷与初中数学各版本教材大纲同步,试卷供大家免费使用下载打印,转载前请注明出处。
因数学试卷复制时部分内容如图片、分数等无法直接显示,请用户直接到帖子二楼下载WORD编辑的DOC 附件下载浏览或打印!如有疑问,请联系网站底部工作人员,将第一时间为您解决问题!试卷内容预览:2016~2016学年度期末考试初三数学一、选择题:1.下列二次根式,属于最简二次根式的是A. B C. D.2.在平面直角坐标系中,抛物线与轴的交点的个数是A.3 B.2 C.1 D.03.方程的根为A. B. C.D.4.如图1,为了测量一池塘的宽DE,在岸边找一点C,测得CD=30m,在DC的延长线上找一点A,测得AC=5m,过点A作AB∥DE,交EC的延长线于B,测得AB=6m,则池塘的宽DE 为A、25mB、30mC、36mD、40m5. 在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,顶点C运动的路线长是A. B. C.D..矩形ABCD,AB=4,BC=3,以直线AB为轴旋转一周所得到的圆柱侧面积为лллл7 .下列命题错误的是A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心8. 张华想他的王老师发短信拜年,可一时记不清王老师手机号码后三位数的顺序,只记得是1,6,9三个数字,则张华一次发短信成功的概率是A. B. C. D.9.烟花厂为庆祝澳门回归10周年特别设计制作一种新型礼炮,这种礼炮的升空高度与飞行时间的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为10.小明从图所示的二次函数的图象中,观察得出了下面五条信息:①;②;③;④;⑤,其中正确的有个个个个二、填空题:11.若,则。
2016学年第一学期9年级数学期末测试题(参考答案及评分说明)

- 1 -20-1-6学年第一学期九年级数学科期末测试题【试卷说明】 1.本试卷共4页,全卷满分150分,考试时间为120分钟.考生应将答案全部填(涂)写在答题卡相应位置上,写在本试卷上无效.考试时允许使用计算器; 2.答题前考生务必将自己的姓名、准考证号等填(涂)写到答题卡的相应位置上; 3.作图必须用2B 铅笔,并请加黑加粗,描写清楚。
一、选择题 (本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中既是轴对称图形又是中心对称图形的是(※).(A ) (B )(C )(D )2.下列函数中是反比例函数的是(※). (A)y x =(B )2y x = (C )212y x = (D )21y x =+ 3.点P (2,3)关于原点对称的点的坐标是(※). (A )(-3,-2)(B )(-2,3)(C )(-2,-3) (D )(-3,2)4.若1x 、2x 是一元二次方程2514x x -=的两个根,则21x x 的值是(※). (A )54(B )54-(C )14(D )14-5.抛物线2(1)3y x =++的对称轴是直线(※). (A )1x =(B )1x =-(C )3y =(D )3x =-6.某种彩票的中奖机会是1%,则下列说法正确的是(※).(A )买1张这种彩票一定不会中奖 (B )买1张这种彩票一定会中奖(C )买100张这种彩票一定会中奖 (D )买彩票的数量较大时,中奖的频率稳定在1% 7.反比例函数2y x=-的图象上有两点111P x y (,) ,222P x y (,),若120x x <<,则下列结论正确的是(※). (A )120y y <<(B )120y y <<- 2 -(C ) 120y y >>(D )120y y >>8.如图,AB 是⊙O 的直径,点C 是圆上一点,70BAC ︒∠=,则OCB ∠=(※). (A )20︒(B )30︒(C )40︒(D )120︒9.如图,在方格纸中的△ABC 经过变换得到△DEF ,正确的变换是(※). (A )把△ABC 绕着点A 顺时针旋转90° (B )把△ABC 向右平移4格,再向上平移1格(C )把△ABC 绕着点A 顺时针旋转90°,再向右平移6格 (D )把△ABC 绕着点A 逆时针旋转90°,再向右平移6格10.二次函数 2y ax bx c =++的图像如图所示,其对称轴是直线 1x =-,有以下结论:①0abc >,②24<ac b ,③ 20a b +=,④2a b c -+>.其中正确的结论的个数是(※). (A )1(B )2(C )3(D )4二、填空题(共6题,每题3分,共18分.) 11.方程的 的解为 ※ . 12.将抛物线y=2x 2的图象向上平移1个单位后,所得抛物线的解析式为 ※ . 13.如图,将△ABC 绕点A 逆时针旋转的到△ADE ,点C 和点E 是对应点,若∠CAE =90°,AB =1,则BD = ※ .14.已知反比例数 的图象的一支位于第二象限,则 的取值范围是 ※ .15.如图,在 中, 是圆上的两点,已知 ,直径 //CD AB ,连接AC ,则BAC ∠= ※ .16.把一副普通扑克牌中的数字为2,3,4,5,6,7,8,9,10的9张牌洗均匀后正面向下放在桌面上,从中随机抽取一张,抽出的牌上的数恰 为3的倍数的概率是 ※ .三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)第8题第9题2(5)1x +=k 2k y x-=O ⊙第15题第13题第10题A B 、40AOB ∠=︒- 3 -17.(本小题满分9分)(1)解方程:9x 2 -5=3; (2)用配方法解方程:3 x 2 -6 x +2=0.18.(本小题满分9分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求此百分率.19.(本小题满分10分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、 B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C 1. (1)画出△A 1B 1C 1,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.20.(本小题满分10分)如图,AB 是⊙O 的直径,弦 于点E , ,⊙O 的半径为5cm .(1)求OE 的长;(2)求圆心O 到弦BD 的距离.21.(本小题满分12分)如图,一次函数y kx b =+ 的图象与反比例函数0my x x=(>)的图象交于21A (,﹣)、12B n (,)两点,直线2y =与 y 轴交于点C ,与直线y k x b=+于点D . (1)求一次函数与反比例函数的解析式; (2)利用图象解不等式: ; (3)求△ABC 的面积.22.(本小题满分12分)如图,用红、蓝两种颜色随机地对A 、B 、C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表),求A 、C 两个第19题CD AB ⊥30CDB ∠=︒第20题E ACBDOm kx b x>+第22题第21题- 4 -区域所涂颜色不相同的概率.23.(本小题满分12分) 从地面竖直上抛的小球离地高度h (单位:c m )是它运动时间t (单位:s )的二次函数,已知(1)求小球抛出后多少时间到达最大离地高度?(2)在直角坐标系中作出此二次函数的图象,求抛球多少时间后小球离地高度为25c m ?24.(本小题满分14分)如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D , OB 与⊙O 交于点F ,连接DF 、DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②DC 为∠FDA 的角平分线;(2)求线段CD 的长.25.(本小题满分14分)一次函数34y x =的图像如图所示,它与二次函数24y ax ax c =-+的图像交于A 、B 两点(其中点A 在点B 的左侧),与这个二次函数图像的对称轴交于点C . (1)求点C 的坐标;(2)设二次函数图像的顶点为D .①若点D 与点C 关于x 轴对称,且△ACD 的面积等于3求此二次函数的关系式;②若CD =AC ,且△ACD 的面积等于10,求此二次函数2305(06)h t t t =-≤≤第23题第24题- 5 -的解析式.20-1-6学年第一学期九年级数学科期末测试题参考答案及评分说明二、填空题(共6题,每题3分,共18分)11. 124,6x x =-=-;12. 221y x =+;;14. <2k ; 15.35︒; 16.13. 三、解答题(本大题共9小题,满分68分.解答应写出文字说明、证明过程或演算步骤)三、4x ∴-=(本大题共7小题,满分52分.解答应写出文字说明、证明过程或演算步骤.)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分9分)(1)解方程:9x 2 -5=3; (2)用配方法解方程:3x 2 -6 x +2=0.17.解:(1)移项,得298,x =∴ 289x =, …………… (1分) 得 12x x ==…………… (3分,各1分) (2)移项,得2362,x x -=-即222,3x x -=- …………… (5分)第25题- 6 -配方,得222211,3x x -+=-即21(1)3x -= .…………… (7分)1x ∴-=1211x x == …………… (9分,各1分)18.(本小题满分9分)某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,求此百分率.解:设平均每次降价的百分率为x ,…………… (1分)根据题意得:2100(1)=81x -,…………… (4分)2(1)=0.81x ∴-,即10.9x -=± , …………… (5分)得120.110%, 1.9x x === (不符合题意,舍去).…………… (7分, 各1分) 答:这两次降价的百分率是10%.…………… (9分)19.(本小题满分10分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、 B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C 1. (1)画出△A 1B 1C 1,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.解:(1)所求作△A 1B 1C 1如图所示:…………… (3分, 每个点各1分) 由A (4,3)、B (4,1)可建立如图所示坐标系,…………… (4分) 得点1(1,4)A -,点1(1,4)B ;…………… (6分, 每个点各1分) (2)∵AC=190ACA ∠=︒ , …………… (7分)第19题- 7 -∴在旋转过程中,△ABC 所扫过的面积为:129011323336024ABCCAA S Sππ+=⋅+⨯⨯=+扇形 . …………… (10分,每部1分)20.(本小题满分10分)如图,AB 是⊙O 的直径,弦 于点E , ,⊙O 的半径为5cm .(1)求OE 的长;(2)求圆心O 到弦BD 的距离.解:(1) ∵∠CDB=30°, ∴∠COB=60°(同弧所对的圆周角是所对的圆心角的一半). … (2分) ∵ 弦CD AB ⊥于点E ,∴∠OEC =90°. …………… (3分) ∴R t∆OCE 中, ∠C =30°. ∴1155cm 222OE OC ==⨯= .…………… (5分) (2) 作OH BD ⊥于H. .…………… (6分) ∵Rt △DEB 中, ∠DEB =90°, ∠CDB =30°,∴∠B=60°. .…………… (7分) ∴R t∆OHB 中, ∠OHB=90°, ∠BOH=30°. ∴1522BH BO == ..…………… (8分) ∴OH == ..…………… (9分)CD AB ⊥30CDB ∠=︒第20题E ACBDO- 8 -即: 圆心O 到弦BD..…………… (10分)21.(本小题满分12分)如图,一次函数y kx b =+ 的图象与反比例函数0my x=(>)的图象交于21A (,﹣)、12B n (,)两点,直线2y =与 y 轴交于点C ,与直线y k x b=+于点D . (1)求一次函数与反比例函数的解析式; (2)利用图象解不等式: ; (3)求△ABC 的面积.解:(1)把21A (,-)代入反比例解析式y mx=得: …………… (1分) 12m-=,即m 2=-, ∴反比例解析式为2y x=-. …………… (2分)又把B (12,n )代入2y x =-得:4n =-,即142B (,-), …………… (3分) 把A 与B 坐标代入y=kx+b 中得:2⎧⎪⎨⎪⎩k+b=-1,1k+b=-4.2, …………… (4分)解得:k =2,b =﹣5,m kx b x>+第21题- 9 -∴ 一次函数解析式为25y x =﹣ . …………… (5分)(2)由图像得,不等式m k x b x >+的解集是: 1<22x < .…………… (8分) (3) 当y=2时, 7252,,2x x -==即7(,2)2D , …………… (9分)∴1717216322224ABC BCD ACD S S S ∆∆∆=-=⨯⨯-⨯⨯=. …………… (12分)22.(本小题满分12分)如图,用红、蓝两种颜色随机地对A 、B 、C 三个区域分别进行涂色,每个区域必须涂色并且只能涂一种颜色.请用列举法(画树状图或列表),求A 、C 两个区域所涂颜色不相同的概率.解:①用树状图表示: …………… (1分)…………… (7分)②由树状图可以看出,所有可能出现的涂颜色方法有8种, A C , 两个区域所涂颜色不相同的涂颜色方法有4种,即红红蓝, 红蓝蓝,蓝红红,蓝蓝红, …………… (8分)∴ P (A C , 两个区域所涂颜色不相同)41==.82…………… (12分) 特别说明: 在第①部中,若树状图有误,至少给1分,合理部分可按步骤再给分.23.(本小题满分12分) 从地面竖直上抛的小球离地高度h (单位:c m )是它运动时间t (单位:s )的二次函数,已知2305(06)h t t t =-≤≤. (1)求小球抛出后多少时间到达最大离地高度?第22题第23题- 10 -(2)在直角坐标系中作出此二次函数的图象,求抛球多少时间后小球离地高度为25c m ?解:(1)225+305(6)h t t t t =-=--2=5(3)+45t --,…… (2分)∴ 小球抛出3秒后到达最大离地高度45c m . …………… (4分)(2)二次函数的图象如图所示. …………… (7分)列方程:2305=25t t - (06)t ≤≤, …………… (8分) 解之得:121,5,t t == …………… (10分)∴ 小球抛出1秒或者5秒时, 小球离地高度为25c m . …………… (12分)24.(本小题满分14分)如图,直线AB 经过⊙O 上的点C ,直线AO 与⊙O 交于点E 和点D , OB 与⊙O 交于点F ,连接DF 、DC .已知OA =OB ,CA =CB ,DE =10,DF =6. (1)求证:①直线AB 是⊙O 的切线;②DC 为∠FDA 的角平分线.(2)求线段CD 的长.解: (1) ,①证明:连接OC . …………… (1分)OA =OB ,AC =CB ,∴ OC ⊥AB , …………… (2分) 点C 在⊙O 上,∴AB 是⊙O 切线.…………… (3分) ②证明:OA =OB ,AC =CB ,∴∠AOC =∠BOC , …………… (4分)OD =OF ,∴∠ODF =∠OFD , …………… (5分) ∠AOB =∠ODF +∠OFD =∠AOC +∠BOC ,∴∠BOC =∠OFD , …………… (6分) ∴OC ∥DF , ∴∠CDF =∠OCD , …………… (7分)OD =OC ,∴∠ODC =∠OCD ,∴∠ADC =∠CDF . …………… (8分)(2)作ON ⊥DF 于N ,延长DF 交AB 于M . …………… (9分)第24题ON⊥DF,∴DN=NF=3,在R t△ODN中,∠OND=90°,OD=5,DN=3,∴ON4=,…………… (10分)∠OCM+∠CMN=180°,∠OCM=90°,∴∠OCM=∠CMN=∠MNO=90°,…………… (11分)∴四边形OCMN是矩形,∴ON=CM=4,MN=OC=5,…………… (12分)在R t△CDM 中,∠DMC=90°,CM=4,DM=DN+MN=8,…………… (13分)∴CD==…………… (14分)25.(本小题满分14分)一次函数34y x=的图像如图所示,它与二次函数24y ax ax c=-+的图像交于A、B两点(其中点A在点B的左侧),与这个二次函数图像的对称轴交于点C.(1)求点C的坐标;(2)设二次函数图像的顶点为D.①若点D与点C关于x轴对称,且△ACD的面积等于3求此二次函数的关系式;②若CD=AC,且△ACD的面积等于10,求此二次函数的解析式.25.解:(1)二次函数的对称轴为直线422axa-=-=, …………… (1分)又∵当2x=时,3332442y x==⨯=, …………… (2分)∴C点坐标为(2,32). …………… (3分)(2)①∵点D与点C关于x轴对称,∴D点坐标为(2,32-),…………… (4分)∴CD=3.…………… (5分)作AE⊥CD于点E,∴S△ACD=1332AE⨯⋅=,得AE=2.∵点A在点B的左侧,对称轴为直线2x=,第25题- 11 -- 12 -∴点A 的横坐标为0, 当0x =时,304y x == ∴A 点坐标为(0,0). ……… (6分) ∵抛物线24y ax ax c =-+的顶点为D (2,32-),且过点A (0,0)∴34820a a c c ⎧-+=-⎪⎨⎪=⎩ , ∴380a c ⎧=⎪⎨⎪=⎩. …………… (7分) ∴此二次函数的关系式为23382y x x =- …………… (8分)②设A 点坐标为(m ,34m ),其中2m <, ………… (9分)过A 作AE ⊥CD 于点E ,则2AE m =-,3324CE m =-, ∴()524CD AC m ==-.……… (10分)由S △ACD =10,得()()15221024m m ⨯-⋅-=. …………… (11分)∴16m =(舍去),22m =- ,∴()52254CD =--=⎡⎤⎣⎦, ∴A 点坐标为(2-,32-),D 点坐标为(2,132)或(2,72-) …………… (12分)设此二次函数的解析式为()21322y a x =-+或()2722y a x =--, 把A (2-,32-)代入上式,解得12a =-或18a =. …………… (13分)∴此二次函数的解析式为:()2113222y x =--+或()217282y x =--. …………… (14分)- 13 -。
山西省太原市2016届九年级上学期期末数学试卷含答案解析

山西省太原市2016届九年级上学期期末数学试卷一、选择题(每小题2分,共20分)1.在平面直角坐标系中,反比例函数的图象位于()A.第二、四象限 B.第一、三象限 C.第一、四象限 D.第三、四象限2.若,则=()A.B.C.D.3.一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是()A.B.C.D.4.校运动会上甲、乙、丙、丁四名选手参加100米决赛,赛场有1、2、3、4条跑道.如果选手以随机抽签的方式决定各自的跑道,则甲抽到1号跑道,乙抽到2号跑道的概率是()A.B.C.D.5.已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm2B.3cm2 C.12cm2D.24cm26.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(4)(3)(1)7.如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M下的影长在地面上的变化情况是()A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长8.若A(3,y1),B(2,y2)在函数的图象上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定9.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.二、填空题(每小题3分,共18分)11.已知x=1是方程x2﹣4x+c=0的一个根,则c的值是.12.如图,已知直线l1∥l2∥l3,分别交直线m、n于点A、C、D、E、F,AB=5cm,AC=15cm,DE=3cm,则EF的长为cm.13.一个不透明的袋子中有1个白球、3个黄球和2个红球,这些球除颜色外都相同.将袋子中的球搅拌均匀,从中一次随机摸出两个球都是黄球的概率为.14.将一副三角尺按如图所示的方式叠放在一起,边AD与BC相交于点E,则的值等于.15.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF 折叠,使得点A落在CD边上的点A′处,此时点落在点B′处.已知折痕EF=13,则AE的长等于.三、解答题(本大题含8个小题,共62分)17.解方程:x2+2x﹣1=0.18.如图,△ABC 与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.(1)画出位似中心O;(2)△ABC与△A′B′C′的相似比为,面积比为.19.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求BC的长.20.晚上,小亮在广场上乘凉.中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照亮灯.知小亮的身高1.6m.(1)图中画出小亮在照明灯P照射下的影子BC;(2)如果灯杆高PO=12m,小亮不灯杆的距离BO=13m,求小亮影子BC的长度.21.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?22.数学活动﹣﹣探究特殊的平行四边形.问题情境如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC.请你添加条件,使它们成为特殊的平行四边形.提出问题(1)第一小组添加的条件是“AB∥CD”,则四边形ABCD是菱形.请你证明;(2)第二小组添加的条件是“∠B=90°,∠BCD=90°”,则四边形ABCD是正方形.请你证明.23.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能多售出40件.(A)在降价的情况下,要使该商品每天的销售盈利为1800元,每件应降价多少元?(B)为了使该商品每天销售盈利为1980元,每件定价多少元?24.启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接AC,BD,如果△ABC与△BCD的面积相等,那么AD∥BC在小组交流时,他们在图(1)中添加了如图所示的辅助线,AE⊥BC于点E,DF⊥BC于点F.请你完成他们的证明过程.结论应用在平面直角坐标系中,反比例函数y=(x≠0)的图象经过A(1,4),B(a,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.(A)(1)求反比例函数的表达式;(2)如图(2),已知b=1,AC,BD相交于点E,求证:CD∥AB.(B)(1)求反比例函数的表达式;(2)如图(3),若点B在第三象限,判断并证明CD与AB的位置关系.山西省太原市2016届九年级上学期期末数学试卷参考答案与试题解析一、选择题(每小题2分,共20分)1.在平面直角坐标系中,反比例函数的图象位于()A.第二、四象限 B.第一、三象限 C.第一、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】首先确定反比例函数的比例系数的符号,然后根据反比例函数的性质确定反比例函数的图象的位置即可.【解答】解:∵k=1>0,∴反比例函数y=的图象在第一,三象限内,故选B.【点评】此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.2.若,则=()A.B.C.D.【考点】比例的性质.【专题】计算题.【分析】由题干可得2b=3a﹣3b,根据比等式的性质即可解得a、b的比值.【解答】解:∵,∴5b=3a,∴,故选D.【点评】本题是基础题,考查了比例的基本性质,比较简单.3.一个圆柱体钢块,从正中间挖去一个长方体得到的零件毛坯的俯视图如图,其主视图是()A.B.C.D.【考点】简单组合体的三视图;由三视图判断几何体.【分析】主视图是从几何体的正面看所得到的视图,注意圆柱内的长方体的放置.【解答】解:其主视图是,故选:A.【点评】此题主要考查了三视图,关键是要注意视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.从实线和虚线想象几何体看得见部分和看不见部分的轮廓线.4.校运动会上甲、乙、丙、丁四名选手参加100米决赛,赛场有1、2、3、4条跑道.如果选手以随机抽签的方式决定各自的跑道,则甲抽到1号跑道,乙抽到2号跑道的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲抽到1号跑道,乙抽到2号跑道的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,甲抽到1号跑道,乙抽到2号跑道的只有1种情况,∴甲抽到1号跑道,乙抽到2号跑道的概率是:.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.5.已知△ABC∽△A′B′C′,△A′B′C′的面积为6,周长为△ABC周长的一半,则△ABC的面积等于()A.1.5cm2B.3cm2 C.12cm2D.24cm2【考点】相似三角形的性质.【分析】根据题意求出两个三角形的周长比,根据相似三角形的性质解答即可.【解答】解:∵△ABC与△A′B′C′的周长比为2:1,△ABC∽△A′B′C′,∴△ABC与△A′B′C′的面积比为4:1,又△A′B′C′的面积为6,∴△ABC的面积=24,故选:D.【点评】本题考查的是相似三角形的性质,掌握相似三角形的周长比等于相似比、面积比等于相似比的平方是解题的关键.6.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是()A.(3)(4)(1)(2) B.(4)(3)(1)(2) C.(4)(3)(2)(1) D.(2)(4)(3)(1)【考点】平行投影.【分析】由于太阳从东方升起,在西边落下,则早上物体的影子向西,傍晚物体的影子向东,利用此情形可根据四个影子判断时间的顺序.【解答】解:按照时间的先后顺序排列正确的是(4)、(3)、(2)、(1).故选C.【点评】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.如图,晚上小明由甲处径直走到乙处的过程中,他在路灯M下的影长在地面上的变化情况是()A.逐渐变短 B.先变短后变长 C.先变长后变短 D.逐渐变长【考点】中心投影.【分析】根据中心投影的特点,小明由甲处径直走到路灯下时,他的影长逐渐变短,由路灯下到乙处的过程中,他的影长逐渐变长.【解答】解:晚上小明由甲处径直走到乙处的过程中,他在路灯M下的影长先变短,然后他的影长逐渐变长.故选B.【点评】本题考查了中心投影:由同一点(点光源)发出的光线形成的投影叫做中心投影.如物体在灯光的照射下形成的影子就是中心投影.中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.8.若A(3,y1),B(2,y2)在函数的图象上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.无法确定【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据0<x1<x2,判断出A、B 两点所在的象限,根据该函数在此象限内的增减性即可得出结论.【解答】解:∵反比例函数中,k=2>0,∴此函数图象的两个分支在一、三象限,∵A(3,y1),B(2,y2),0<2<3,∴A、B两点在第一象限,∵在第一象限内y的值随x的增大而减小,∴y1<y2.故选:C.【点评】本题考查的是反比例函数图象上点的坐标特点,先根据题意判断出函数图象所在的象限及A、B两点所在的象限是解答此题的关键.9.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.【点评】此题主要考查长方体的体积计算公式:长方体的体积=长×宽×高,以及平面图形折成立体图形后各部分之间的关系.10.一次函数y=ax﹣a与反比例函数y=(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【分析】先根据一次函数的性质判断出a取值,再根据反比例函数的性质判断出a的取值,二者一致的即为正确答案.【解答】解:A、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a>0,相矛盾,故错误;B、由函数y=ax﹣a的图象可知a>0,﹣a>0,由函数y=(a≠0)的图象可知a<0,错误;C、由函数y=ax﹣a的图象可知a<0,由函数y=(a≠0)的图象可知a<0,正确;D、由函数y=ax﹣a的图象可知m>0,﹣a<0,一次函数与y轴交与负半轴,相矛盾,故错误;故选:C.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(每小题3分,共18分)11.已知x=1是方程x2﹣4x+c=0的一个根,则c的值是3.【考点】一元二次方程的解.【分析】把x=1代入方程,即可得到一个关于c的方程,求得c的值.【解答】解:把x=1代入方程x2﹣4x+c=0得:12﹣4+c=0解得:c=3.故答案是:3.【点评】本题主要考查了方程的解的定义,正确求解c的值是解决本题的关键.12.如图,已知直线l1∥l2∥l3,分别交直线m、n于点A、C、D、E、F,AB=5cm,AC=15cm,DE=3cm,则EF的长为6cm.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理得到,即,然后利用比例的性质求解.【解答】解:∵直线l1∥l2∥l3,∴,即,∴EF=6,故答案为:6.【点评】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.一个不透明的袋子中有1个白球、3个黄球和2个红球,这些球除颜色外都相同.将袋子中的球搅拌均匀,从中一次随机摸出两个球都是黄球的概率为.【考点】列表法与树状图法.【分析】首先根据题意列出表格,然后由表格求得所有等可能的结果与从中一次随机摸出两个球都是黄球的情况,再利用概率公式即可求得答案.∴从中一次随机摸出两个球都是黄球的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.将一副三角尺按如图所示的方式叠放在一起,边AD与BC相交于点E,则的值等于.【考点】相似三角形的判定与性质;平行线的判定;含30度角的直角三角形;勾股定理.【分析】设AB=AC=1,根据勾股定理求出BC,求出AD=2AC=2,根据勾股定理求出DC,求出AB∥CD,得出相似△AEB∽△DEC,得出比例式,代入求出即可.【解答】解:设AB=AC=1,由勾股定理得:BC==,∵在Rt△ACD中,∠ACD=90°,AC=1,∠D=30°,∴AD=2AC=2,由勾股定理得:DC==,∵∠BAC+∠CD=90°+90°=180°,∴AB∥CD,∴△AEB∽△DEC,∴=,∴==,故答案为:.【点评】本题考查了相似三角形的判定和性质,含30°角的直角三角形性质,平行线的判定,勾股定理的应用,能得出相似三角形和求出AB、BC、CD的长是解此题的关键.15.如图是反比例函数与在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB∥x轴分别交这两个图象于点A,B.若点P在x轴上运动,则△ABP的面积等于5.【考点】反比例函数系数k的几何意义.【分析】先设C(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数与的图象上,可得到A点坐标为(,b),B点坐标为(﹣,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设C(0,b),∵直线AB∥x轴,∴A,B两点的纵坐标都为b,而点A在反比例函数y=的图象上,∴当y=b,x=,即A点坐标为(,b),又∵点B在反比例函数y=﹣的图象上,∴当y=b,x=﹣,即B点坐标为(﹣,b),∴AB=﹣(﹣)=,∴S△ABC=•AB•OC=••b=5.故答案为:5.【点评】本题考查的是反比例函数系数k的几何意义,即在反比例函数y=的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.16.如图,正方形纸片ABCD的边长为12,E,F分别是边AD,BC上的点,将正方形纸片沿EF 折叠,使得点A落在CD边上的点A′处,此时点落在点B′处.已知折痕EF=13,则AE的长等于.【考点】翻折变换(折叠问题).【分析】过点F作FG⊥AD,垂足为G,连接AA′,在△GEF中,由勾股定理可求得EG=5,轴对称的性质可知AA′⊥EF,由同角的余角相等可证明∠EAH=∠GFE,从而可证明△ADA′≌△FGE,故此可知GE=DA′=5,最后在△EDA′利用勾股定理列方程求解即可.【解答】解:过点F作FG⊥AD,垂足为G,连接AA′.在Rt△EFG中,EG===5.∵轴对称的性质可知AA′⊥EF,∴∠EAH+∠AEH=90°.∵FG⊥AD,∴∠GEF+∠EFG=90°.∴∠DAA′=∠GFE.在△GEF和△DA′A中,,∴△GEF≌△DA′A.∴DA′=EG=5.设AE=x,由翻折的性质可知EA′=x,则DE=12﹣x.在Rt△EDA′中,由勾股定理得:EA′2=DE2+A′D2,即x2=(12﹣x)2+52.解得:x=.故答案为:.【点评】本题主要考查的是翻折的性质、勾股定理的应用、全等三角形的性质和判定,证得△GEF≌△DA′A从而求得A′D=5是解题的关键.三、解答题(本大题含8个小题,共62分)17.解方程:x2+2x﹣1=0.【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形后,开方即可求出解.【解答】解:方程变形得:x2+2x=1,配方得:x2+2x+1=2,即(x+1)2=2,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.18.如图,△ABC 与△A′B′C′是以点O为位似中心的位似图形,它们的顶点都在正方形网格的格点上.(1)画出位似中心O;(2)△ABC与△A′B′C′的相似比为2:1,面积比为4:1.【考点】作图-位似变换.【专题】作图题.【分析】(1)根据位似的性质,延长AA′、BB′、CC′,则它们的交点即为位似中心O;(2)根据位似的性质得到AB:A′B′=OA:OA′=2:1,则△ABC与△A′B′C′的相似比为2:1,然后根据相似三角形的性质得到它们面积的比.【解答】解:(1)如图,点O为位似中心;(2)因为AB:A′B′=OA:OA′=12:6=2:1,所以△ABC与△A′B′C′的相似比为2:1,面积比为4:1.故答案为2:1;4:1.【点评】本题考查了作图﹣位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;然后根据位似比,确定能代表所作的位似图形的关键点;最后顺次连接上述各点,得到放大或缩小的图形.19.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,△ABO是等边三角形,AB=4,求BC的长.【考点】矩形的判定与性质.【分析】根据等边三角形性质求出OA=OB=AB=4,根据平行四边形的性质求出OA=OC,OB=OD,得出AC=BD=8,证出四边形ABCD是矩形,得出∠ABC=90°,由勾股定理求出BC即可.【解答】解:∵△ABO是等边三角形,∴OA=OB=AB=4,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∴OA=OC=OB=OD,∴AC=BD=8,∴四边形ABCD是矩形,∴∠ABC=90°,由勾股定理得:BC===4.【点评】本题考查了等边三角形的性质、平行四边形的性质,勾股定理,矩形的判定与性质;熟练掌握平行四边形和等边三角形的性质,证明四边形是矩形是解决问题的关键.20.晚上,小亮在广场上乘凉.中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照亮灯.知小亮的身高1.6m.(1)图中画出小亮在照明灯P照射下的影子BC;(2)如果灯杆高PO=12m,小亮不灯杆的距离BO=13m,求小亮影子BC的长度.【考点】相似三角形的应用;中心投影.【分析】(1)直接连接点光源和物体顶端形成的直线与地面的交点即是影子的顶端;(2)根据中心投影的特点可知△POC∽△ABC,利用相似比即可求解.【解答】解:(1)如图所示:线段BC为所画的小亮的影子;(2)∵PO⊥OB,AB⊥OB,∴AB∥PO,∴△POC∽△ABC,∴=,∵PO=12cm,BO=13cm,AB=1.6m,设BC=xm,代入得:=,解得:x=2.答:小亮影子BC的长度是2m.【点评】本题考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.21.如图,在△ABC中,AB=8cm,BC=16cm,动点P从点A开始沿AB边运动,速度为2cm/s;动点Q从点B开始沿BC边运动,速度为4cm/s;如果P、Q两动点同时运动,那么何时△QBP与△ABC相似?【考点】相似三角形的判定.【专题】动点型.【分析】设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,利用两组对应边的比相等且夹角对应相等的两个三角形相似进行分类讨论:=时,△BPQ∽△BAC,即=;当=时,△BPQ∽△BCA,即=,然后方程解方程即可.【解答】解:设经过t秒时,以△QBC与△ABC相似,则AP=2t,BP=8﹣2t,BQ=4t,∵∠PBQ=∠ABC,∴当=时,△BPQ∽△BAC,即=,解得t=2(s);当=时,△BPQ∽△BCA,即=,解得t=0.8(s);即经过2秒或0.8秒时,△QBC与△ABC相似.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.利用时间表示相应线段长和利用相似比列方程是解决此题的关键.22.数学活动﹣﹣探究特殊的平行四边形.问题情境如图,在四边形ABCD中,AC为对角线,AB=AD,BC=DC.请你添加条件,使它们成为特殊的平行四边形.提出问题(1)第一小组添加的条件是“AB∥CD”,则四边形ABCD是菱形.请你证明;(2)第二小组添加的条件是“∠B=90°,∠BCD=90°”,则四边形ABCD是正方形.请你证明.【考点】菱形的判定;正方形的判定.【分析】(1)先根据SSS定理得出△ABC≌△ADC,故可得出∠BAC=∠DAC,∠BCA=∠DCA.再由AB∥CD可得出∠BAC=∠DCA,根据等边对等角可得出四边形的四条边均相等,进而可得出结论;(2)根据△ABC≌△ADC得出∠D=∠B,再由∠BCD=90°得出四边形ABCD是矩形,根据BC=DC 可得出结论.【解答】(1)证明:在△ABC与△ADC中,,∴△ABC≌△ADC,∴∠BAC=∠DAC,∠BCA=∠DCA.∵AB∥CD,∴∠BAC=∠DCA,∴∠BAC=∠DCA=∠BCA=∠DAC,∴AB=BC,DA=DC.∵AB=AD,∴AB=BC=CD=DA,∴四边形ABCD是菱形;(2)解:在△ABC与△ADC中,,∴△ABC≌△ADC,∴∠D=∠B.∵∠B=90°,∴∠D=∠B=90°.∵∠D=∠B=90°,∵∠BCD=90°,∴四边形ABCD是矩形.∵BC=DC,∴矩形ABCD是正方形.【点评】本题考查的是菱形的判定,涉及到全等三角形的判定与性质、矩形及正方形的判定等知识,难度适中.23.春节前夕,便民超市把一批进价为每件12元的商品,以每件定价20元销售,每天能售出240件.销售一段时间后发现:如果每件涨价1元,那么每天就少售20件;如果每件降价1元,那么每天能多售出40件.(A)在降价的情况下,要使该商品每天的销售盈利为1800元,每件应降价多少元?(B)为了使该商品每天销售盈利为1980元,每件定价多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)分别表示出每件销售的利润和销售量,根据单件销售利润×销售量=1800列出方程即可求解;(2)首先根据题意列出方程,利用根的判别式判断方程没有实数根后再列出方程求解即可.【解答】解:(A)设每件应降价x元,根据题意得:(240+40x)=1800,解得:x=3或x=﹣1(舍).答:每件应降价3元;(B)①设每件应降价x元,(240+40x)=1980,∵△<0,∴原方程无实数根;②设每件应该涨价y元,(240﹣40y)=1800,解得:y=3或y=1,则20+3=23元,20+1=21元,答:为了使得该商品每天盈利1980元,每件定价应为21或23元.【点评】本题考查了一元二次方程的应用,解题的关键是能够分别表示出销售量和单件的销售利润,从而列出方程求解,解答过程中注意舍去不符合题意的根.24.启知学习小组在课外学习时,发现了这样一个问题:如图(1),在四边形ABCD中,连接AC,BD,如果△ABC与△BCD的面积相等,那么AD∥BC在小组交流时,他们在图(1)中添加了如图所示的辅助线,AE⊥BC于点E,DF⊥BC于点F.请你完成他们的证明过程.结论应用在平面直角坐标系中,反比例函数y=(x≠0)的图象经过A(1,4),B(a,b)两点,过点A作AC⊥x轴于点C,过点B作BD⊥y轴于点D.(A)(1)求反比例函数的表达式;(2)如图(2),已知b=1,AC,BD相交于点E,求证:CD∥AB.(B)(1)求反比例函数的表达式;(2)如图(3),若点B在第三象限,判断并证明CD与AB的位置关系.【考点】反比例函数综合题.【分析】先根据两三角形的面积相等得出AE=AF,再由AE⊥BC,DF⊥BC得出AE∥DF,故可判断出四边形AEFD是平行四边形,由此可得出结论;(A)(1)直接把点A的坐标代入反比函数的解析式即可;(2)连接AD、BC,先根据b=1得出B点坐标,再由AC⊥x轴,BD⊥y轴得出C、D、E三点坐标,故可得出CE=DE=1,AE=BE=3.再由S△ABC=S△ADB即可得出结论;(B)(1)直接把点A的坐标代入反比函数的解析式即可;(2)连接AD,BC,延长BD,AC相交于点M,根据A(1,4),B(a,b)可得出M(1,b),BM=1﹣a,AM=4﹣b,且b=,再得出S△ABC及S△ABD表达式即可得出S△ABC=S△ABD,由此得出结论.【解答】解:∵AE⊥BC于点E,DF⊥BC于点F,∴S△ABC=BC•AE,S△BCD=BC•DF.∵S△ABC=S△BCD,∴AE=DF.∵AE⊥BC,DF⊥BC,∴AE∥DF,∴四边形AEFD是平行四边形,∴AD∥BC.(A)(1)∵把点A(1,4)代入反比例函数y=得,4=,解得m=4,∴反比例函数的表达式为:y=;(2)如图1,连接AD、BC,∵把b=1代入函数解析式得,a=4,∴B(4,1).∵AC⊥x轴,BD⊥y轴,∴AC⊥BC,C(1,0),D(0,1),E(0,0),∴CE=DE=1,AE=BE=3.∵S△ABC=AC•BE,S△ADB=BD•AE,且AC=BD=4,BE=AE=3,∴S△ABC=S△ADB,∴CD∥AB.(B)(1)∵A(1,4),∴4=,解得m=4,∴反比例函数的表达式为:y=;(2)CD∥AB.理由:如图2,连接AD,BC,延长BD,AC相交于点M,∵A(1,4),B(a,b),∴M(1,b),BM=1﹣a,AM=4﹣b,且b=,∴S△ABC=AC•BM=×4(1﹣a)=2(1﹣a),S△ABD=BD•AM=(﹣a)(4﹣b)=(﹣a)(4﹣)=2(1﹣a),∴S△ABC=S△ABD,∴CD∥AB.【点评】本题考查的是反比例函数综合题,涉及到反比例函数图象上点的坐标特点、三角形的面积公式及平行四边形的判定与性质等知识,根据题意作出辅助线,构造出等底同高的三角形是解答此题的关键.。
青岛市市南区2016届九年级上期末数学试卷含答案解析

多少种不同取法?
解决问题过程如下:
1
2
3
4
5
1
(1,1)
(1,2)
(1,3)
(1,4)
(1,5)
2
(2,1)
(2,2)
(2,3)
(2,4)
(2,5)
3
(3,1)
(3,2)
(3,3)
(3,4)
(3,5)
4
(4,1)
(4,2) (4,3)
(4,4) (4,5)
5
(5,1)
(5,2)
第 1 行有 1 种取法(1,5)
多少种不同的取法?
解决问题过程如下:
1
2
3
4
5
6
1
(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
2
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
3
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
4
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
四、解答题(共 9 小题,满分 74 分) 16.(1)解方程:x2﹣ 2x﹣ 3=0 (2)若关于 x 的方程 2x2﹣ 5x+c=0 没有实数根,求 c 的取值范围. 17.小明和小亮用如图所示的两个转盘(每个转盘被分成三个面积相同的扇形)做游 戏.同时转动两个转盘,如果所得颜色能配成紫色,那么小明获胜;如果所得颜色相同, 那么小亮获胜,这个游戏对双方是否公平?请说明理由.
A.(﹣ 2a,﹣ 2b) B.(﹣ a,﹣ 2b) C.(﹣ 2b,﹣ 2a) D.(﹣ 2a,﹣ b) 7.抛物线 y=﹣ x2+bx+c 上部分点的横坐标 x,纵坐标 y 的对应值如下表:
2016九年级数学上期末综合练习卷

九年级数学试卷第一学期期末复习一、选择题:本大题共12个小题,每小题3分,共36分.. 1.下列事件是随机事件的是( )A .通常温度降到0℃以下,纯净的水结冰B .购买1张福利彩票,中奖C .明天太阳从东方升起D .在一个仅装着白球和黑球的袋中摸球,摸出红球 2. 事件A 发生的概率P (A )满足( )A . P (A )>1B . P (A )≥0C . P (A ) ≤1D . 0≤P (A )≤1 3.下列汽车标志中,是中心对称图形的是( )4.下列函数中,y 是x 的反比例函数的是( )A . 2xy =B . x y 35-=C . 2x y =D . 12+=x y5.如图,△ABC 和△C B A '''成中心对称,下列说法不正确...的是( ) A . ACB S ∆ =C B A S '''∆ B . AB =B A '',AC =C A '',BC =C B '' C . AB ∥B A '',AC ∥C A '',BC ∥C B '' D . O B A S ''∆ =ACO S ∆ 6.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径, CD 是⊙O 的弦,∠ABD =58°,则∠BCD 等于( )A .116°B . 64°C . 58°D . 32° 7.如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD =120°,则∠DCE 的度数为( )A . 40°B . 50°C . 60°D . 80°8.某校计划在校园内修建一座周长为12m 的花坛,同学们设计了正三角形、正方形、正六边形和圆这四种图案,其中使花坛面积最大的图案是( )A . 正三角形B . 正方形C . 正六边形D . 圆 9.一个半径为2,弧长也为2的扇形面积为( )A .πB . 1C . 2D .π32 10.抛物线()322-+=x y 可以由抛物线2x y =平移得到,则下列平移过程正确的是( )A .先向左平移2个单位,再向上平移3个单位B .先向左平移2个单位,再向下平移3个单位C .先向右平移2个单位,再向下平移3个单位D .先向右平移2个单位,再向上平移3个单位 11.如图,在宽为20m 、长为30m 的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551m 2, 则修建的路宽应为( )A . 1mB . 1.5mC . 2mD . 2.5m12.如图,反比例函数x ky 11=和正比例函数x k y 22=A (―1,―3)、B (1,3)两点,若xk 1>x k 2, 则x 的取值范围是( )A . 0<x <1B . ―1<x <1C . x <―1 或 0<x <1D . ―1<x <0或x >1 二、填空题:本大题共6小题,每小题3分,共18分.请将答案直接填在题中横线上.13.若反比例函数的表达式为xy 3=,则当x <-1时,y 的取值范围是 . 14.如图所示, B 、C 、E 三点在一条直线上,已知△ABC 和△DCE 都是等边三角形. 若△ACE 按逆时针旋转一定角度后与△BCD 重合.则旋转中心是点 ,旋转角最小是 度, 图中与BD 相等的线段是 .15.某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:根据表中数据,估计这种幼树移植成活的概率为 (精确到0.1).126BACDAD ( 第14题 )O·AB CD (第6题)( 第5题 )(第7题)· ABCD EO16.有一个人患了流感,经过两轮传染后共有121个人患了流感,每轮传染中平均一个人传染了个人 ..17.如图,AB 是⊙O 的直径,AM ,BN 分别切⊙O 于点A ,B ,CD 交AM ,BN 于点D ,C , DO 平分∠ADC . 若AD =4,BC =9,则⊙O 的半径长为 . 18. 已知二次函数bx ax y +=2+c (a ≠0)的图象如图所示, (Ⅰ)该抛物线的对称轴是直线 ;(Ⅱ)下列结论:①abc <0; ②a +b +c <0; ③当x >1时,y 随x 的增大而增大; ④若y <0,则x 的取值范围是―1<x <3;⑤关于x 的一元二次方程bx ax +2+c =0(a ≠0)的两个实数根分别是11-=x ,32=x ; ⑥若关于x 的一元二次方程bx ax +2+c ―m =0(a ≠0)的有实数根,则m 的最小值是-4.请写出这些结论中所有正确结论的序号: .三、解答题:本大题共7小题,共66分. 解答应写出文字说明、演算步骤或证明过程. 19.(第(Ⅰ)题3分,第(Ⅱ)题5分,本题共8分)(Ⅰ)如图,网格中有一个四边形和两条折线. 请你分别画出三个图形关于点O 成中心对称的图形;(Ⅱ)如图,在平面直角坐标系中,△OAB 的三个顶点坐标分别为O (0,0),A (―1,4),B (―3,1).请利用关于原点对称的点的坐标的关系,作出与△OAB 关于原点O 对称的△11B OA ,并写出1A ,1B 两点的坐标.20.(本题8分) 在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变.密度ρ是体积V 的反比例函数,它的图象如图所示. (Ⅰ)求密度ρ(单位:kg /m 3)与体积V (单位:m 3)之间的函数解析式;(Ⅱ)当V =10 m 3时,求二氧化碳的密度ρ;(Ⅲ)当ρ= 5 kg /m 3时,求二氧化碳的体积.21.(本题10分)甲口袋中装有2个完全相同的小球,它们分别写有数字1和2;乙口袋中装有3个完全相同的小球,它们分别写有数字3,4和5,从这两个口袋中各随机地取出1个小球. (Ⅰ)请你运用“画树状图法” 或“列表法”表示所有可能出现的结果;(Ⅱ)小颖和小红一起玩游戏.她们约定:若取出的两个小球上所写数字之和是偶数,则小颖获胜;若取出的两个小球上所写数字之和是奇数,则小红获胜. 请你运用概率知识说明这个游戏是否公平.22.(本题10分)如图,AB 是⊙O 的一条弦,OD ⊥AB ,垂足为C ,交⊙O 于点D ,点E 在⊙O 上.(Ⅰ)若∠AOD =52°,求∠DEB 的度数; (Ⅱ)若OC =3,OA =5,求AB 的长.(第19题(Ⅰ))(第19题(Ⅱ))(第20题)m 3)O · A CD MN(第18题)O· AB C DE( 第22题 )24.(本题10分)(Ⅰ)如图,△ABC 中, AB =13,AC =5,BC =12 . 求△ABC 的内切圆⊙O 的半径r ;(Ⅱ)如图,若△ABC 的面积为S ,且BC ,AC , AB 三边长分别为a ,b ,c ,求△ABC 的内切圆⊙O 的半径r ;(温馨提示:连接OA ,OB ,OC ,△ABC 被划为三个小三角形,利用AOC BOC AOB ABC S S S S ∆∆∆∆++=即可求得)(Ⅲ)如图所示,若四边形ABCD 存在内切圆⊙O (与各边都相切的圆),四边形面积为S ,且AB ,BC , CD ,AD 各边长分别为a ,b ,c ,d ,求四边形ABCD 的内切圆的半径r ;(Ⅳ)若一个n 边形(n 为不小于3的整数)存在内切圆,且n 边形面积为S ,各边长分别为 1a ,2a ,3a ,…,n a ,合理猜想其内切圆的半径r (不需要说明理由).23.(本题10分) 某商品现在的售价为每件60元.每星期可卖出300件.市场调查反映:如果调整价格,每降价1元,每星期可多卖出10件.请你帮助分析,当每件商品降价多少元时,可使每星期的销售额最大,最大销售额是多少?设每件商品降价x 元.每星期的销售额为y 元.(Ⅰ) 分析:根据问题中的数量关系,用含x 的式子填表:(Ⅱ)由以上分析,用含x 的式子表示y ,并求出问题的解.25.(本题10分)如图,已知抛物线c bx x y ++=2与x 轴的一个交点为B (5,0),另一个交点为A,且与y 轴交于点C (0,5). (Ⅰ)求直线BC 与抛物线的解析式;(Ⅱ)若点M 是抛物线在x轴下方图象上的一动点,过点M 作MN ∥y 轴交直线BC 于点N ,求MN 的最大值;(Ⅲ)在(Ⅱ)的条件下,MN 取得最大值时,若点P 是抛物线在x 轴下方图象上的任意一点, 以BC 为边作平行四边形CBPQ ,设平行四边形CBPQ 的面积为1S ,△ABN 的面积为2S ,且1S =62S ,求点P 的坐标.(第24题(Ⅱ))A CBO · (第24题(Ⅰ))A CBO· ( 第24题(Ⅲ))(第25题)。
2016年九年级上册数学期末考试卷

2016年九年级上册数学期末考试卷(满分120分, 90分钟完卷)班次:_________________姓名:__________________1、下面是最简二次根式的是A B C D2、方程x(x+1) = 3(x+1)的解为A、x=-1B、x=3C、x1=-1,x2=3D、以上均不对3、已知关于x的方程x2-4x+k=0有实数根,则k的取值范围是A、k<-4B、k≤-4C、 k≥4D、k≤44、关于x的一元二次方程01)1(22=-++-axxa的一个根是0,则a的值为A、 1B、1- C、 1或1- D、 0.55、若两个相似三角形的面积之比为1∶16,则它们的周长之比为A、1∶2B、1∶4C、1∶5D、1∶166、在一个不透明的口袋中有若干个只有颜色不同的球,如果口袋中装有4个黄球,且摸出黄球的概率为31,那么袋中共有球的个数为A、6个B、8个C、12个D、15个7、设方程052=++xx的两个实数根为121211,,x xx x+则的值为A、5B、-5C、51D、51-8、以下列长度(同一单位)为长的四条线段中,不成比例的是A、2,5,10,25B、2,12,12,4C 、4,7,4,7D9、如图,在等腰三角形ABC 中,AD 是底边BC 边上的高,已知腰长为8,6BC =,则AD 的长是A 、5B 、4C 、10 D10、若2144x mx ++是一个完全平方式,则m 为 A 、2 B 、1 C 、2± D 、1±11ABD12、在同一时刻物高与影长成比例,若高为1.5米的测杆的影长为2.5。
那么,影长为30米的旗杆高为 ( )米。
A 、20B 、18C 、16D 、15二、填空题(每小题3分,满分24分)13、若实数a 、b 满足(4a +4b ) (4a +4b -2)-8=0,则a +b=__________________.. 14、在解方程x2+px+q=0时,小张看错了p ,解得方程的根为1与-3;小王看错了q ,解得方程的根为4与-2.这个方程的根____________________15、ΔABC 的三条边分别为 54cm 、45cm 、63cm,另一个和它相似的三角形最短边长为5 cm,则这个三角形的周长为 . 16、已知代数式:2-2x x-有意义,则x 的取值范围是17、方程x 2+5x-m=0的一个根是2,则另一个根是 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年12月九年级上学期期末数学试卷一.选择题(共12分)1.设a是方程x2﹣x﹣2016=0的一个实数根,则a2﹣a+1的值为()A.2014 B.2015 C.2016 D.20172.下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.菱形C.等腰直角三角形D.平行四边形3.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>14.如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD的度数为()A.50°B.80°C.100°D.130°5.二次函数y=a (x+m)2﹣m (a≠0)无论m为什么实数,图象的顶点必在()A.直线y=﹣x上 B.直线y=x上C.y轴上D.x轴上6.下列事件是不确定事件的是()A.水中捞月 B.守株待兔 C.风吹草动 D.水涨船高二.填空题(共24分)7.一个凸多边形共有35条对角线,它是边形.8.如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是.9.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为.10.如图,在△ABC中,∠ACB=90°,以点C为圆心,CB为半径的⊙C与边AB交于点D.若点D为AB的中点,AB=6,则⊙C的半径长为.11.如图,在平面直角坐标系中,抛物线y=ax2﹣4ax(a>0)与x轴正半轴交于点C,这条抛物线的对称轴与x轴交于点D,以CD为边作菱形ABCD,若菱形ABCD的顶点A、B在这条抛物线上,则菱形ABCD的面积为.12.点P(﹣3,2)关于坐标原点对称的点是.13.如图:在平面直角坐标系中,点A的坐标(2,4),点B的坐标(0,4),将△AOB绕点O旋转90°至△COD位置(其中点C与点A是对应点,点D与点B是对应点),OD落在x轴上,则点C的坐标是.14.如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.三.解答题(共84分)15.解一元二次方程:x2﹣2x﹣3=0.16.如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF是等腰三角形.17.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.18.已知直线y=2x﹣3与抛物线y=ax2﹣x+c交于A、B两点,它们的横坐标分别是2、﹣1.(1)求抛物线的解析式;(2)设坐标原点为O,求△AOB的面积.19.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.20.如图,以正六边形ABCDEF的边AB为边,在形内作正方形ABMN,连接MC.求∠BCM的大小.21.如图,圆内接四边形ABCD,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE.22.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒钟后△DPQ 的面积等于28cm2?23.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.24.如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x 轴于点B、C,解答下列问题:(1)将⊙A向左平移个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为,阴影部分的面积S=;(2)求BC的长.25.如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.26.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P 运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.2016年12月九年级上学期期末数学试卷一.选择题(共6小题)1.(2016春•福州校级期末)设a是方程x2﹣x﹣2016=0的一个实数根,则a2﹣a+1的值为()A.2014 B.2015 C.2016 D.2017【解答】解:根据题意,得a2﹣a﹣2016=0,解得,a2﹣a=2016,所以a2﹣a+1=2016+1=2017.故选D.2.(2016春•常熟市期末)下列图形中,既是轴对称图形又是中心对称图形的是()A.等边三角形B.菱形C.等腰直角三角形D.平行四边形【解答】解:A、等边三角形,是轴对称图形,不是中心对称图形,故此选项错误;B、菱形,是轴对称图形,也是中心对称图形,故此选项正确;C、等腰直角三角形,是轴对称图形,不是中心对称图形,故此选项错误;D、平行四边形,不是轴对称图形,是中心对称图形,故此选项错误.故选:B.3.(2015春•重庆校级期末)若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围()A.k<1且k≠0 B.k≠0 C.k<1 D.k>1【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴△>0,即(﹣6)2﹣4×9k>0,解得,k<1,∵为一元二次方程,∴k≠0,∴k<1且k≠0.故选A.4.(2015•常德)如图,四边形ABCD为⊙O的内接四边形,已知∠BOD=100°,则∠BCD 的度数为()A.50°B.80°C.100°D.130°【解答】解:∵∠BOD=100°,∴∠BAD=100°÷2=50°,∴∠BCD=180°﹣∠BAD=180°﹣50°=130°故选:D.5.(2016春•杭州校级期末)二次函数y=a (x+m)2﹣m (a≠0)无论m为什么实数,图象的顶点必在()A.直线y=﹣x上 B.直线y=x上C.y轴上D.x轴上【解答】解:∵二次函数y=a(x+m)2﹣m(a≠0),其顶点坐标为:(﹣m,﹣m),∴无论m为何实数其图象的顶点都在:直线y=x上.故选:B.6.(2016春•龙口市期末)下列事件是不确定事件的是()A.水中捞月 B.守株待兔 C.风吹草动 D.水涨船高【解答】解:水中捞月是不可能事件;守株待兔是随机事件;风吹草动是必然事件;水涨船高是必然事件,故选:B.二.填空题(共8小题)7.(2016春•道里区期末)一个凸多边形共有35条对角线,它是十边形.【解答】解:设它是n边形,根据题意得:=35,解得n1=10,n2=﹣7(不符题意,舍去),故它是十边形,故答案为:十.8.(2016•长春一模)如图,在平面直角坐标系中,抛物线y=x2﹣2x﹣1交y轴于点A,过点A作AB∥x轴交抛物线于点B,点P在抛物线上,连结PA、PB,若点P关于x轴的对称点恰好落在直线AB上,则△ABP的面积是2.【解答】解:令x=0,则y=x2﹣2x﹣1=﹣1,∴A(0,﹣1),把y=﹣1代入y=x2﹣2x﹣1得﹣1=x2﹣2x﹣1,解得x1=0,x2=2,∴B(2,﹣1),∴AB=2,∵点P关于x轴的对称点恰好落在直线AB上,∴△PAB边AB上的高为2,∴S=×2×2=2.故答案为2.9.(2016•大连模拟)如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为3.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠CAB=30°,故AB=2,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=2,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=1,∴AA′=1+2=3,故答案为3.10.(2016•长春二模)如图,在△ABC中,∠ACB=90°,以点C为圆心,CB为半径的⊙C 与边AB交于点D.若点D为AB的中点,AB=6,则⊙C的半径长为3.【解答】解:如图,连接CD,∵在△ACB中,∠ACB=90°,D为AB的中点,∴CD=AB=6=3,∴⊙C的半径为3,故答案为:3.11.(2016•长春模拟)如图,在平面直角坐标系中,抛物线y=ax2﹣4ax(a>0)与x轴正半轴交于点C,这条抛物线的对称轴与x轴交于点D,以CD为边作菱形ABCD,若菱形ABCD的顶点A、B在这条抛物线上,则菱形ABCD的面积为2.【解答】解:抛物线的对称轴交AB于E点,如图,当y=0时,ax2﹣4ax=0,解得x1=0,x2=4,则C(4,0),所以抛物线的对称轴为直线x=2,则D(2,0),所以CD=4﹣2=2,因为四边形ABCD为菱形,所以AB=CD=AD=2,AB∥CD,所以点A、B关于直线x=2对称,所以AE=BE=1,在Rt△ADE中,DE==,所以菱形ABCD的面积=2×=2.故答案为2.12.(2016春•福州校级期末)点P(﹣3,2)关于坐标原点对称的点是(3,﹣2).【解答】解:点P(﹣3,2)关于坐标原点对称的点是(3,﹣2).故答案为:(3,﹣2).13.(2015春•道外区期末)如图:在平面直角坐标系中,点A的坐标(2,4),点B的坐标(0,4),将△AOB绕点O旋转90°至△COD位置(其中点C与点A是对应点,点D与点B是对应点),OD落在x轴上,则点C的坐标是(4,﹣2),(﹣4,2).【解答】解:∵A的坐标(2,4),点B的坐标(0,4),∴OB=4,AB=2,①△AOB绕点O顺时针旋转90°至△COD位置,如图1,根据旋转的性质得:OD=OB=4,CD=AB=2,∴C(4,﹣2);②△AOB绕点O逆时针旋转90°至△COD位置,如图2,根据旋转的性质得:OD=OB=4,CD=AB=2,∴C(﹣4,2);综上所述:C(4,﹣2),(﹣4,2).故答案为:(4,﹣2),(﹣4,2).14.(2015秋•温州期末)如图,P是AB为直径的半圆周上一点,点C在∠PAB的平分线上,且CB⊥AB于B,PB交AC于E,若AB=4,BE=2,则PE的长为.【解答】解:∵∠PAE=∠CAB,∠CAB+∠C=∠PAE+∠PEA,∴∠PEA=∠C.∵∠PEA=∠CEB,∴∠C=∠CEB,∴CB=BE=2=AB.设PE=x,PA=2x.(x+2)2+(2x)2=16,解得:x=或﹣2(舍去).则PE=.故答案是:.三.解答题(共12小题)15.(2016春•昌平区期末)解一元二次方程:x2﹣2x﹣3=0.【解答】解:∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,∴x+1=0或x﹣3=0,∴x1=﹣1,x2=3.16.(2015秋•响水县校级期中)如图,⊙O的半径OA、OB分别交弦CD于点E、F,且CE=DF.求证:△OEF是等腰三角形.【解答】解:过点O作OG⊥CD于点G,则CG=DG,∵CE=DF,∴CG﹣CE=DG﹣DF,即EG=FG.在△OEG与△OFG中,∵,∴△OEG≌△OFG,∴OE=OF,即△OEF是等腰三角形.17.(2016•北京)关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根.【解答】解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴△=(2m+1)2﹣4×1×(m2﹣1)=4m+5>0,解得:m>﹣.(2)m=1,此时原方程为x2+3x=0,即x(x+3)=0,解得:x1=0,x2=﹣3.18.(2016秋•利川市校级期中)已知直线y=2x﹣3与抛物线y=ax2﹣x+c交于A、B两点,它们的横坐标分别是2、﹣1.(1)求抛物线的解析式;(2)设坐标原点为O,求△AOB的面积.【解答】解:(1)∵直线y=2x﹣3与抛物线y=ax2﹣x+c交于A、B两点,∴2x﹣3=ax2﹣x+c,即:ax2﹣3x+c+3=0,∵直线y=2x﹣3与抛物线y=ax2﹣x+c交于A、B两点,它们的横坐标分别是2、﹣1,∴2,﹣1是方程ax2﹣3x+c+3=0,的两根,∴2﹣1=,﹣1×2=,∴a=3,c=﹣9,∴抛物线的解析式为:y=3x2﹣x﹣9,(2)∵O(0,0),由(1)知A(2,1),B(﹣1,﹣5),∴AB的长为:=3,∴直线AB的解析式为:y=2x﹣3,∴△OAB边AB的高为:||=,∴三角形AOB的面积为:×3×=.19.(2016•淮安)如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.20.(2012•长春模拟)如图,以正六边形ABCDEF的边AB为边,在形内作正方形ABMN,连接MC.求∠BCM的大小.【解答】解:∵六边形ABCDEF为正六边形,∴∠ABC=120°,AB=BC.∵四边形ABMN为正方形,∴∠ABM=90°,AB=BM.(2分)∴∠MBC=120°﹣90°=30°,BM=BC.∴∠BCM=∠BMC.∴∠BCM=×(180°﹣30°)=75°.(5分)21.(2015秋•寻乌县期末)如图,圆内接四边形ABCD,AB是⊙O的直径,OD⊥BC于E.(1)求证:∠BCD=∠CBD;(2)若BE=4,AC=6,求DE.【解答】解:(1)∵OD⊥BC于E,∴=,∴BD=CD,∴∠BCD=∠CBD;(2)∵AB是⊙O的直径,∴∠ACB=90°,∵OD⊥BC于E,∴OD∥AC,∵点O是AB的中点,∴OE是△ABC的中位线,∴OE=AC=×6=3,在Rt△OBE中,∵BE=4,OE=3,∴OB===5,即OD=OB=5,∴DE=OD﹣OE=5﹣3=2.22.(2016春•兴化市校级期末)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发沿AB以1cm/s的速度向点B移动;同时,点Q从点B出发沿BC以2cm/s的速度向点C移动,几秒钟后△DPQ的面积等于28cm2?【解答】解:设x s后△DPQ的面积等于28 cm2,则△DAP、△PBQ、△QCD的面积分别为、、.根据题意,得6×12﹣﹣﹣=28,即x2﹣6x+8=0,解得:x1=2,x2=4,答:2 s或4 s后△DPQ的面积等于28 cm2.23.(2013春•宜宾期末)在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,图①、图②、图③均为顶点都在格点上的三角形(每个小方格的顶点叫格点),(1)在图1中,图①经过一次平移变换(填“平移”或“旋转”或“轴对称”)可以得到图②;(2)在图1中,图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A(填“A”或“B”或“C”);(3)在图2中画出图①绕点A顺时针旋转90°后的图④.【解答】解:(1)图①经过一次平移变换可以得到图②;(2)图③是可以由图②经过一次旋转变换得到的,其旋转中心是点A;(3)如图.24.(2010•吉林)如图,在平面直角坐标系中,以A(5,1)为圆心,以2个单位长度为半径的⊙A交x轴于点B、C,解答下列问题:(1)将⊙A向左平移3个单位长度与y轴首次相切,得到⊙A′,此时点A′的坐标为(2,1),阴影部分的面积S=6;(2)求BC的长.【解答】解:(1)根据直线和圆相切的位置关系与数量之间的联系,得点A′的坐标是(2,1);则移动的距离是5﹣2=3;根据平移变换的性质,则阴影部分的面积即为图中平行四边形的面积=2×3=6;(2)如图,连接AC,过点A作AD⊥BC于点D,则BC=2DC.由A(5,1)可得AD=1.又∵半径AC=2,∴在Rt△ADC中,DC=∴BC=2.25.(2016•滨州)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象①AB为平行四边形的边时,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.②当点E在抛物线顶点时,点E(﹣1,),设对称轴与x轴交点为M,令EM与FM相等,则四边形AEBF是菱形,此时以A,B,E,F为顶点的平行四边形的面积=×6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,CN==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+2,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1,2﹣).26.(2016•长春二模)如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D 以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN 绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S (cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【解答】解:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时,<t<,t=1或.。